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Abstract

We prove some generalized versions of an interesting result of Matthews
using conditions of different type in 0-complete partial metric spaces.
We give, also, a homotopy result for operators on partial metric spaces.
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1. Introduction

In the setting of domain theory, attempts were made in order to equip semantics
domain with a notion of distance. In particular, Matthews [8] introduced the notion of a
partial metric space as a part of the study of denotational semantics of data for networks,
showing that the contraction mapping principle of Banach [2] can be generalized to the
partial metric context for applications in program verification. Moreover, the existence
of several connections between partial metrics and topological aspects of domain theory
have been lately pointed by other authors as O’Neill [9], Bukatin and Scott [3], Bukatin
and Shorina [4], Romaguera and Schellekens [13] and others.

After the definition of the concept of partial metric space, Matthews [8] obtained a
Banach type fixed point theorem on complete partial metric spaces. In this paper to prove
some generalized versions of the result of Matthews, we use conditions of different type
in 0-complete partial metric spaces. In section 4, using our results, we give a homotopy
result for operators on partial metric spaces.
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2. Preliminaries

In this section, we recall some definitions and some properties of partial metric space
[5, 8, 9, 10, 12, 14]. A partial metric on a nonempty set X is a function p : X × X →
[0,+∞[ such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial

metric on X. It is clear that, if p(x, y) = 0, then from (p1) and (p2) it follows that x = y.
But if x = y, p(x, y) may not be 0. A basic example of a partial metric space is the pair
([0,+∞[, p), where p(x, y) = max{x, y} for all x, y ∈ [0,+∞[. Other examples of partial
metric spaces which are interesting from a computational point of view can be found in
[8].

Each partial metric p on X generates a T0 topology τp on X which has as a base the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},

for all x ∈ X and ε > 0.
If p is a partial metric on X, then the function ps : X ×X → [0,+∞[ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X. Let (X, p) be a partial metric space. Then:
A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and

only if p(x, x) = lim
n→+∞

p(x, xn).

A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there
exists (and is finite) lim

n,m→+∞
p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in
X converges, with respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

A sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if
lim

n,m→+∞
p(xn, xm) = 0. We say that (X, p) is 0-complete if every 0-Cauchy sequence

in X converges, with respect to τp, to a point x ∈ X such that p(x, x) = 0.
On the other hand, the partial metric space (Q∩ [0,+∞[, p), where Q denotes the set

of rational numbers and the partial metric p is given by p(x, y) = max{x, y}, provides an
example of a 0-complete partial metric space which is not complete.

It is easy to see that, every closed subset of a complete (0-complete) partial metric
space is complete (0-complete).

2.1. Lemma ([8, 10]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps)
is complete. Furthermore, lim

n→+∞
ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

2.2. Lemma. Let (X, p) be a partial metric space and {xn} ⊂ X. If xn → x ∈ X and
p(x, x) = 0, then lim

n→+∞
p(xn, z) = p(x, z) for all z ∈ X.
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Proof. By the triangle inequality

p(x, z)− p(xn, x) ≤ p(xn, z) ≤ p(x, z) + p(xn, x).

Letting n→ +∞, we obtain that p(xn, z)→ p(x, z). �

Define p(x,A) = inf{p(x, a) : a ∈ A}. Then a ∈ A ⇔ p(a,A) = p(a, a), where A
denotes the closure of A. From

ps(x, a) = 2p(x, a)− p(x, x)− p(a, a) ≤ 2p(x, a)

for every a ∈ A, we deduce that ps(x,A) ≤ 2p(x,A).
Let X be a non-empty set and T, f : X → X. The mappings T, f are said to be

weakly compatible if they commute at their coincidence point (i.e. Tfx = fTx whenever
Tx = fx). A point y ∈ X is called point of coincidence of T and f if there exists a point
x ∈ X such that y = Tx = fx.

2.3. Lemma. Let X be a non-empty set and the mappings T, f : X → X have a unique
point of coincidence v in X. If T and f are weakly compatible, then T and f have a
unique common fixed point.

Proof. Since v is a point of coincidence of T and f . Therefore, v = fu = Tu for some
u ∈ X. By weakly compatibility of T and f we have

Tv = Tfu = fTu = fv.

It implies that Tv = fv = w (say). Then w is a point of coincidence of T and f .
Therefore, v = w by uniqueness. Thus v is a unique common fixed point of T and f . �

3. Main results

Let (X, p) be a partial metric space and T, f : X → X be such that TX ⊂ fX. For
every x0 ∈ X we consider the sequence {xn} ⊂ X defined by fxn = Txn−1 for all n ∈ N
and we say that {Txn} is a T -f -sequence of initial point x0.

3.1. Lemma. For every function ψ : [0,+∞[→ [0,+∞[, let ψn be the nth iterate of ψ.
Then the following holds: if ψ is nondecreasing, then for each t > 0, lim

n→+∞
ψn(t) = 0

implies ψ(t) < t.

The following theorem of common fixed point in partial metric space is first main
result.

3.2. Theorem. Let (X, p) be a partial metric space and T, f be mappings on X with
TX ⊂ fX. Assume that

(3.1) p(Tx, Ty) ≤ ψ(max{p(fx, fy), p(fx, Tx), p(fy, Ty),
1

2
[p(fx, Ty) + p(fy, Tx)]})

for all x, y ∈ X, where ψ : [0,+∞[→ [0,+∞[ is right continuous, nondecreasing function

such that
∑+∞

n=1 ψ
n(t) < +∞ for all t > 0. If TX or fX is a 0-complete subspace of

X, then T and f have a unique point of coincidence. Moreover, if T and f are weakly
compatible, then T and f have a unique fixed point.

Proof. Fix x0 ∈ X. We prove that the T -f -sequence {Txn} of initial point x0 is a Cauchy
sequence in TX. If Txn = Txn−1 for some n ∈ N, then Txn = Txm for all m ∈ N with
m > n and so {Txn} is a Cauchy sequence.

Suppose that Txn 6= Txn−1 for all n ∈ N. We have

p(Txn+1, Txn) ≤ ψ(max{p(fxn+1, fxn), p(fxn+1, Txn+1), p(fxn, Txn),
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1

2
[p(fxn+1, Txn) + p(fxn, Txn+1)]})

= ψ(max{p(Txn−1, Txn), p(Txn, Txn+1),

1

2
[p(Txn, Txn) + p(Txn−1, Txn+1)]}).

Since, by (p4), p(Txn, Txn) + p(Txn−1, Txn+1) ≤ p(Txn−1, Txn) + p(Txn, Txn+1), we
obtain

p(Txn+1, Txn) ≤ ψ(max{p(Txn−1, Txn), p(Txn, Txn+1)}).

Now, max{p(Txn−1, Txn), p(Txn, Txn+1)}) = p(Txn, Txn+1) implies a contradiction
and so

p(Txn+1, Txn) ≤ ψ(p(Txn−1, Txn)), for all n ∈ N,

and hence

(3.2) p(Txn+1, Txn) ≤ ψn(p(Tx1, Tx0)), for all n ∈ N.

Fix ε > 0 and choose n(ε) ∈ N such that∑
n≥n(ε)

ψn(p(Tx1, Tx0)) < ε.

Now, for all n ≥ n(ε) and all k ∈ N, we have

p(Txn+k, Txn) ≤
k∑

j=1

p(Txn+j , Txn+j−1)−
k−1∑
j=1

p(Txn+j , Txn+j)

≤
k∑

j=1

p(Txn+j , Txn+j−1)

≤
∑

n≥n(ε)

ψn(p(Tx1, Tx0)) < ε.

This implies that limn,m→+∞ p(Txn, Txm) = 0 and hence {Txn} is a 0-Cauchy se-
quence in the partial metric space (X, p).

Suppose that TX is a 0-complete subspace of (X, p), then there exists y ∈ TX ⊂ fX
such that

p(y, y) = lim
n→+∞

p(Txn, y) = lim
n→+∞

p(fxn, y) = lim
n,m→+∞

p(Txn, Txm) = 0.

This holds also if fX is a 0-complete subspace of (X, p) with y ∈ fX.
Let u ∈ X be such that y = fu. We show that y is a point of coincidence of T and f .

If not p(fu, Tu) > 0, since

max{p(fxn, fu), p(fxn, Txn), p(fu, Tu),
1

2
[p(fxn, Tu) + p(fu, Txn)]} ≥ p(fu, Tu)

for all n ∈ N, from

p(Txn, Tu) ≤ ψ(max{p(fxn, fu), p(fxn, Txn), p(fu, Tu),
1

2
[p(fxn, Tu) + p(fu, Txn)]})

as n→ +∞, by Lemma 2.2 and by the right continuity of ψ, we have

p(fu, Tu) ≤ ψ(p(fu, Tu)) < p(fu, Tu).
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This implies p(fu, Tu) = 0, that is Tu = fu. Hence, we have shown that y = fu = Tu
is a point of coincidence of T and f . If z ∈ X, with z = fs = Ts, is another point of
coincidence of T and f , then z = y. Assume z 6= y, from

p(Tu, Ts) ≤ ψ(max{p(fs, fu), p(fu, Tu), p(fs, Ts),
1

2
[p(fu, Ts) + p(fs, Tu)]})

= ψ(p(Tu, Ts)) < p(Tu, Ts)

we deduce that y = z, and so y is a unique point of coincidence of T and f . By Lemma
2.3, we deduce that y is a unique common fixed point of T and f . �

If in Theorem 3.2 we take ψ(t) = kt with k ∈ [0, 1[, we obtain the following theorem.

3.3. Theorem. Let (X, p) be a partial metric space and T, f be mappings on X with
TX ⊂ fX. Assume that

(3.3) p(Tx, Ty) ≤ kmax{p(fx, fy), p(fx, Tx), p(fy, Ty),
1

2
[p(fx, Ty) + p(fy, Tx)]}

for all x, y ∈ X, where k ∈ [0, 1[. If TX or fX is a 0-complete subspace of X, then T
and f have a unique point of coincidence. Moreover, if T and f are weakly compatible,
then T and f have a unique fixed point.

From Theorem 3.3, we deduce the following theorem.

3.4. Theorem. Let (X, p) be a partial metric space and T, f be mappings on X with
TX ⊂ fX. Assume that

(3.4) p(Tx, Ty) ≤ ap(fx, fy) + b[p(fx, Tx) + p(fy, Ty)] + c[p(fx, Ty) + p(fy, Tx)]

for all x, y ∈ X, where a, b, c ≥ 0 and a + 2b + 2c < 1. If TX or fX is a 0-complete
subspace of X, then T and f have a unique point of coincidence. Moreover, if T and f
are weakly compatible, then T and f have a unique fixed point.

3.5. Remark. Assume that for all x, y ∈ X the following condition holds

(3.5) p(Tx, Ty) ≤ ap(fx, fy) + bp(fx, Tx) + cp(fy, Ty) + dp(fx, Ty) + ep(fy, Tx),

where a, b, c, d, e ≥ 0 and a+ b+ c+ d+ e < 1.
Then, we get

p(Ty, Tx) ≤ ap(fy, fx) + bp(fy, Ty) + cp(fx, Tx) + dp(fy, Tx) + ep(fx, Ty).

It follows that

p(Tx, Ty) ≤ ap(fx, fy) +
b+ c

2
[p(fx, Tx) + p(fy, Ty)] +

d+ e

2
[p(fx, Ty) + p(fy, Tx)],

x, y ∈ X.
We deduce that Theorem 3.4 holds also if we use condition (3.5) instead of (3.4) and

so we obtain a fixed point theorem of Hardy-Rogers type [6].

From Theorem 3.4, we deduce the following corollaries.

3.6. Corollary (Banach type). Let (X, p) be a partial metric space and T, f be mappings
on X with TX ⊂ fX. Assume that

(3.6) p(Tx, Ty) ≤ kp(fx, fy)

for all x, y ∈ X, where 0 ≤ k < 1. If TX or fX is a 0-complete subspace of X, then T
and f have a unique point of coincidence. Moreover, if T and f are weakly compatible,
then T and f have a unique fixed point.
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3.7. Corollary (Kannan type [7]). Let (X, p) be a partial metric space and T, f be
mappings on X with TX ⊂ fX. Assume that

(3.7) p(Tx, Ty) ≤ kmax{p(fx, Tx), p(fy, Ty)}
for all x, y ∈ X, where 0 ≤ k < 1. If TX or fX is a 0-complete subspace of X, then T
and f have a unique point of coincidence. Moreover, if T and f are weakly compatible,
then T and f have a unique fixed point.

Using Remark 1, we state the following corollary.

3.8. Corollary (Reich type [11]). Let (X, p) be a partial metric space and T, f be map-
pings on X with TX ⊂ fX. Assume that

(3.8) p(Tx, Ty) ≤ ap(fx, fy) + bp(fx, Tx) + cp(fy, Ty)

for all x, y ∈ X, where a, b, c ≥ 0 and a+b+c < 1. If TX or fX is a 0-complete subspace
of X, then T and f have a unique point of coincidence. Moreover, if T and f are weakly
compatible, then T and f have a unique fixed point.

3.9. Example. LetX = [0,+∞[∩Q and p(x, y) = max{x, y}, then (X, p) is a 0-complete
partial metric space. Let T, f : X → X, with Tx = x2/(1 + x) and fx = x for all
x ∈ X. Let ψ : [0,+∞[→ [0,+∞[ with ψ(t) = t2/(1 + t). Then, ψ is continuous and

nondecreasing and
∑+∞

n=1 ψ
n(t) < +∞ for all t > 0. From

p(Tx, Ty) = max{ x2

1 + x
,
y2

1 + y
} = ψ(p(x, y)),

we deduce that T has a unique fixed point. We note that (X, ps) is not complete and
hence it is not possible to deduce the existence of a fixed point of T using the result of
Boyd and Wong [1].

4. A homotopy result

In this section, we give a homotopy result using a condition of Kannan type.

4.1. Theorem. Let (X, p) be a 0-complete partial metric space, U an open subset of X.

Suppose that H : U × [0, 1]→ X be such that

(i) x 6= H(x, λ) for all x ∈ ∂U and λ ∈ [0, 1], where ∂U is the boundary of U in X;
(ii) There exist k ∈ [0, 1/2[ and a continuous function ξ : [0, 1]→ R such that

p(H(x, λ), H(y, µ)) ≤ k[p(x,H(x, λ)) + p(y,H(y, µ))] + |ξ(λ)− ξ(µ)|

for all x, y ∈ U and λ, µ ∈ [0, 1].

If H(·, 0) has a fixed point in U , then H(·, λ) has a fixed point in U for every λ ∈ [0, 1].

Proof. Consider the set

Λ = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ U}.

We note that 0 ∈ Λ, since H(·, 0) has a fixed point in U . We will show that Λ is both
closed and open in [0, 1] and hence by connectedness we have that Λ = [0, 1].

We show that Λ is closed in [0, 1]. Let {λn} ⊂ Λ with λn → λ ∈ [0, 1] as n → +∞.
Now, for each n ∈ N there is xn ∈ U such that xn = H(xn, λn). Then

p(xn, xm) = p(H(xn, λn), H(xm, λm))

≤ kp(xn, H(xn, λn)) + kp(xm, H(xm, λm)) + |ξ(λn)− ξ(λm)|
= kp(xn, xn) + kp(xm, xm) + |ξ(λn)− ξ(λm)|
≤ 2kp(xn, xm) + |ξ(λn)− ξ(λm)|.
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It implies that

p(xn, xm) ≤ 1

1− 2k
|ξ(λn)− ξ(λm)|,

and so {xn} is a 0-Cauchy sequence, since lim
n,m→+∞

p(xn, xm) = 0. As X is 0-complete

there exists x ∈ U with

p(x, x) = lim
n→+∞

p(x, xn) = lim
n,m→+∞

p(xn, xm) = 0.

We have

p(xn, H(x, λ)) = p(H(xn, λn), H(x, λ))

≤ kp(xn, H(xn, λn)) + kp(x,H(x, λ)) + |ξ(λn)− ξ(λ)|
= kp(xn, xn) + kp(x,H(x, λ)) + |ξ(λn)− ξ(λ)|
≤ kp(x, xn) + kp(xn, H(x, λ)) + |ξ(λn)− ξ(λ)|.

Consequently

p(xn, H(x, λ)) ≤ k

1− k p(x, xn) +
1

1− k |ξ(λn)− ξ(λ)|

and letting n → +∞, we obtain p(x,H(x, λ)) = 0. This implies x = H(x, λ) and so
λ ∈ Λ, that is Λ is closed in [0, 1].

Now, we show that Λ is open in [0, 1]. Let λ0 ∈ Λ and x0 ∈ U with x0 = H(x0, λ0).
Let s = p(x0, ∂U) = inf{p(x0, x) : x ∈ ∂U} > p(x0, x0). Fix ε ∈]0, (1 − 2k)s[ and let
ρ > 0 such that for each λ ∈]λ0 − ρ, λ0 + ρ[ holds |ξ(λ) − ξ(λ0)| < ε. Now, for fixed
λ ∈]λ0 − ρ, λ0 + ρ[ and x ∈ Y = {x ∈ X : p(x, x0) ≤ s}, we have

p(x0, H(x, λ)) = p(H(x0, λ0), H(x, λ))

≤ kp(x0, H(x0, λ0)) + kp(x,H(x, λ)) + |ξ(λ0)− ξ(λ)|
= kp(x0, x0) + kp(x,H(x, λ)) + |ξ(λ0)− ξ(λ)|
≤ kp(x, x0) + kp(x0, H(x, λ)) + |ξ(λ0)− ξ(λ)|.

Consequently

p(x0, H(x, λ)) ≤ k

1− k p(x, x0) +
1

1− k |ξ(λ0)− ξ(λ)| ≤ s.

Then for each fixed λ ∈]λ0 − ρ, λ0 + ρ[ the mapping H(·, λ) : Y → Y has a fixed point

in U . But this fixed point must be in U by condition (i). This implies that Λ is open in
[0, 1]. Then Λ = [0, 1] and H(·, λ) has a fixed point in U for every λ ∈ [0, 1].

�
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