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Abstract

In this paper, first of all, the definition of parallel surfaces in Galilean
space is given. Then, the relationship between the curvatures of the
parallel surfaces in Galilean space is determined. Moreover, the first
and second fundamental forms of parallel surfaces are found in Galilean
space. Consequently, we obtained Gauss curvature and mean curvature
of parallel surface in terms of those curvatures of the base surface.
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1. Introduction

It is known that two surfaces with a common normal are called parallel surfaces. A
large number of papers and books have been published in the literature which deal with
parallel surfaces in both Minkowski space and Euclidean space such as [1, 4, 6, 7, 12, 13,
15]. However, this paper presents the differential properties of the parallel surfaces in
three-dimensional Galilean space.

There are nine related plane geometries including Euclidean geometry, hyperbolic ge-
ometry and elliptic geometry. Galilean geometry is one of these geometries whose motions
are the Galilean transformations of classical kinematics [16]. Differential geometry of the
Galilean space Gs and especially the geometry of ruled surfaces in this space have been
largely developed in O. Roschel’s paper [14]. Some more results about ruled surfaces in
Gs have been given in [8, 9, 10]. A. Ogrenmis et al. obtained the characterizations of
helix for a curve with respect to the Frenet frame in Galilean space [11]. In [3], curves
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explained in pseudo-Galilean space. C. Ekici and M. Dede [5] investigated Darboux vec-
tors of ruled surfaces in pseudo-Galilean space. Recently, tubular surfaces in Galilean
space introduced in [2].

The Galilean space G3 is a Cayley—Klein space equipped with the projective metric of
signature (0,0, 4, +). The absolute figure of the Galilean geometry consists of an ordered
triple {w, f, I}, where w is the real (absolute) plane, f is the real line (absolute line) in
w. I is the fixed elliptic involution of points of f.

1.1. Definition. A plane is called Euclidean if it contains f, otherwise it is called
isotropic. Planes x = constant are Euclidean and so is the plane w. Other planes are
isotropic. A vector u = (u1, u2,us) is said to be non-isotropic if u1 # 0. All unit non-
isotropic vectors are of the form u = (1, u2,us3). For isotropic vectors, u1 = 0 holds [9].
Since x = 0 plane is Euclidean in Galilean space, it is easy to see that isotropic vectors
are on the Euclidean planes.

1.2. Definition. Let a = (z,y,2) and b = (x1,y1, 21) be vectors in Galilean space. The
scalar product is defined by

<a,b>=uxiz

The norm of a is defined by ||al| = |z|, and a is called a unit vector if ||a|| = 1.
On the other hand, as a consequence of Definition 1.1, we define the scalar product
of two isotropic vectors, p = (0,y, z) and q = (0,41, 21), as

<P, qa>1=yy + 22
The orthogonality of isotropic vectors, p L1 q, means that < p,q >1= 0. The norm
of p is defined by ||p|l, = v/¥? + 22, and p is called a unit isotropic vector if ||p||, =1
[16].

1.3. Definition. Let u = (u1,u2,u3) and v = (v1,v2,v3) be vectors in Galilean space
[9]. The cross product of the vectors u and v is defined as follows:

0 €2 €3
(1.1) uAv=|u u2 wuz |=(0,usvi — u1v3, U1V2 — U2V1)
v1 V2 U3

1.4. Definition. Let ¢ be a plane and f(e) the intersection of the absolute line f and
e. In Figure 1, the point f(e) is called the absolute point of . Then f(e)* = I(f(¢))
denotes the point on f orthogonal to f(e) according to the elliptic involution I. This
is an elliptic involution because there is no line perpendicular to itself [14]. The elliptic
involution in homogeneous coordinates is given by

(1.2)  (0:0:z2:23) = (0:0:23: —m2)

1.5. Definition. If an admissible curve C of the class C"(r > 3) is given by the para-
metrization

r(@) = (z,y(x), 2(x))
then z is a Galilean invariant of the arc length on C' [8].
In Figure 2, the associated invariant moving trihedron is given by

t = (1L,y(z),7(2),
n - %(o,y”m),z”(x)),
1

b o= (0,-2"().y"(x)
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osculating
plane

FIGURE 2
1
where k = \/y"(x)? + 2""(x)? is the curvature and 7 = = det[r'(z),r" (z),r" (x)] is the
torsion.
Frenet formulas may be written as
t 0 x O t
d
T n|=(0 0 7 n
“1b 0 -7 0 b

2. Surface Theory in Galilean Space
Assume that M is a surface in Gz. The equation of M is given by the parametrization
p(v',0%) = (2(v!,0%),y(v",v?), 2(v",07)), vl v? €R

where z(v',v?), y(v',v?), z(v*, v?) € C3.
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FIGURE 3

The isotropic unit normal vector field N, shown in Figure 3, is given by

(2 1) N = P1Ap2 — (Ov 22T,1 — 2122, Y1T.2 — yﬂx,l)
loa Aol \/(Z,lx,z —z22,1)% + (y2z,1 —y12,2)?

where partial differentiation with respect to v* and v? will be denoted by suffixes 1 and
1,2 1,2
Ap(v i11 ) dp(v ;v ) 14),
v v
Using (1.2), we obtain the isotropic unit vector § in the tangent plane of surface as

2 respectively, that ¢ 1 = and o =

5= (09122 —yor1,2122 — 2221)
w

where

(22) <N75>1 =0, 62 =1, w= H‘P,l/\90,2||1

by means of Galilean geometry. Observe that a straightforward computation shows that
d can be expressed by

(2 3) 5= T2 1 — T 1P 2
’ w

where z 1 and x o are the partial differentiation of the first component of the surface M
with respect to v' and v?, respectively
Oz (vt, v? Oz (vt, v?
(24) xa1= ¥7 T = Gelv ;v7)
ovl ov?

Consequently to simplify the presentation (2.3), we may use Einstein summation con-

vention, then & may be rewritten as follows
§=g'vi=g"1+g"pa

where

(2.5) g1=T1 g2=2T2 Gij = Gif;

(26) g'="2 F=-"2 gi=gyg
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From Definition 1.2, the first fundamental form I of the surface is given by
(2.7) I = (gij + ehij)dv'dv’
where h;; and g¢;; (4,7 = 1,2) are called induced metric on the surface given by
(2.8)  hij =(0i,90.45)1,  gis = (L., P.5)
and

0, dv' : dv? non-isotropic

1, dv! : dv?  isotropic

fis)

FIGURE 4

In Figure 4, isotropic curves are the intersections of the surface M with Euclidean
planes [8]. All other curves on the surface are called non-isotropic curves.
Let a(s) = ¢(v(s)',v(s)?) be a non-isotropic curve in a surface patch ¢, parametrized
by the arc length s. From (2.5) it follows that
givi/ -1

» I»

d
where refers to —.
ds

The coefficients L;; of second fundamental form are given by
(2.9) L= <<P,ij33,1 — T N>
. 1 — )
1

The Christoffel symbols of the surface are given by

rk = PijL,2 — L,ijP,2 5 2 = PijL,1 — L,ijP,1 5
i = ) ) ij = )
w 1 w 1

1

2.1. Theorem. Let M be a surface in Galilean space.
(2.10)  w.ij =Ten + LiyN
is called the Gauss equation of the surface [14].

2.2. Theorem. Let M be a surface in Galilean space. The Weingarten equation is given
by
(2.11) N, =Bid + ;N
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where C; =0, B; = —g"Ly; [14]. Moreover, from (2.2) and (2.11), we have
(2.12) 6 =g¢"LN

2.3. Theorem. Let a(s) = ¢(v(s)',v(s)?) be non-isotropic curve on the surface, parametrized
by the arc length s. The equation of normal curvature k, and geodesic curvature kg of
the surface are given by, respectively
L Ffv’uil’uj/ Uk//
(213)  kn = Lijo"v",  ky = %
g

» !l o»

d
where refers to —.

s
In addition, let ¢ be the Fuclidean angle between the isotropic vectors, the surface
normal N and the curve normal n, we have

<N7§0”>1 (6, 90”>1
ey lle” 1y
Consequently, k, and ky are obtained by, respectively

cos ¢ = , sing =

kn =kKcos¢ , kg =rksing

where k = |||, is the curvature of a(s) [14].

2.4. Corollary. The equation of the asymptotic lines are given by
Lij'Ui/Uj =0
2.5. Corollary. Since K1 corresponding value of the normal curvature may be found by
making use of Lagrange’s multipliers, we have
Li1Los — (L12)?
(214) I, = bz — (L)
w g”Lij

This implies the following theorem.
2.6. Theorem. Let M be a surface in Gs [14]. The Gauss curvature K and the mean
curvature H of the surface are given by, respectively

_ det Lij
= 7{(1}2

(2.15) K . 2H =g" Ly

The following corollary is clear from (2.14) and (2.15).

2.7. Corollary. Ki can be expressed by
K

K=o

3. Parallel Surfaces in Galilean Space

3.1. Definition. Let M and M* be two surfaces in Galilean space Gz and A € R,
Vp € M. The function

f : @(v17v2) — @A(vlav2)
p — [(p)=[p1,p2 + Aaz(p), ps + Aas(p)]
is called the parallelization function between M and M> where p = (p1,p2,p3) and

7

3
0
N = E ai% = (0,0,2,&3)
1=2

is the isotropic unit normal vector field on M and furthermore M” is called parallel
surface to M in G3 where ) is a given positive real number.
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FIGURE 5

In Figure 5, T and T? are the isotropic tangent planes of parallel surfaces M and M?,
respectively.
Note that from the definition of parallel surfaces, we have N(p) = £N*(f(p)). More-

over this leads to the fact that §(p) = 6 (f(p)) in Galilean space.

3.2. Definition. Let M and M?> be parallel surfaces in Galilean space. We define the
parallel surface M> to base surface M at distance X as

(3.1) @ @' = e, v?) + AN
where N is normal vector of the base surface.
3.3. Theorem. Let M and M?> be parallel surfaces in Galilean space. The relationship
between the w = |1 A p2||, and w* = Hapﬁ A @YAQHI can be given as follows:
(32)  w=w(l-2\H)
Proof. Taking the partial derivatives of M?* gives
(33) @A =¢1+AN1, @y =p2+AN,
Thus, by (1.1), we see N1 AN 2 = 0. In addition, by (2.11), (2.15) and (3.3), we get
AN % = (p1 Apa)(1—2\H)
Taking norm of the both sides, we have
w® = w(l — 2)\H)
O

3.4. Theorem. Let M and M> be parallel surfaces in Galilean space. The first funda-
mental form I of the parallel surface is given by

I dv' : dv?  non-isotropic
™=
I—X2Ls; — )\gkLkigkij)dvidvj dvt : dv?  isotropic
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Proof. Let us now consider € = 0 in (2.7), it follows that
(34) I =ghdv'd’

From (2.1), (2.4) and (3.1), we obtained the partial differentiation of the first compo-
nent of the surface M* as

(35) aN==z1, zHh==z2
Substituting (3.5) into (2.5), we have
(36) g =g
By using (3.6) and (3.4), I* is obtained by
I = gjdv'd’ =1
We now consider ¢ = 1. In this case, the first fundamental form I is
I = hjdv'dv’
Differentiating (3.1) then, using (2.8) gives
(3.7) (Ph @) = hy +20 (N p5), + A7 (N, Ny,
Finally, substituting (2.7), (2.10) and (2.11) into (3.7), we have
I =T — \2Lij — A\g" Lyig" Ly.;)dv'dv’
O

3.5. Theorem. Let M and M> be two parallel surfaces. The coefficients Lf‘j of second
fundamental form of the parallel surface are given by

(38) L}y = Lij — A\g"Liig"Li;
Proof. Differentiating (3.1), we get
(3:9) ¢} = wi+AN

Substituting (3.5) and (3.9) into (2.9) then, using (N ;;, N), = — (N ;, N ;), implies
that

(3.10) L}y = Lij — A (N;, N ;),
From (2.2), (2.11) and (3.10) , we have
Lf} = Lij — )\gkL]mgkLk]

3.6. Corollary. Asymptotic lines of the parallel surface M> are given by
LY = Lij — A\g"Liig"Ly; = 0

3.7. Theorem. Let M and M> be two parallel surfaces in Gz, and o (s) = ™ (v(s)*, v(s)?)
be a non-isotropic curve on the parallel surface, parametrized by the arc length s, given
by

giv' =1

» !l o»

d
where refers to I The normal curvature k) of parallel surface is given by
s

kp = kn — AN¢" Liig" Li; 0" v’

where ky, is the normal curvature of M.
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Proof. Differentiating (3.1) with respect to s gives
o = .0 + AN v
and
(3.11) @™ = 00"V + @ 0" + AN ;0" + N p0*")
Substituting (2.10) into (3.11), we get
(3.12) oM = (Ffjvi'vj/ + 0" 1 4 Lijv" v N + AN ;070" + N o)
Taking scalar product of both sides of (3.12) with N gives
(¢Y\N) | = (Liy + AN, N ) oo
Using (2.11), (2.13) and (N ;;, N), = — (N ;, N ;), implies that the relation between
the normal curvatures of two parallel surfaces is
ke = kn — Mg" Liig" Lij)v"v”
(]

3.8. Theorem. Let M and M> be two parallel surfaces in Gs. The relation between the
geodesic curvatures of two parallel surfaces is given by

k) = kg — Ag" Liio"™"
Proof. Taking scalar product of both sides of (3.12) with § gives
(3813) (pM.8) = (Thv"v" + ") (o, 8) + AN, 8), "0 + (N, 8), o)
Substituting (2.11) and (2.13) into (3.13), we have
k) = kg + A(Nij,0), v"v" — g" Lpo*")
From (2.11) and (2.12), we have (N ;,0), = 0 which implies that
k) = kg — Ag" Liio"™"
O

3.9. Theorem. Let M and M> be two parallel surfaces in Gs. The relations between the
Gauss curvatures and the mean curvatures of two parallel surfaces are

K
14) K = —__
(3.14) 1—-2\H
and
H
1 L L
(3.15) H 1—2)\H
respectively.

Proof. Substituting (3.2) and (3.8) into (2.15) gives

_det[Lij — Ag" Lrig" Li;]
B w2(1 — 2AH)?

Simple calculation implies that

K)\

(3.16) K — (L1i1La2 — L35)(1 — A(g" La1 + 292 L1 + g** La22))
' w2(1 — 22\H )2
Combining (2.15) and (3.16), we have
K* K

T1-2\H
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Using (2.6), (3.2) and (3.5) implies that

g ij
3.17) (97 = —4 ___
61 6 =
Taking account of (2.15), (3.8) and (3.17), we find that
ij
318) 2H = — L (L;; — Ag"Lisg" Ly
Finally, substituting (2.15) into (3.18) then, H* can be written as
H
>\ f—
B =1"%n

Now we shall consider some particular cases of the results (3.14) and (3.15).

3.10. Theorem. Let M and M be two parallel surfaces in Gs. If the base surface is
minimal, then the parallel surface is minimal.

Proof. Since M is minimal surface, H = 0. Therefore, from (3.15) we have
H*=0
O

3.11. Theorem. Let M and M> be two parallel surfaces in Gs. If base surface is Wein-
garten, then parallel surface is Weingarten.

Proof. Since base surface is Weingarten, it satisfies the following condition
(319) H1Ko— HoK,=0
On the other hand, differentiating (3.14) and (3.15) with respect to v' and v?, we get

ion _ (L=2MH)K G + 220K (1= 2\H)H, +2\HH,
! (1—2XH)? ro (1 —2XH)?
ir _ (L2 K + 22KHy oy (L= 2\H)H +2\HH,»
’ (1—2)\H)? ’ ’ (1 —-2XH)?
Thus,
H1Ks—H>K
20) HAK) — HyK) = —= =220
(320) HHKj5— H3K) (1= o0 )
Combining (3.19) and (3.20) gives
H)K’s — H3K) =0
This completes the proof. O
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