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Abstract

A series of returns are often modeled using stochastic volatility mod-
els. Many observed financial series exhibit unit-root non-stationary
behavior in the latent AR(1) volatility process and tests for a unit-root
become necessary, especially when the error process of the returns is
correlated with the error terms of the AR(1) process. In this paper, we
develop a class of priors that assigns positive prior probability on the
non-stationary region, employ credible interval for the test, and show
that Markov Chain Monte Carlo methods can be implemented using
standard software. Several practical scenarios and real examples are
explored to investigate the performance of our method.
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1. Introduction

The time evolving feature of volatility is often modeled using the so-called Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) family and Stochastic Volatility
(SV) models. Bollerslev et al. [3] and Bera and Higgins [1] present an extensive survey on
GARCH/ARCH literature. In a basic SV model, the mean corrected return is modeled
as a product of two independent stochastic terms one of which is the volatility (the
conditional variance of the logarithmic return) and the other one is a zero mean Gaussian
white noise with unit variance. The stochastic nature of the volatility is modeled as a
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log normal autoregressive (AR) process with errors independent of the white noise of
the returns. In many real life applications SV models offer greater flexibilities over
GARCH family of models Fridman and Harris [7]. However a basic SV model is too
restrictive to allow the financial leverage effect in the model. In order to incorporate
the leverage effect which is seen in many financial series into the model, Harvey and
Shephard [8] extended the basic SV model to include a correlation between the two error
terms namely the white noise in the return and the error in the volatility process. In
the rest of the article bSV (basic SV) and eSV (extended SV) refer to SV model with
uncorrelated and correlated return error and conditional variance error, respectively. We
should also note that there are different characterizations for the correlations and they
provide alternative specifications to the leverage effect e.g. see Jacquier et al. [10] and
Yu [24]. However by eSV throughout the article we refer to a SV model that incorporates
nonzero correlation without making any distinction among the alternative specifications.
More detailed specification of the eSV is presented in Sect. 2.

Degree of the persistency of past volatility on the current one is represented by the AR
coefficient in the SV models. Therefore investigating efficient estimation techniques in SV
models has been a considerable research interest in finance, econometrics, and statistics.
Literature on frequentist and Bayesian estimation methodologies for bSV can be found
among the references given in for example So and Li [23]. In terms of the estimation
in eSV, Sandman and Koopman [22] discussed the Monte Carlo maximum likelihood
method of estimating the parameters of bSV and showed that the same approach would
be applicable to eSV without modification. A Bayesian MCMC algorithm for eSV was
developed by Jacquier et al. [10] where the volatilities were sampled univariately. Yu
[24] refined the eSV model characterized by Jacquier et al. [10] and adjusted the MCMC
method of Meyer and Yu [14] to accommodate the correlation. Omori et al. [17] extended
the method of Kim et al. [13] for estimation in eSV. This algorithm later was further
improved by Nakajima and Omori [15].

There are several financial data analyses in the literature where bSV or eSV models
are used. In most cases the estimates of the AR coefficients are found to be extremely
close to unity. For instance Harvey and Shephard [8] and Kim et al. [13] analyzed the
daily observations of weekday close exchange rates for the UK pound, Deutsche Mark,
Japanese Yen, and Swiss Frank versus US dollar and estimated the coefficient of the AR
process close to 1 for each of these four series, namely 0.9912, 0.9646, 0.9948, and 0.9575
respectively. Chib et al. [5] employed their bSV estimation algorithm on stock market
data (S&P500 daily returns from 1980 to 1987) and interest rate data (bank discount
rates on three month treasury bills from 1962 to 1995) and they too estimated the AR
coefficients for these series to be close to unity (greater than 0.98). The eSV analysis
of Jacquier et al. [10] on daily series including two stock indices (S&P500 daily returns
from 1980 to 1987 and returns on value weighted CRSP indices from 1962 to 1987)
and two exchange rates (UK pound and Deutsche Mark versus US dollar) delivered
persistency estimates all close to unity (greater than 0.97). Nakajima and Omori [15]
analyzed the daily stock returns data, the S&P500 index from 1970 to 2004, using their
MCMC approach for eSV and the estimate for AR coefficient came out to be close to
unity (greater than 0.98). Such data analyses including a wide variety of financial series,
such as stock market indices and interest rates suggest strong empirical evidence that
volatility is highly persistent. Two major questions are raised by these findings at this
point. One of them is whether the volatility follows a random walk. The other one is how
different financial series of interest compare with each other with respect to the volatility
persistence within. Persistence of volatility and its implications in econometrics and
finance are investigated in the literature (see e.g. Poterba and Summers [21], Pindyck
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[19], Pindyck [20], Chou [6], Bolerslev and Engle [2]). Statistical testing for a hypothesis
of unit-root in volatility process aids in providing answers to these questions.

So and Li [23] proposed a Bayes factor based unit-root testing procedure for bSV
model that uses the MCMC output obtained by using the algorithm of Kim et al. [13].
Kalayloglu and Ghosh [12] proposed a Bayesian unit-root test in bSV model that was
based on the posterior interval for the persistency parameter. This article extends their
Bayesian testing scheme for unit root testing to apply in eSV and investigates the behavior
of the proposed unit-root test versus the magnitude of the underlying correlation between
the errors in the return and the errors in the volatility process.

The rest of the article is organized as follows: Section 2 describes the eSV model of
interest. It also presents our Bayesian approach including the motivation for our choice of
prior densities for the persistency parameter, Gibbs sampling for our eSV via WinBUGS,
and Bayesian unit-root testing based on the posterior interval. A Monte Carlo simulation
experiment studying the power and the errors of the unit-root test under the correlations
of various different strength is presented in Sect. 3 while the proposed test is used in
Sect. 4 on couple of financial series to detect the presence of on unit-root. Finally Sect.
5 gives a summary of the results and future directions of research.

2. Bayesian inference for eSV model

The SV model with correlated errors is given below. The hypothesis of interest is
whether the volatility process has a significant unit root. This hypothesis is tested
through the use of a posterior credible interval constructed via Gibbs sampling algorithm.

2.1. Model. We consider Euler time discretization of the continuous time stochastic
volatility model (see Johannes and Polson [11]) given by

he_1/2
re =12,

(2.1) he — = @(hi—1 — p) + v¢,t=2,...,n

where ¢ represents the persistency of past volatility on the current volatility, r; is the
observed mean corrected return, h: is the unobserved volatility, r1 ~ N(0,e*), hi ~

Ny, %) when |¢| < 1, h1 ~ N(u,02) when ¢ = 1, and

(“) ~iid. N(0,%),% = < L poy )
V¢ POv Oy

Here p is the correlation between e; and v and we call model (2.1) as our eSV. In order
_ vi/oy—pet

V1—p2 ’

to understand the relevance of p in a financial time series, denote first w;
Then using w; we can rewrite (2.1) as
he_1/2
Tt = € -1/ €t

(2.2) he — = @(hi—1 — p) + ovpes + orwe/1 — p?

where
€t
~ N(0, I.
(wt> ( 5 2)

and I is the 2 x 2 identity matrix. Notice that, from (2.2) we obtain
(2.3) E(helre, hi1) = p+ ¢(huer — p) + ovp e "= r,

In (2.3), p represents the linear relationship between r: and E(h¢|r:, ht—1) holding the
other parameters constant. That is, a financial contemporaneous correlation between the



662 Z. 1. Kalaylioglu, B. Bozdemir, S. K. Ghosh

conditional mean of volatility and return is induced by including a correlation between
€ and v¢ in the SV model. Model (2.1) is different from both Jacquier et al. [10] and Yu
[24] in the way the correlation is specified. The statistical interest lies in testing Ho : ¢=1
versus Hy : |¢] < 1.

2.2. Prior Distributions. The parameter of interest for unit-root hypothesis testing
in eSV is the persistency parameter ¢. Thus we start with our choice of prior densities
for ¢. In the literature for Bayesian estimation in SV models, continuous distributions
with the support between 0 and 1 such as Uniform (a completely flat prior), Beta, and
truncated Normal are used as prior distributions for ¢. Phillips [18] had shown that flat
priors defined on (0,1) are indeed informative for ¢ in AR time series models, contrary
to the intention, and downweights the unit root alternative in the posterior distribution.
Motivated by this finding, Kalaylioglu and Ghosh [12] proposed for Bayesian unit-root
test in bSV the use of a prior distribution that has non-null mass on the unity. This allows
a non-null mass on unity in the posterior distribution also and prevents the posterior
inference on the volatility process from being biased towards stationarity. Also this
approach enables the use of (1 — a)% posterior credible interval as a unit-root testing
mechanism. They showed that unit-root test in bSV based on posterior interval provides
a more straightforward and statistically less erroneous (owing to smaller combined Type
I and Type II errors) alternative to the test based on the Bayes Factor of So and Li
[23]. The priors we used for ¢ in the rest of the article are in line with Kalaylioglu and
Ghosh [12] and are uniformly distributed between 0 and 14+c. We considered ¢ = 0,
0.001, and 0.1 for ¢ in order to perform a sensitivity analysis. The parameters u, o2,
and p are assumed independent apriori. We used a uniform prior for u, Inverse-Gamma
distribution with shape and scale parameters equal to 24 107*° and 0.1 which gives the
mean about 0.1 for o2, and uniform prior with support between -1 and 1 for p.

2.3. Gibbs sampling. MCMC sampling algorithms for bSV models can be considered
in two separate groups. One group of MCMC methods are based on the single move Gibbs
sampler developed in Jacquier et al. [9] in which unobserved volatilities are sampled
univariately. The other group follow the multi-move algorithm developed in Kim et al.
[13] in which volatilities are sampled as a group; this procedure is based on taking the
log-squared transformations of returns and approximating the exact distribution of log-
squared transformed errors (log X?n) by a mixture of normal densities. These approaches
were later adopted for eSV; see Yu [24] for extension of single-move sampling and Omori
et al. [17] for multi-move sampling. Since single move sampling is based on univariate
sampling of the unobserved volatilities, it is less simulation-efficient than multi-move
MCMC algorithm. However Yu [24] showed that this is less of a problem for eSV. We
prefer using the single-move algorithm and employ WinBUGS to carry it out. We present
measures of empirical efficiency of our implementation in Sect. 4.
Joint posterior distribution representation for model (2.1) is

f(ﬁv Hy ¢7 U?HP‘F) OCH?:lf(Tt“lh ht—hﬂ, ¢7 0'12/70)
s f(hel o, 1, &, 02) f (s 6, 02) f (1) f(0) F(02) £ ()

where h and 7 represent the vectors of unobserved volatilities and the observed return
data respectively from t=1 to n,

f('f’t‘ht, ht*hﬂa ¢)7 037 p) ~ N(U;lpileht71/2((ht - M)_
Plhe—r — ), p~2(1 — p*)e=1)
F(helhe—, 1, 6,02) ~ N(u(1 = @) + he—1,07)
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and f(u), f(#), f(c2), and f(p) are prior densities for the corresponding parameters.
Full conditional density of p is

n _ 1 _
flplh 1, 6,02, 1) ~ Tiop(1 — p%) 1/269:10(—§p2(1 -7t

exp(—hi—1)(r: — Ctpil)z)

where ¢; = U;lpflexp(htfl/Q)((ht —p)—@(hi—1—p)). We used WinBUGS - version 1.4.
to do the posterior computations through Gibbs sampling. The full conditional density
of p is not a kernel of a well known distribution and not log-concave. In such cases
WinBUGS adopts a Metropolis Hastings algorithm. The full conditional densities of the
other parameters and the latent volatilities are given in Kalaylioglu and Ghosh [12]. The
application and details of the Gibbs sampling algorithm for SV models in WinBUGS are
given in Meyer and Yu [14].

2.4. Testing the unit-root hypothesis. In order to test for the unit-root hypothesis
Ho : ¢ =1 versus Hy : |¢| < 1 in (2.1), we extend the use of posterior credible interval
approach in Kalaylioglu and Ghosh [12]. The test rejects the null hypothesis if the
marginal posterior interval of 95% confidence level for ¢ does not include the unity.
Rejection of the unit-root hypothesis implies that the volatility process is stationary and
hence one can proceed with the application of inferential techniques in SV models that
are developed under the stationarity assumption. On the other hand failure to reject
the null hypothesis implies that the volatility process is nonstationary and shocks to
volatility have long-term effects.

3. Simulation study

TABLE 1. Number of correct decisions (NCD) on unit-root hy-
pothesis and total error rates (based on 100 MC replications),

true p = —1

10} Prior NCD Total error rate

1 U(0,1) 0 -
U(0,1.001) 71 -
U(,1.1) 62 -

0.98 U(0,1) 100 1
U(0,1.001) 91 0.38
U(0,1.1) 90 0.48

0.95 U(0,1) 100 1
U(0,1.001) 99 0.30
U(0,1.1) 99 0.39

0.80 U(0,1) 100 1
U(0,1.001) 100 0.29
U(0,1.1) 100 0.38

We conducted a Monte Carlo (MC) simulation experiment in order to assess the
performance of the proposed unit-root test based on the posterior interval of ¢ in several
scenarios of our eSV. We set the values of the true parameters at p = —9 and o, = 0.32
and these are the values used in So and Li [23] and Kalayhoglu and Ghosh [12]. In
order to investigate the magnitudes of the errors of Types I and II this unit-root test
commits under different scenarios on contemporaneous correlation, we choose various
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TABLE 2. Number of correct decisions (NCD) on unit-root hy-
pothesis and total error rates (based on 100 MC replications),

true p = —0.8

10} Prior NCD Total error rate

1 U(0,1) 0 -
U(0,1.001) 77 -
U(0,1.1) 82 -

0.98 U(0,1) 100 1
U(0,1.001) 94 0.29
U(0,1.1) 93 0.25

0.95 U(0,1) 100 1
U(0,1.001) 99 0.24
U(0,1.1) 99 0.19

0.80 U(0,1) 100 1
U(0,1.001) 100 0.23
U(0,1.1) 100 0.18

TABLE 3. Number of correct decisions (NCD) on unit-root hy-
pothesis and total error rates (based on 100 MC replications),

true p = —0.5
10} Prior NCD Total error rate
1 U(0,1) 0 -
U(0,1.001) 87 -
U(0,1.1) 92 -
0.98 U(0,1) 100 1
U(0,1.001) 94 0.19
U(0,1.1) 89 0.19
0.95 U(0,1) 100 1
U(0,1.001) 100 0.13
U(0,1.1) 100 0.08
0.80 U(0,1) 100 1
U(0,1.001) 100 0.13
U(0,1.1) 100 0.08

values for ¢ and p. We consider ¢ = 1,0.98,0.95,0.8; ¢ = 1 implies unit-root in the
volatility process. The literature documents that stock returns are negatively correlated
with the changes in volatility e.g., Nelson [16]. Thus we consider p = —1,—-0.8,—0.5, 0;
p = —1 implies perfect negative correlation between the disturbance to the return and the
disturbance to volatility. For each scenario which is based on a combination of ¢ and p in
the data generation process, we generated a set of observed mean corrected returns over
n=1000 days using the model (2.1) and conducted the MCMC sampling to obtain the
posterior distributions of (u, ¢, p, Ju) We also ran the experiment by simulating data
from a bSV (i.e. SV model with p=0) and fit model (2.1) for the Bayesian analysis to
further assess the robustness of the proposed unit-root test to the underlying SV model.
The experiment for each scenario was repeated for 100 times. The data were generated
using a code written in Matlab (version 7.7). For each data set generated, matBUGS
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TABLE 4. Number of correct decisions (NCD) on unit-root hy-
pothesis and total error rates (based on 100 MC replications),

true p =0
10} Prior NCD Total error rate
1 U(0,1) 0 -
U(0,1.001) 86 -

(

(0,1.1) 96 -
(0,1) 100 1
(0,1.001) 89  0.25
(0,1.1) 78  0.26
(0,1) 100 1
(
(
(
(
(

0.98

0,1.001) 99  0.15
0,1.1) 99 0.5
0,1) 100 1

0,1.001) 100  0.14
0,1.1) 100  0.04

U

U

U

U
095 U
U

U
0.80 U
U

U

TABLE 5. Number of correct decisions (NCD) on unit-root hy-
pothesis and total error rates (based on 100 MC replications),

true p = —0.5
10} Prior NCD Total error rate
1 U(0,1) 0 -
U(0,1.001) 92 -

U(0,1.1) 96 -

0.98 U(0,1) 100 1
U(0,1.001) 89 0.25
U(0,1.1) 86 0.21

0.95 U(0,1) 100 1
U(0,1.001) 99 0.15
U(0,1.1) 99 0.15

0.80 U(0,1) 100
U(0,1.001) 100 0.14
U(0,1.1) 100 0.07

(the Matlab interface to WinBUGS) was used to call WinBUGS from within Matlab for
posterior calculations.

For the scenario with (¢, p) = (1, —1), we discarded the first 4000 iterations for the
burn-in period in our Gibbs samples. For the other (¢, p) scenarios, we discarded first
2500 iterations as the burn-in period. We made these selections based on the trace plots of
three different Markov chains starting from three different sets of initial parameter values.
MCMC sample size we used for inference after the burn-in point was 5000. We should
note that MCMC chain size of 5000 is somehow smaller than what is generally used in the
MCMC literature for eSV. The reason for adopting a relatively smaller MCMC size for
the present simulation study is that the total number of different scenarios we considered
is many, namely 48 corresponding to 4 different values for p, 4 for ¢, and 3 types of
prior densities for ¢. Thus the overall computational cost would increase considerably
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for a larger MCMC sample size. Nevertheless Gelman-Rubin statistic computed (see
Brooks and Gelman [4]) in WinBUGS converged to 1 indicating the employed size ensures
sufficient precision in our MCMC estimates. The MC error estimates for the posterior
means of all the parameters and unobserved volatilities being so small (which is varing
between 0.00001 and 0.03) also indicates that the employed chains size for posterior
inference was adequate.

Through the Tables 1 to 5 we list the results of our simulation study on the number
of correct decisions made by our unit-root test among 100 MC replications and the total
error rate. The number of correct decisions is the number of MC' replications for which
the value 1 is included in the 95% posterior credible interval of ¢ when the true value of ¢
is 1. When the true value of ¢ is less than 1, the number of correct decisions is calculated
as the number of 95% posterior intervals that do not include 1. The total error rate is
computed as Type I error rate + Type II error rate. For the Tables 1 to 3, model (2.1) was
used for both the data generation and the Bayesian analysis. For the Table 4, the data
were generated from bSV and eSV was used for the Bayesian inference. For the Table
5, the data were generated from (2.1) and bSV was used for the Bayesian inference.
The results show that U(0,14c) type of prior density for ¢ enables the test based on
posterior interval to detect the underlying unit root in eSV as opposed to U(0,1) prior.
Tables 1 to 4 imply that in the presence of strong underlying correlation between the
innovations in the volatility and the innovations in the returns (e.g for p= -1), the test
is more prone to comitting Type I error compared to a milder true correlation (e.g. for
p=-0.5). Comparing Tables 3 versus 4, we see that overfitting the model (i.e. including a
correlation parameter in the model whereas the two error terms are actually uncorrelated)
makes the test more vulnerable to committing Type II error. Also the results show that
strength of the correlation affects the test’s ability to correctly determine the unit-root;
all the total error rates committed under the perfect true correlation is higher. For all the
p values investigated except for p=-1, using U(0,1.1) as opposed to U(0,1.001) prior for
the persistency parameter decreases the total error rates. In Table 5, we investigated the
total error committed by the proposed unit root test when the model is underfit. That is,
we generated the data from model (2.1) with p=-0.5 and used bSV for the analysis. The
error rates increased as seen in Table 5 compared to Table 3; the probability of making
an erroneous conclusion about the unit root is sensitive to the assumption about the
existence of correlation in the modeling stage. We repeated the same experiment with
true p=-1. Ignoring this severe correlation in the analysis resulted in an increase in the
total error rates.

4. Empirical application

We studied two sets of financial data one of which is an exchange rate series and the
other one is a series of stock indices. The exchange rate series is the daily exchange rate
of Japanese Yen versus US Dollar from Oct/1/1981 to June/28/1985. The stock index
is the S&P500 stock returns from January/2/1980 to December/31/1987. The Japanese
Yen versus US dollar exchange rate series was investigated previously by Kalaylioglu
and Ghosh [12] using their SV model; they fitted the bSV and conducted the Bayesian
unit root testing based on the posterior interval. The S&P500 index considered here
was analyzed in Jacquier et al. [10] using their SV model for estimation of volatility
persistence. We used equation (2.1) to model these data sets and the proposed Bayesian
unit root test is used to determine whether the log volatility process possesses a unit-root
for these series.
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FIGURE 1. Time series plots of the returns

Japanese Yen versus US Dollar exchange rate S&P500 stock index
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Time (n days) Time (in days)

We used WinBUGS to conduct the Gibbs sampling for estimation of model (2.1) for
these series. We used two distinct sets of initial values to start the Markov chain for the
model parameters. We let WinBUGS to generate the initial values for the latent volatili-
ties {hs }i=}. We discarded the first 5000 MCMC iterations and used the remaining 15000.
In order to reduce the autocorrelation within the MCMC series for the correlation pa-
rameter p we used every 5th MCMC iteration for posterior computations. The posterior
inference for ¢ and p are given in Table 6. Let p; denote the exchange rate or stock return
at time ¢t. Mean corrected log return is r: = (logp: — logpe—1) — % > (logp: — log pe—1).
These mean corrected returns are plotted against time in Fig. 1.

The results in Table 6 show that there is a significant evidence for unit-root in log-
volatility model for the exchange rate series (the corresponding 95% posterior intervals
include the point 1). On the other hand there is no such evidence for the S&P500 index.
This result implies that the effect of volatility in the Japanese Yen vs. US dollar exchange
rate stays persistent for a long time. For the exchange rate data, where the underlying
volatility is nonstationary, the posterior inference about p seems sensitive to the prior
density chosen for ¢. Same behaviour is not observed for the stock index series. The
MCMC updates took about 3500 minutes for the exchange rate data and about 8000
minutes for the S&P500 data. The posterior credible intervals for p for the exchange
rate series imply that the correlation between the error in the return and the error in the
volatility may be ignorable. In this case, model (2.1) is an overfit due to the inclusion
of the correlation term. However this does not constitute a disadvantage for discovering
the unit-root in latent volatility; the proportion of correct decisions made when the true
¢ =1 in Table 4 are 86% and 96% respectively for priors U(0,1.001) and U(0,1.1).

5. Summary

In this paper, we considered the SV models, where the volatility terms (i.e., the
conditional variances) are modeled by a latent first order autoregressive (AR(1)) process
and the error process of the log-returns is correlated with the error terms of the latent
AR(1) process. We proposed a Bayesian testing procedure for unit-root in SVM; we
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TABLE 6. Posterior means and 95% posterior intervals for ¢ and p.

Data Prior for ¢ ¢ p

Yen vs. US dollar  U(0,1.001)  0.9865(0.9501,1.000)  0.1186(-0.1763,0.3897)
U(0,1.1)  0.9748(0.8908,1.003)  0.1087(-0.1789,0.3604)
(0,1) 0.9792(0.9014,0.9993)  0.1449(-0.1494,0.3953)
(0,1.001) 0.9627(0.9325,0.9823) -0.3069(-0.4362,-0.1402)
(0,1.1)  0.9652(0.9373,0.9844) -0.3044(-0.4710,-0.1502)
(0,1) 0.9615(0.9295,0.9826) -0.3062(-0.4495,-0.1691)

S&P500

—_——a=< =X =

developed a suitable class of priors that assigns positive prior probability on the non-
stationary region and employed posterior credible interval for the hypothesis testing
decision criterion. We conducted an extensive simulation study which demonstrated the
superior performance of the proposed test over some of the methods that use continuous
prior for the persistence parameter that is defined only on the stationary region. The
simulation results suggest that the proposed test has much smaller total error (type I
plus type II) than that obtained by default priors.

We also found out that the ability of the proposed test to correctly concluding in a
unit root is affected by the underlying correlation structure. Therefore in practice prior
to applying the unit root test in SVM, a preliminary analysis should be conducted to
obtain an insight on the strength of the correlation.

Comparing Table 1 to Table 5 we see that in the presence of perfect correlation and
the unit root in the data, fitting eSV makes the proposed unit root test commit larger
type I error. i.e. the unit root test in eSV tends to reject the null hypothesis more often
compared to the unit root test in bSV. A further investigation is needed to understand
this behaviour. One may consider more specialized priors for p that would allow positive
prior probability for p = 0 and continuous on remaining values of p. Although we used
the default 95% posterior intervals to make all of our conclusions, further investigations
are required to develop more rigorous criteria to select the cut off value for the posterior
probability of the null hypothesis.

The major limitation of our study is the number of replications used in the Monte
Carlo simulation experiment. Although a small number of Monte Carlo replications is
common in the literature for SV estimation, these replications may have to be increased
in order to get more insight on the unit root testing qualities for certain scenarios.
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