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Abstract

In this paper, we introduce a new third power type contractive condi-
tion in the G-metric spaces, and several new fixed point theorems are
established in complete G-metric space. The obtained results in this
paper extend the recent relative results.
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1. Introduction

Metric fixed point theory is an important mathematical discipline because of its
applications in areas as variational and linear inequalities, optimization theory. In 1992,
Dhage[2] introduced the concept of D-metric space. Unfortunately, it was shown that
certain theorems involving Dhage’s D-metric spaces are flawed, and most of the results
claimed by Dhage and others are invalid. These errors are pointed out by Mustafa and
Sims[7]. In 2006, a new structure of generalized metric spaces was introduced by Mustafa
and Sims[8] as appropriate notion of generalized metric space called G-metric spaces.
Some other papers dealing with G-metric spaces are those in[1], [3]-[6], [9]-[11]. In this
paper, we will prove some general fixed point theorems for third power type contractions
mapping in complete G-metric spaces.

Throughout the paper, we mean by N the set of all natural numbers.
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1.1. Definition (see[8]). Let X be a nonempty set, and let G : X ×X ×X −→ R+ be
a function satisfying the following axioms:

(G1) G(x, y, z)=0 if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z),for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X, (rectangle inequality)

then the function G is called a generalized metric, or, more specifically a G-metric on X
and the pair (X,G)is called a G-metric space.

1.2. Definition (see[8]). Let (X,G) be a G-metric space, and let {xn} be a sequence of
points inX, a point x inX is said to be the limit of the sequence {xn} if limm,n→∞G(x, xn, xm) =
0, and one says that sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there exists N ∈ N
such that G(x, xn, xm) < ε, for all n,m ≥ N .

1.3. Proposition (see[8]). Let (X,G) be a G-metric space, then the followings are equiv-
alent:

(1) xn is G-convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xn, xm, x)→ 0 as n,m→∞.

1.4. Definition (see[8]). Let (X,G) be a G-metric space. A sequence {xn} is called
G-Cauchy sequence if, for each ε > 0 there exists a positive integer N ∈ N such that
G(xn, xm, xl) < ε for all n,m, l ≥ N ; i.e.if G(xn, xm, xl)→ 0 as n,m, l→∞
1.5. Definition (see[8]). A G-metric space (X,G) is said to be G-complete if every
G-Cauchy sequence in (X,G) is G-convergent in X.

1.6. Proposition (see[8]). Let (X,G) be a G-metric space. Then the following are
equivalent.

(1) The sequence {xn} is G-Cauchy.
(2) For every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

1.7. Proposition (see[8]). Let (X,G) be a G-metric space. Then the function G(x, y, z)
is jointly continuous in all three of its variables.

1.8. Definition (see[8]). Let (X,G) and (X
′
, G

′
) be G-metric space, and f : (X,G)→

(X
′
, G

′
) be a function. Then f is said to be G-continuous at a point a ∈ X if and

only if for every ε > 0, there is δ > 0 such that x, y ∈ X and G(a, x, y) < δ implies

G
′
(f(a), f(x), f(y)) < ε. A function f is G-continuous at X if and only if it is G-

continuous at all a ∈ X.

1.9. Proposition (see[8]). Let (X,G) and (X
′
, G

′
) be G-metric space. Then f : X → X

′

is G-continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is,
whenever {xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

1.10. Proposition (see[8]). Let (X,G) be a G-metric space. Then , for any x, y, z, a in
X it follows that :

(i) if G(x, y, z) = 0, then x = y = z,
(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),
(iii) G(x, y, y) ≤ 2G(y, x, x),
(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
(v) G(x, y, z) ≤ 2

3
(G(x, y, a) +G(x, a, z) +G(a, y, z)),

(vi) G(x, y, z) ≤ (G(x, a, a) +G(y, a, a) +G(z, a, a)).
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2. Main Results

2.1. Theorem. Let (X,G) be a complete G-metric space. Suppose the map T : X → X
satisfies

(2.1) G3(Tx, Ty, Tz) ≤ qG(x, Tx, Tx)G(y, Ty, Ty)G(z, Tz, Tz)

for all x, y, z ∈ X, where 0 ≤ q < 1. Then T has a unique fixed point (say u) and T is
G-continuous at u.

Proof. Let x0 ∈ X be arbitrary point, and define the sequence {xn} by xn = Tnx0 =
Txn−1, n ∈ N. Assume xn 6= xn+1, for each n ∈ N.

First, we prove the sequence {xn} is a G-Cauchy sequence. In fact, by (2.1), we have

G3(xn, xn+1, xn+1) ≤ qG(xn−1, xn, xn)G(xn, xn+1, xn+1)G(xn, xn+1, xn+1) = G3(Txn−1, Txn, Txn).

Thus, we have

(2.2) G(xn, xn+1, xn+1) ≤ qG(xn−1, xn, xn) ≤ · · · ≤ qnG(x0, x1, x1).

For every m,n ∈ N, m > n, using (G5) and (2.2), we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · ·+G(xm−1, xm, xm),

≤ (qn + qn+1 + · · ·+ qm−1)G(x0, x1, x1)

<
qn

1− qG(x0, x1, x1).

and so G(xn, xm, xm)→ 0, as n,m→∞. Thus {xn} is G-Cauchy sequence. Due to the
completeness of (X,G), there exists u ∈ X such that {xn} is G -converge to u.

On the other hand, using (2.1), we have

G3(xn, xn, Tu) = G3(Txn−1, Txn−1, Tu)

≤ qG(xn−1, xn, xn)G(xn−1, xn, xn)G(u, Tu, Tu)

Letting n→∞, and using the fact that G is continuous on its variable, we get that

G3(u, u, Tu) = 0.

Therefore, Tu = u, hence u is a fixed point of T . Now, let v be an another fixed point of
T , then we have

G3(u, u, v) = G3(Tu, Tu, Tv)

≤ qG(u, Tu, Tu)G(u, Tu, Tu)G(v, Tv, Tv)

= 0.

Thus, u = v. Then we know the fixed point of T is unique.
To show that T is G-continuous at u, let {yn} be any sequence in X such that {yn}

is G-convergent to u. For n ∈ N, we have

G3(u, u, Tyn) = G3(Tu, Tu, Tyn) ≤ qG(u, Tu, Tu)G(u, Tu, Tu)G(yn, T yn, T yn)

Letting n → ∞, we get limn→∞G(u, u, Tyn) = 0. Hence {Tyn} is G-convergent to
u = Tu. So T is G-continuous at u. �

2.2. Corollary. Let (X,G) be a complete G-metric space. Suppose the map T : X → X
satisfies

G3(T px, T py, T pz) ≤ qG(x, T px, T px)G(y, T py, T py)G(z, T pz, T pz)

for all x, y, z ∈ X, where 0 ≤ q < 1, p ∈ N. Then T has a unique fixed point (say u) and
T p is G-continuous at u.
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Proof. From Theorem 2.1 we know that T p has a unique fixed point (say u), that is,
T pu = u, and T p is G-continuous at u. Since Tu = TT pu = T p+1u = T pTu, so Tu is
another fixed point for T p, and by uniqueness, we have Tu = u. �

2.3. Theorem. Let (X,G) be a complete G-metric space, and let T : X → X be a
G-continuous mapping, which satisfies the following condition

(2.3) G3(Tx, T 2x, T 3x) ≤ qG(x, Tx, Tx)G(Tx, T 2x, T 2x)G(T 2x, T 3x, T 3x)

for all x ∈ X, where 0 ≤ q < 1. Then T has a fixed point.

Proof. Let x0 ∈ X be arbitrary point, and define the sequence {xn} by xn = Tnx0 =
Txn−1, n ∈ N. Assume xn 6= xn+1, for each n ∈ N.

First, we prove the sequence {xn} is a G-Cauchy sequence. In fact, by (2.3), we have

G3(xn, xn+1, xn+2) = G3(Txn−1, T
2xn−1, T

3xn−1)

≤ qG(xn−1, xn, xn)G(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2).

On the other hand, using (G3), we have

G(xn−1, xn, xn) ≤ G(xn−1, xn, xn+1),

G(xn, xn+1, xn+1) ≤ G(xn, xn+1, xn+2),

G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+2).

Thus, we have

G3(xn, xn+1, xn+2) ≤ qG(xn−1, xn, xn+1)G2(xn, xn+1, xn+2).

Therefore, we can get

(2.4) G(xn, xn+1, xn+2) ≤ qG(xn−1, xn, xn+1) ≤ · · · ≤ qnG(x0, x1, x2).

Moreover, for all n,m ∈ N, n < m, by (G3), (G5) and (2.4) we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · ·+G(xm−1, xm, xm),

≤ G(xn, xn+1, xn+2) +G(xn+1, xn+2, xn+3) + · · ·+G(xm−1, xm, xm+1),

≤ (qn + qn+1 + · · ·+ qm−1)G(x0, x1, x2)

<
qn

1− qG(x0, x1, x2).

That means the sequence {xn} is a G-Cauchy sequence. Due to the completeness of
(X,G), there exists u ∈ X such that {xn} is G -converge to u. Furthermore, since T is
G-continuous, from xn+1 = Txn, letting n → ∞ at both sides, we have u = Tu. Thus,
u is a fixed point of T . �

2.4. Theorem. Let (X,G) be a complete G-metric space and let T : X → X be a
G-continuous mapping, which satisfies the following condition:

(2.5) G3(Tx, T 2y, T 3z) ≤ qG(x, Tx, Tx)G(Tx, T 2y, T 2y)G(Ty, T 3z, T 3z)

for all x, y, z ∈ X, where 0 ≤ q < 1. Then T has a unique fixed point (say u) and T is
G-continuous at u.

Proof. Let x0 ∈ X be arbitrary point, and define the sequence {xn} by xn = Tnx0 =
Txn−1, n ∈ N. Assume xn 6= xn+1, for each n ∈ N.

First, we prove the sequence {xn} is a G-Cauchy sequence. In fact, by (2.5), we have

G3(xn, xn+1, xn+1) = G3(Txn−1, T
2xn−1, T

3xn−2)

≤ qG(xn−1, xn, xn)G(xn, xn+1, xn+1)G(xn, xn+1, xn+1).
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Therefore, we can get

(2.6) G(xn, xn+1, xn+2) ≤ qG(xn−1, xn, xn+1) ≤ · · · ≤ qnG(x0, x1, x2).

Moreover, for all n,m ∈ N,n < m, by (G3), (G5) and (2.6) we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · ·+G(xm−1, xm, xm),

≤ G(xn, xn+1, xn+2) +G(xn+1, xn+2, xn+3) + · · ·+G(xm−1, xm, xm+1),

≤ (qn + qn+1 + · · ·+ qm−1)G(x0, x1, x2)

<
qn

1− qG(x0, x1, x2).

That means the sequence {xn} is a G-Cauchy sequence. Due to the completeness of
(X,G), there exists u ∈ X such that {xn} is G -converge to u.

On the other hand, using (2.5), we have

G3(Tu, xn+1, xn+1) = G3(Tu, T 2xn−1, T
3xn−2)

≤ qG(u, Tu, Tu)G(Tu, xn+1, xn+1)G(xn, xn+1, xn+1)

Letting n→∞, and using the fact that G is continuous on its variable, we get that

G3(Tu, u, u) = 0.

Therefore, Tu = u, hence u is a fixed point of T . Now, let v be an another fixed point of
T , then we have

G3(u, u, v) = G3(Tu, T 2u, T 3v)

≤ qG(u, Tu, Tu)G(Tu, T 2u, T 2u)G(Tu, T 3v, T 3v)

= qG(u, u, u)G(u, u, u)G(u, v, v) = 0.

Thus, u = v. Then we know the fixed point of T is unique.
To show that T is G-continuous at u, let {yn} be any sequence in X such that {yn}

is G-convergent to u. For n ∈ N, we have

G3(Tyn, u, u) = G3(Tyn, T
2u, T 3u) ≤ qG(yn, T yn, T yn)G(Tyn, T

2u, T 2u)G(Tu, T 3u, T 3u)

Letting n → ∞, we get limn→∞G(Tyn, u, u) = 0. Hence {Tyn} is G-convergent to
u = Tu. So T is G-continuous at u. �
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