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Abstract

Fixed point and common fixed point results for generlized contractive
mappings are obtianed in ordered cone metric spaces.
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1. Introduction and Preliminaries

Recently, Huang and Zhang [4] introduced the concept of a cone metric space, replac-
ing the set of positive real numbers by an ordered Banach space. They obtained some
fixed point theorems in cone metric spaces using the normality of cone which induces
an order in Banach spaces. Rezapour and Hamlbarani [9] showed the existence of a non
normal cone metric space and obtained some fixed point results in cone metric spaces.
Subsequently, Abbas and Rhoades [1] studied common fixed point theorems in cone met-
ric spaces (see also, [5, 7, 8] ). Recently Altun et al. [2] proved some fixed point and
common fixed point theorems in ordered cone metric spaces. The purpose of this paper
is to obtain fixed point and common fixed point of mapppings satisfying a generalized
contractive condition than given in [2] in the frame work of ordered cone metric spaces.

Consistent with Huang and Zhang [4], the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non empty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.

∗Department of Mathematics, Lahore University of Management Sciences, 54792-Lahore,

PAKISTAN.
E-mail: (M. Abbas) mujahid@lums.edu.pk
†Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yah-

sihan, Kirikkale, TURKEY.
E-mail: (I. Altun) ialtun@kku.edu.tr



526 M. Abbas, I. Altun

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and
only if y − x ∈ P. A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

(1.1) θ � x � y implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal constant
of P, while x << y stands for y − x ∈ intP (interior of P ).

1.1. Definition. Let X be a nonempty set. Suppose that the mapping d : X ×X → E
satisfies:

(d1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept
of a cone metric space is more general than that of a metric space.

1.2. Definition. Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X.
For every c ∈ E with 0 << c, we say that {xn} is:

(i) a Cauchy sequence if there is an N such that, for all n,m > N, d(xn, xm)� c;
(ii) a convergent sequence if there is an N such that, for all n > N, d(xn, x)� c for

some x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X. It is known that if the P is normal, then {xn} converges to x ∈ X if
and only if d(xn, x)→ θ as n→∞. The limit of a convergent sequence is unique provided
P is a solid cone (intP 6= ∅) (see, [5, 6, 10]).

1.3. Remark. If E is a real Banach space with a cone P and

(a) if a � ha where a ∈ P and h ∈ [0, 1, then a = θ.
(b) If x� y � z, then x� z.
(c) If x � y � z, then x� z.
(d) If x� y � z, then x� z.

Let (X, d) be a cone metric space, f : X → X and x0 ∈ X. Then the function f is
continuous at x0 if for any sequence xn → x0 we have fxn → fx0. If (X,v) is a partially
ordered set and f : X → X is such that fx v fy whenever x, y ∈ X and x v y then f is
said to be nondecreasing.

2. Fixed Point Theorems

In this section we obtain results of fixed point theorems for mappings defined on a
cone metric space.

2.1. Theorem. Let (X, v) be a partially ordered set and suppose that there exists a cone
metric d on X such that the cone metric space (X, d) is complete. Let f : X → X be a
continuous and nondecreasing mapping with respect to v which satisfy

(2.1) d(fx, fy) � hu(x, y)

where h ∈ (0, 1) and

u(x, y) ∈ {d(x, y), d(x, fx), d(y, fy),
d(x, fx) + d(y, fy)

2
,
d(x, fy) + d(y, fx)

2
}

for all x, y ∈ X with y v x. If there exists x0 ∈ X such that x0 v fx0, then f has a fixed
point in X.
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Proof. Since x0 v fx0 and f is nondecreasing with respect to v. Therefore

x0 v fx0 v f2x0 v ... v fn−1x0 v fnx0 v fn+1x0 v ....

Now for any n in N , we have

(2.2) d(fn+1x0, f
nx0) � hu(fnx0, f

n−1x0)

where

u(fnx0, f
n−1x0) ∈

{
d(fnx0, f

n−1x0), d(fnx0, f
n+1x0), d(fn−1x0, f

nx0),

d(fnx0, f
n+1x0) + d(fn−1x0, f

nx0)

2
,
d(fnx0, f

nx0) + d(fn−1x0, f
n+1x0)

2

}
=

{
d(fnx0, f

n−1x0), d(fnx0, f
n+1x0),

d(fnx0, f
n+1x0) + d(fn−1x0, f

nx0)

2
,

1

2
d(fn−1x0, f

n+1x0)

}
.

Now u(fnx0, f
n−1x0) = d(fnx0, f

n−1x0), implies that

d(fn+1x0, f
nx0) � hd(fnx0, f

n−1x0).

If u(fnx0, f
n−1x0) = d(fnx0, f

n+1x0), then

d(fn+1x0, f
nx0) � hd(fnx0, f

n+1x0),

which by Remark 1.3 (a) implies that fn+1x0 = fnx0 and result follows in this case. If

u(fnx0, f
n−1x0) =

d(fnx0, f
n+1x0) + d(fn−1x0, f

nx0)

2
, then we obtain

d(fn+1x0, f
nx0) � h

2
{d(fnx0, f

n+1x0) + d(fn−1x0, f
nx0)}

� 1

2
d(fnx0, f

n+1x0) +
h

2
d(fn−1x0, f

nx0),

d(fn+1x0, f
nx0) � hd(fn−1x0, f

nx0). Finally, for u(fnx0, f
n−1x0) =

d(fn−1x0, f
n+1x0)

2
,

we get

d(fn+1x0, f
nx0) � h

2
d(fn−1x0, f

n+1x0)

� h

2
d(fn−1x0, f

nx0) +
h

2
d(fnx0, f

n+1x0)

� h

2
d(fn−1x0, f

nx0) +
1

2
d(fnx0, f

n+1x0),

which further implies that d(fn+1x0, f
nx0) � hd(fn−1x0, f

nx0). So

d(fn+1x0, f
nx0) � hd(fn−1x0, f

nx0),

for all n ≥ 1. Repeating above process we get

d(fn+1x0, f
nx0) � hd(fn−1x0, f

nx0) � h2d(fn−2x0, f
n−2x0)

� ... � hnd(fx0, x0).

for all n ∈ N, and so for m > n, we have

d(fmx0, f
nx0) � d(fmx0, f

m−1x0) + ...+ d(fn+1x0, f
nx0)

� (hm−1 + hm−2 + ...+ hn)d(fx0, x0)

� hn

1− hd(fx0, x0).
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Let 0 � c be given. Choose δ > 0 such that c + Nδ(0) ⊆ P, where Nδ(0) = {y ∈ E :

‖y‖ < δ}. Also, choose N1 ∈ N such that
hn

1− hd(fx0, x0) ∈ Nδ(0), for all n ≥ N1 which

implies that
hn

1− hd(fx0, x0)� c, for all n > N1 and hence, according to Remark 1.3 (c)

we have that

d(fmx0, f
nx0)� c

for all n,m > N1. Therefore {fnx0} is a Cauchy sequence in X. Since X is complete, there
exists an element x∗ ∈ X such that fnx0 → x∗ as n→∞. Now f(fnx0) = fn+1x0 → x∗

implies that fx∗ = x∗. Hence x∗ is a fixed point of f. �

2.2. Corollary. Let (X, v) be a partially ordered set and suppose that there exists a
cone metric d on X such that the cone metric space (X, d) is complete. Let f : X → X
be a continuous and nondecreasing mapping with respect to v which satisfy

(2.1) d(fx, fy) � hu(x, y)

where h ∈ (0, 1) and

u(x, y) ∈ {d(x, y), d(x, fx),
d(x, fx) + d(y, fy)

2
,
d(x, fy) + d(y, fx)

2
}

for all x, y ∈ X with y v x. If there exists x0 ∈ X such that x0 v fx0, then f has a fixed
point in X.

2.3. Example. Let E = CR[0,∞), P = {f ∈ E : f(t) ≥ 0}, X = [0, 1] with usual order
and with cone metric d : X×X → E defined by d(x, y) = zx,y, where zx,y(t) = t |x− y|
for all t ∈ [0,∞) ([3]). Define f : X → X as f(x) = 1

3
x.

Now d(fx, fy)(t) = zfx,fy(t) = t |fx− fy| = t
3
|x− y| and

d(x, y) (t) = zx,y(t) = t |x− y| ,

d(x, fx)(t) = zx,fx(t) =
2t

3
x,

(d(x, fx) + d(y, fy))

2
(t) =

zx,fx(t) +zy,fy(t)

2
=
t

3
(x+ y)

(d(x, fy) + d(y, fx))

2
(t) =

zx,fy(t) +zy,fx(t)

2
= t

(
∣∣x− y

3

∣∣ +
∣∣y − x

3

∣∣)
2

Note that

d(fx, fy)(t) =
t

3
|x− y| � t |x− y| = d(x, y) (t) ,

d(fx, fy)(t) =
t

3
|x− y| � 2t

3
x = d(x, fx)(t),

d(fx, fy)(t) =
t

3
|x− y| � t

3
(x+ y) =

d(x, fx) + d(y, fy)

2
(t),

d(fx, fy)(t) =
t

3
|x− y| � t

(
∣∣x− y

3

∣∣ +
∣∣y − x

3

∣∣)
2

=
(d(x, fy) + d(y, fx))

2
(t).

for all x, y ∈ X with y � x. So contractive condition of Corollary 2.2 is satisfied. Moreover
0 is the fixed point of f.

2.4. Definition ([2]). Let (X,v) be a partially ordered set. Two mappings f, g : X → X
are said to be weakly increasing if fx v gfx and gx v fgx for all x ∈ X.

The following two examples shows that there exist discontinous not nondecreasing
mappings which are weakly increasing.



Common fixed point result in ordered cone metric spaces 529

2.5. Example. Let X = (0,∞), endowed with usual ordering. Let f, g : X → X be
defined by

fx =

{
3x+ 2 if 0 < x < 1
2x+ 1 if 1 ≤ x <∞

and

gx =

{
4x+ 1 if 0 < x < 1

3x if 1 ≤ x <∞ .

For 0 < x < 1, fx = 3x+2 ≤ 3(3x+2) = gfx and gx = 4x+1 ≤ 4x+3 = 2(2x+1)+1 =
fgx and for 1 ≤ x <∞, fx = 2x+ 1 ≤ 3(2x+ 1) = gfx and gx = 3x ≤ 2(3x) + 1 = fgx.
Thus f and g are weakly increasing maps but not nondecreasing.

2.6. Example. Let X = [0,∞)× [0,∞) with the usual ordering, that is, (x, y) . (z, w),
iff x ≤ z and y ≤ w. Let f, g : X → X be defined by

f(x, y) =

{
(x, y) if max{x, y} ≤ 1
(0, 0) if max{x, y} > 1

and

g(x, y) =

{
(
√
x,
√
y) if max{x, y} ≤ 1

(0, 0) if max{x, y} > 1
.

For max{x, y} ≤ 1, f(x, y) = (x, y) . (
√
x,
√
y) = gf(x, y) and g(x, y) = (

√
x,
√
y) .

(
√
x,
√
y) = fg(x, y) and for max{x, y} > 1, f(x, y) = g(x, y) = (0, 0) . fg(x, y) =

gf(x, y). Thus f and g are weakly increasing mappings. Also note that both f and g are
not nondecreasing. For example, ( 1

2
, 1) . (1, 2) but f( 1

2
, 1) = ( 1

2
, 1) � (0, 0) = f(1, 2).

2.7. Theorem. Let (X, v) be a partially ordered set and suppose that there exists a cone
metric d on X such that the cone metric space (X, d) is complete. Let f, g : X → X be
two weakly increasing mappings with respect to v which satisfy

(2.3) d(fx, gy) � hu(x, y)

where h ∈ (0, 1) and

u(x, y) ∈ {d(x, y), d(x, fx), d(y, gy),
d(x, fx) + d(y, gy)

2
,
d(x, gy) + d(y, fx)

2
}

for all comparative x, y ∈ X. Then f and g have a common fixed point in X provided f
or g is continuous.

Proof. Suppose x0 is an arbitrary point of X and {xn} a sequence in X such that
x2n+1 = fx2n and x2n+2 = gx2n+1 for all n ≥ 0. Since f and g are weakly increasing
therefore x1 = fx0 v gfx0 = gx1 = x2 = gx1 v fgx1 = fx2 = x3 and continuing
this process we have x1 v x2 v ... v xn v xn+1 v .... That is, the sequence {xn} is
nondecreasing. Since x2n and x2n+1 are comparative, therefore

(2.4) d(x2n+1, x2n+2) = d(fx2n, gx2n+1) � hu(x2n, x2n+1)

where

u(x2n, x2n+1) ∈ {d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
,
d(x2n, x2n+2) + d(x2n+1, x2n+1)

2
}

= {d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
,
d(x2n, x2n+2)

2
}.
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Now u(x2n, x2n+1) = d(x2n, x2n+1) implies that

d(x2n+1, x2n+2) � hd(x2n, x2n+1).

If u(x2n, x2n+1) = d(x2n+1, x2n+2), then

d(x2n+1, x2n+2) � hd(x2n+1, x2n+2),

which by Remark 1.3 (a) implies that x2n+1 = x2n+2 and the result follows in this case.

If u(x2n, x2n+1) =
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
then we obtain

d(x2n+1, x2n+2) � h

2
(d(x2n, x2n+1) + d(x2n+1, x2n+2))

� h

2
d(x2n, x2n+1) +

1

2
d(x2n+1, x2n+2),

which further implies that

d(x2n+1, x2n+2) � hd(x2n, x2n+1).

Finally, u(x2n, x2n+1) =
d(x2n, x2n+2)

2
gives that

d(x2n+1, x2n+2) � h

2
d(x2n, x2n+2) � h

2
(d(x2n, x2n+1) + d(x2n+1, x2n+2))

� h

2
d(x2n, x2n+1) +

1

2
d(x2n+1, x2n+2),

which implies that d(x2n+1, x2n+2) � hd(x2n, x2n+1). So we conclude that

d(x2n+1, x2n+2) � hd(x2n, x2n+1)

for all n ≥ 1 and consequently

d(x2n+1, x2n+2) � hd(x2n, x2n+1) � h2d(x2n−1, x2n)

� ... � h2nd(x0, x1).

for all n ∈ N. Now for m > n, we have

d(xm, xn) � d(xm, xm−1) + ...+ d(xn+1, xn)

� (hm−1 + hm−2 + ...+ hn)d(x1, x0)

� hn

1− hd(x1, x0).

Let 0 � c be given. Choose δ > 0 such that c + Nδ(0) ⊆ P, where Nδ(0) = {y ∈ E :

‖y‖ < δ}. Also, choose N1 ∈ N such that
hn

1− hd(x1, x0) ∈ Nδ(0), for all n ≥ N1 which

implies that
hn

1− hd(x1, x0)� c, for all n > N1 and hence, according to Remark 1.3 (c)

we have that

d(xm, xn)� c

for all n,m > N1. Therefore {xn} is a Cauchy sequence in X. Since X is complete, there
exists an element x∗ ∈ X such that xn → x∗ as n→∞.
Suppose that f is continuous then f(fnx0) = fn+1x0 → x∗ implies that fx∗ = x∗. Hence
x∗ is a fixed point of f. Since x∗ v x∗ therefore

d(fx∗, gx∗) � hu(x∗, x∗)
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where

u(x∗, x∗) ∈ {d(x∗, x∗), d(x∗, fx∗), d(x∗, gx∗),

d(x∗, fx∗) + d(x∗, gx∗)

2
,
d(x∗, gx∗) + d(x∗, fx∗)

2
}

= {d(x∗, gx∗),
1

2
d(x∗, gx∗)}.

Now u(x∗, x∗) = d(x∗, gx∗) implies that

d(x∗, gx∗) � hd(x∗, gx∗),

which by Remark 1.3 (a) implies that gx∗ = x∗.
If u(x∗, x∗) = 1

2
d(x∗, gx∗), then

d(x∗, gx∗) � h

2
d(x∗, gx∗),

so again by Remark 1.3 (a) implies that gx∗ = x∗. So f and g have a common fixed point
in X. �

Acknowledgments

The authors thank the referees for their appreciation, valuable comments and sugges-
tions.

References

[1] Abbas, M., Rhoades, B.E. Fixed and periodic point results in cone metric spaces, Appl.

Math. Lett. 22, 511-515, 2009.
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