1 Hacettepe Journal of Mathematics and Statistics
Ø Volume 42 (5) (2013), 551-557

ON $B P$-ALGEBRAS

Sun Shin Ahn *, Jeong Soon Han ${ }^{\dagger}$

Received 06:05:2011 : Accepted 25:11:2012

Abstract

In this paper, we introduce the notion of a $B P$-algebra, and discuss some relations with several algebras. Moreover, we discuss a quadratic $B P$-algebra and show that the quadratic $B P$-algebra is equivalent to several quadratic algebras.

Keywords: $\quad B$-algebra, 0-commutative, $B F$-algebra, $B P$-algebra, $B H$-algebra, (normal) subalgebra.

2000 AMS Classification: 06F35, 03G25.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ($[3,4]$). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[1,2] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim ([11]) introduced the notion of d-algebras which is another generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Also they introduced the notion of B-algebras $([9,12,13]$), i.e., (I) $x * x=e$; (II) $x * e=x$; (III) $(x * y) * z=x *(z *(e * y))$, for any $x, y, z \in X$. A. Walendziak ([14]) obtained another axiomatization of B-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new notion, called a $B H$-algebras which is a generalization of $B C H / B C I / B C K$-algebras. A. Walendziak ([15]) introduced a new notion, called an BF-algebra, i.e., (I); (II) and (IV) $e *(x * y)=y * x$ for any $x, y \in X$. In ([15]) it was shown that a $B F$-algebra is a generalizations of a B-algebra. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic $B F$-algebra, and obtained that quadratic $B F$-algebras, quadratic Q-algebras, $B G$-algebras and B-algebras are equivalent nations on a field X with $|X| \geq 3$, and hence every quadratic $B F$-algebra is a $B C I$-algebra. In this paper, we introduce the notion of

[^0]a $B P$-algebra, and discuss some relations with several algebras. Moreover, we discuss a quadratic $B P$-algebra and show that the quadratic $B P$-algebra is equivalent to several quadratic algebras and hence becomes a $B C I$-algebra.

2. Preliminaries

2.1. Theorem. ([12]) By a B-algebra we mean a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms: for all $x, y, z \in X$,
$\left(B_{1}\right) x * x=0$,
$\left(B_{2}\right) x * 0=x$,
$\left(B_{3}\right)(x * y) * z=x *[z *(0 * y)]$.
2.2. Definition. ([9]) A B-algebra $(X ; *, 0)$ is said to be 0 -commutative if for any $x, y \in$ $X, x *(0 * y)=y *(0 * x)$.
2.3. Proposition. ([9]) If $(X ; *, 0)$ is a 0 -commutative B-algebra, then we have the following properties: for any $x, y, z, w \in X$,
(i) $(x * z) *(y * w)=(w * z) *(y * x)$,
(ii) $(x * z) *(y * z)=x * y$,
(iii) $(z * y) *(z * x)=x * y$,
(iv) $(x * z) * y=(0 * z) *(y * x)$,
(v) $x *(y * z)=z *(y * x)$,
(vi) $(x * y) * z=(x * z) * y$,
(vii) $[(x * y) *(x * z)] *(z * y)=0$,
(viii) $(x *(x * y)) * y=0$,
(ix) $x *(x * y)=y$,
(x) The left cancellation law holds, i.e., $x * y=x * z$ implies $y=z$.

3. A $B P$-algebra

In this section, we define $B P$-algebra and investigate its properties.
3.1. Definition. An algebra $(X ; *, 0)$ of type $(2,0)$ is called a $B P$-algebra if it satisfies $\left(B_{1}\right)$ and
$\left(B P_{1}\right) x *(x * y)=y$,
$\left(B P_{2}\right)(x * z) *(y * z)=x * y$, for any $x, y, z \in X$.
3.2. Example. (1). Let $X:=\{0, a, b, c\}$ be a set with the following table:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Then $(X ; *, 0)$ is a $B P$-algebra.
(2). Let $X:=\{0, a, b, c\}$ be a set with the following table:

$*$	0	a	b	c
0	0	c	b	a
a	a	0	c	b
b	b	a	0	c
c	c	b	a	0

Then $(X ; *, 0)$ is a $B P$-algebra.
3.3. Theorem. If $(X ; *, 0)$ is a $B P$-algebra, then the following hold: for any $x, y \in X$,
(i). $0 *(0 * x)=x$,
(ii). $0 *(y * x)=x * y$,
(iii). $x * 0=x$,
(iv). $x * y=0$ implies $y * x=0$,
(v). $0 * x=0 * y$ implies $x=y$,
(vi). $0 * x=y$ implies $0 * y=x$,
(vii). $0 * x=x$ implies $x * y=y * x$.

Proof. (i). Put $x:=0$ and $y:=x$ in $\left(B P_{1}\right)$. Then $0 *(0 * x)=x$.
(ii). Using $\left(B P_{2}\right)$ and $\left(B_{1}\right)$, we have $x * y=(x * x) *(y * x)=0 *(y * x)$. Hence $0 *(y * x)=x * y$.
(iii). Put $y:=x$ in $\left(B P_{1}\right)$. Then $x *(x * x)=x$. It follows from $\left(B_{1}\right)$ that $x * 0=x$.
(iv). By (ii), we have $0=0 * 0=0 *(x * y)=y * x$. Thus $y * x=0$.
(v). If $0 * x=0 * y$, we have $0 *(0 * x)=0 *(0 * y)$. It follows from (i) that $x=y$.
(vi). Using (i), we have $0 * y=0 *(0 * x)=x$. Thus $0 * y=x$.
(vii). By (ii), we have $x * y=0 *(x * y)=y * x$. Thus $x * y=y * x$.
3.4. Theorem. If $(X ; *, 0)$ is a $B P$-algebra, then $(X ; *, 0)$ is a $B F$-algebra.

Proof. By Theorem 3.3-(iii), (B_{2}) holds. It follows from Theorem 3.3-(ii) that ($B F$) holds.

The converse of Theorem 3.4 does not hold in general.
3.5. Example. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	1	2
2	2	2	0	2
3	3	1	1	0

Then $(X ; *, 0)$ is a $B F$-algebra, but not a $B P$-algebra, because $(1 * 3) *(2 * 3)=2 * 2=$ $0 \neq 1=1 * 2$.
3.6. Definition. A $B P$-algebra $(X ; *, 0)$ is said to be 0 -commutative if $x *(0 * y)=$ $y *(0 * x)$ for any $x, y \in X$.
3.7. Proposition. If $(X ; *, 0)$ is a 0 -commutative BP-algebra, then the following hold: for any $x, y, z \in X$,
(i). $(x * z) *(y * z)=(z * y) *(z * x)$,
(ii). $x * y=(0 * y) *(0 * x)$.

Proof. (i). By Proposition 3.3-(ii), we have

$$
\begin{aligned}
(x * z) *(y * z) & =(x * z) *(0 *(z * y)) \\
& =(z * y) *(0 *(x * z)) \\
& =(z * y) *(z * x) .
\end{aligned}
$$

(ii). Put $z:=0$ in Proposition 3.7-(i). Then $(x * 0) *(y * 0)=(0 * y) *(0 * x)$. It follows from Proposition 3.3-(iii) that $x * y=(0 * y) *(0 * x)$.

Every abelian group can determine a $B P$-algebra.
3.8. Theorem. Let $(X ; \circ, 0)$ be an abelian group. If we define $x * y:=x \circ y^{-1}$, then $(X ; *, \circ)$ is a $B P$-algebra.

Proof. For any $x \in X$, we have $x * x=x \circ x^{-1}=0$. Since X is abelian, we have $x *(x * y)=x *\left(x \circ y^{-1}\right)=x \circ\left(x \circ y^{-1}\right)^{-1}=x \circ y \circ x^{-1}=x \circ x^{-1} \circ y=0 \circ y=y$. Hence, for any $x, y, z \in X$, we have

$$
\begin{aligned}
(x * y) *(z * y) & =\left(x \circ y^{-1}\right) *\left(z \circ y^{-1}\right) \\
& =\left(x \circ y^{-1}\right) \circ\left(z \circ y^{-1}\right)^{-1} \\
& =\left(x \circ y^{-1}\right) \circ\left(y \circ z^{-1}\right) \\
& =x \circ\left(y^{-1} \circ y\right) \circ z^{-1} \\
& =x \circ z^{-1} \\
& =x * z
\end{aligned}
$$

proving the theorem.
3.9. Theorem. Let $(X ; *, 0)$ be a $B P$-algebra. Then X is 0 -commutative if and only if $(0 * x) *(0 * y)=y * x$ for any $x, y \in X$.

Proof. Assume that $(0 * x) *(0 * y)=y * x$ for any $x, y \in X$. By Theorem 3.3-(i), we have $x *(0 * y)=(0 *(0 * x)) *(0 * y)=y *(0 * x)$.

The converse follows immediately from Proposition 3.7.
3.10. Proposition. If $(X ; *, 0)$ is a $B P$-algebra with $(x * y) * z=x *(z * y)$ for any $x, y, z \in X$, then $0 * x=x$ for any $x \in X$.

Proof. Let $x=z=0$ in $(x * y) * z=x *(z * y)$. Then $(0 * y) * 0=0 *(0 * y)$. By Theorem 3.3 -(i) and (iii), we have $0 * y=y$.
3.11. Theorem. If $(X ; *, 0)$ is a 0 -commutative B-algebra, then $(X ; *, 0)$ is a $B P$ algebra.

Proof. Clearly, $\left(B_{1}\right)$ holds. It follows from Proposition 2.3-(ix) and (ii) that $\left(B P_{1}\right)$ and $\left(B P_{2}\right)$ hold. Thus $(X ; *, 0)$ is a $B P$-algebra.
3.12. Theorem. If $(X ; *, 0)$ is a $B P$-algebra with $(x * y) * z=x *(z * y)$ for any $x, y, z \in X$, then $(X ; *, 0)$ is a B-algebra.

Proof. Using Theorem 3.3-(iii), we have $x *(z *(0 * y))=x *((z * y) * 0)=x *(z * y)=(x * y) * z$ for any $x, y, z \in X$. Thus $(X ; *, 0)$ is a B-algebra.

In general, B-algebras need not be a $B P$-algebra. See the following example.
3.13. Example. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Then $(X ; *, 0)$ is a B-algebra, but not a $B P$-algebra with $(x * y) * z=x *(z * y)$, since $0 *(1 * 0)=0 * 1=2 \neq 1=0 *(0 * 1)$ and $(3 * 1) * 2=1 * 2=3 \neq 0=3 * 3=3 *(2 * 1)$.
3.14. Theorem. If $(X ; *, 0)$ is a $B P$-algebra, then it is a $B H$-algebra.

Proof. Let $x * y=0$ and $y * x=0$ for any $x, y \in X$. Using Theorem 3.3-(iii) and ($B P_{1}$), we have $x=x * 0=x *(x * y)=y$. Thus X is a $B H$-algebra.

The converse of Theorem 3.14 need not be true in general.
3.15. Example. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then $(X ; *, 0)$ is a $B H$-algebra, but not a $B P$-algebra, since $1 *(1 * 2)=1 * 0=1 \neq 2$.

4. A quadratic $B P$-algebra

Let X be a field with $|X| \geq 3$. An algebra $(X ; *)$ is said to be quadratic if $x * y$ is defined by $x * y=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in X$, for any $x, y \in X$. A quadratic algebra $(X ; *)$ is said to be a quadratic BP-algebra if it satisfies the conditions $\left(B_{1}\right),\left(B P_{1}\right)$ and $\left(B P_{2}\right)$.
4.1. Theorem. Let X be a field with $|X| \geq 3$. Then every quadratic $B P$-algebra $(X ; *, e)$ has of the form $x * y=x-y+e$, where $x, y, z \in X$.
Proof. Define $x * y:=A x^{2}+B x y+C y^{2}+D x+E y+F$, where $A, B, C, D, F \in X$ and $x, y \in X$. Consider (B_{1}).

$$
\begin{aligned}
e & =x * x \\
& =(A+B+C) x^{2}+(D+E) x+F
\end{aligned}
$$

It follows that $F=e, A+B+C=0=D+E$, i.e, $D=-E$.
Consider (B_{2}).

$$
x=x * e=A x^{2}+B x e+C e^{2}+D x+E e+e .
$$

It follows that $A=0, B e+D=1$ and $C e^{2}+E e+e=0$. Thus $B+C=0, D=1-B e$. Since $D=-E$, we have $E=-1+B e$. From this information, we have the following more simpler form:

$$
\begin{aligned}
x * y & =B x y+C y^{2}+D x+E y+e \\
& =B x y+(-B) y^{2}+(1-B e) x+(B e-1) y+e \\
& =B\left(x y-y^{2}-e x+e y\right)+(x-y+e) \\
& =B(x-y)(y-e)+(x-y+e)
\end{aligned}
$$

By Theorem 3.3-(ii), every $B P$-algebra satisfies the condition $e *(x * y)=y * x$ for any $x, y \in X$. Consider $e *(x * y)$.

$$
\begin{aligned}
e *(x * y)= & B(e-x * y)(x * y-e)+(e-x * y+e) \\
= & B[e-B(x-y)(y-e)-(x-y+e)] \\
& {[B(x-y)(y-e)+(x-y+e)-e] } \\
& +[e-B(x-y)(y-e)-(x-y)] \\
= & B[-B(x-y)(y-e)-(x-y)][B(x-y)(y-e)+(x-y)] \\
& +[e-B(x-y)(y-e)-(x-y)] \\
= & -B[B(x-y)(y-e)+(x-y)]^{2} \\
& -[B(x-y)(y-e)+(x-y)]+e \\
= & -B(x-y)^{2}[B(y-e)+1]^{2}-(x-y)[B(y-e)+1]+e
\end{aligned}
$$

Since $y * x=B(y-x)(x-e)+(y-x+e)=B(y-x)(x-e)+(y-x)+e$, we obtain $-B(x-y)^{2}[B(y-e)+1]^{2}-(x-y)[B(y-e)+1]+e=B(y-x)(x-e)+(y-x)+e$.
If we let $x:=e$ in the above identity, then we have

$$
-B(e-y)^{2}[B(y-e)+1]^{2}-(e-y)[B(y-e)+1]+e=(y-e)+e .
$$

It follows that $B=0$. Hence $C=0, E=-1$ and $D=1$. Thus $x * y=x-y+e$. It is easy to check that this binary operation satisfies $\left(B P_{1}\right)$ and $\left(B P_{2}\right)$. This completes the proof.
4.2. Example. (1) Let \mathbb{R} be the set of all real numbers. Define $x * y:=x-y+\sqrt{2}$. Then $(\mathbb{R} ; *, \sqrt{2})$ is a quadratic $B P$-algebra.
(2) Let $\kappa:=G F\left(p^{n}\right)$ be a Galois field. Define $x * y:=(x-y)+e, e \in \kappa$. Then $(\kappa ; *, e)$ is a quadratic $B P$-algebra.
H. K. Park and H. S. Kim ([13]) proved that every quadratic B-algebra ($X ; *, e$), $e \in X$, has the form $x * y=x-y+e$, where X is a field with $|X| \geq 3$. J. Neggers, S. S. Ahn and H. S. Kim ([10]) introduced the notion of a Q-algebra, and obtained that every quadratic Q-algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. Also, H. S. Kim and H. D. Lee ([8]) showed that every quadratic $B G$-algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic $B F$-algebra.
4.3. Theorem. ([7]) Let X be a field with $|X| \geq 3$. Then the following are equivalent
(1) $(X ; *, e)$ is a quadratic $B F$-algebra,
(2) $(X ; *, e)$ is a quadratic $B G$-algebra,
(3) $(X ; *, e)$ is a quadratic Q-algebra,
(4) $(X ; *, e)$ is a quadratic B-algebra.
4.4. Theorem. ([13]) Let X be a field with $|X| \geq 3$. Then every quadratic B-algebra on X is a $B C I$-algebra.
4.5. Theorem. Let X be a field with $|X| \geq 3$. Then every quadratic BP-algebra on X is a $B C I$-algebra.

Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.4.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japo. 30 (1985), 659-661.
[3] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japo. 23 (1978), 1-26.
[5] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347-354.
[6] C. B. Kim and H. S. Kim, On BG-algebras, Mate. Vesnik 41 (2008), 497-505.
[7] H. S. Kim and N. R. Kye, On quadratic BF-algebras, Sci. Math. Jpn. 65, 287-290.
[8] H. S. Kim and H. D. Lee, A quadratic BG-algebras, Int. Math. J. 5 (2004), 529-535.
[9] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62(2005), 7-12.
[10] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. Math. \& Math. Sci. 27 (2001), 749-757.
[11] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[12] J. Neggers and H. S. Kim, On B-algebras, Math. Vesnik 54 (2002), 21-29.
[13] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups and Related Sys., 7(2001), 67-72.
[14] A. Walendiziak, Some axiomatizations of B-algebras, Math. Slovaca, 56 (2006), 301-306.
[15] A. Walendiziak, On BF-algebras, Math. Slovaca, 57 (2007), 119-128.

[^0]: *Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea, Email: sunshine@dongguk.edu
 ${ }^{\dagger}$ Corresponding author.
 Department of Applied Mathematics, Hanyang University, Ahnsan, 426-791, Korea, Email: han@hanyang.ac.kr

