\int Hacettepe Journal of Mathematics and Statistics Volume 42 (5) (2013), 551 – 557

ON *BP***-ALGEBRAS**

Sun Shin Ahn *, Jeong Soon Han †

Received 06:05:2011 : Accepted 25:11:2012

Abstract

In this paper, we introduce the notion of a BP-algebra, and discuss some relations with several algebras. Moreover, we discuss a quadratic BP-algebra and show that the quadratic BP-algebra is equivalent to several quadratic algebras.

Keywords: *B*-algebra, 0-commutative, *BF*-algebra, *BP*-algebra, *BH*-algebra, (normal) subalgebra.

2000 AMS Classification: 06F35, 03G25.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([11]) introduced the notion of d-algebras which is another generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between *d*-algebras and oriented digraphs. Also they introduced the notion of *B*-algebras ([9, 12, 13]), i.e., (I) x * x = e; (II) x * e = x; (III) (x * y) * z = x * (z * (e * y)), for any $x, y, z \in X$. A. Walendziak ([14]) obtained another axiomatization of B-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new notion, called a BH-algebras which is a generalization of BCH/BCI/BCK-algebras. A. Walendziak ([15]) introduced a new notion, called an BF-algebra, i.e., (I); (II) and (IV) e * (x * y) = y * x for any $x, y \in X$. In ([15]) it was shown that a BF-algebra is a generalizations of a B-algebra. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic BF-algebra, and obtained that quadratic BF-algebras, quadratic Q-algebras, BG -algebras and B-algebras are equivalent nations on a field X with |X| > 3, and hence every quadratic BF-algebra is a BCI-algebra. In this paper, we introduce the notion of

^{*}Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea, Email: sunshine@dongguk.edu

[†]Corresponding author.

Department of Applied Mathematics, Hanyang University, Ahnsan, 426-791, Korea, Email: han@hanyang.ac.kr

a BP-algebra, and discuss some relations with several algebras. Moreover, we discuss a quadratic BP-algebra and show that the quadratic BP-algebra is equivalent to several quadratic algebras and hence becomes a BCI-algebra.

2. Preliminaries

2.1. Theorem. ([12]) By a B-algebra we mean a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms: for all $x, y, z \in X$,

2.2. Definition. ([9]) A *B*-algebra (X; *, 0) is said to be 0-commutative if for any $x, y \in X$, x * (0 * y) = y * (0 * x).

2.3. Proposition. ([9]) If (X; *, 0) is a 0-commutative B-algebra, then we have the following properties: for any $x, y, z, w \in X$,

- (i) (x * z) * (y * w) = (w * z) * (y * x),
- (ii) (x * z) * (y * z) = x * y,
- (iii) (z * y) * (z * x) = x * y,
- (iv) (x * z) * y = (0 * z) * (y * x),
- (v) x * (y * z) = z * (y * x),
- (vi) (x * y) * z = (x * z) * y,
- (vii) [(x * y) * (x * z)] * (z * y) = 0,
- (viii) (x * (x * y)) * y = 0,
- $(ix) \quad x * (x * y) = y,$
- (x) The left cancellation law holds, i.e., x * y = x * z implies y = z.

3. A BP-algebra

In this section, we define *BP*-algebra and investigate its properties.

3.1. Definition. An algebra (X; *, 0) of type (2,0) is called a *BP*-algebra if it satisfies (B_1) and

- $(BP_1) \quad x * (x * y) = y,$
- (BP_2) (x * z) * (y * z) = x * y, for any $x, y, z \in X$.

3.2. Example. (1). Let $X := \{0, a, b, c\}$ be a set with the following table:

*	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Then (X; *, 0) is a *BP*-algebra.

(2). Let $X := \{0, a, b, c\}$ be a set with the following table:

*	0	a	b	c
0	0	c	b	a
a	a	0	c	b
b	b	a	0	c
c	c	b	a	0

Then (X; *, 0) is a *BP*-algebra.

3.3. Theorem. If (X; *, 0) is a BP-algebra, then the following hold: for any $x, y \in X$,

- (i). 0 * (0 * x) = x, (ii). 0 * (y * x) = x * y,
- (iii). x * 0 = x,
- (iv). x * y = 0 implies y * x = 0,
- (v). 0 * x = 0 * y implies x = y,
- (vi). 0 * x = y implies 0 * y = x,
- (vii). 0 * x = x implies x * y = y * x.

Proof. (i). Put x := 0 and y := x in (BP_1) . Then 0 * (0 * x) = x. (ii). Using (BP_2) and (B_1) , we have x * y = (x * x) * (y * x) = 0 * (y * x). Hence 0 * (y * x) = x * y. (iii). Put y := x in (BP_1) . Then x * (x * x) = x. It follows from (B_1) that x * 0 = x.

(iv). By (ii), we have 0 = 0 * 0 = 0 * (x * y) = y * x. Thus y * x = 0.

- (v). If 0 * x = 0 * y, we have 0 * (0 * x) = 0 * (0 * y). It follows from (i) that x = y.
- (vi). Using (i), we have 0 * y = 0 * (0 * x) = x. Thus 0 * y = x.

(vii). By (ii), we have x * y = 0 * (x * y) = y * x. Thus x * y = y * x.

3.4. Theorem. If (X; *, 0) is a BP-algebra, then (X; *, 0) is a BF-algebra.

Proof. By Theorem 3.3-(iii), (B_2) holds. It follows from Theorem 3.3-(ii) that (BF) holds.

The converse of Theorem 3.4 does not hold in general.

3.5. Example. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	2	1	3
1	1	0	1	2
2	2	2	0	2
3	3	1	1	0

Then (X; *, 0) is a *BF*-algebra, but not a *BP*-algebra, because $(1 * 3) * (2 * 3) = 2 * 2 = 0 \neq 1 = 1 * 2$.

3.6. Definition. A *BP*-algebra (X; *, 0) is said to be 0-commutative if x * (0 * y) = y * (0 * x) for any $x, y \in X$.

3.7. Proposition. If (X; *, 0) is a 0-commutative *BP*-algebra, then the following hold: for any $x, y, z \in X$,

(i). (x * z) * (y * z) = (z * y) * (z * x),(ii). x * y = (0 * y) * (0 * x).

Proof. (i). By Proposition 3.3-(ii), we have

 $\begin{aligned} (x*z)*(y*z) =& (x*z)*(0*(z*y)) \\ =& (z*y)*(0*(x*z)) \\ =& (z*y)*(z*x). \end{aligned}$

(ii). Put z := 0 in Proposition 3.7-(i). Then (x * 0) * (y * 0) = (0 * y) * (0 * x). It follows from Proposition 3.3-(iii) that x * y = (0 * y) * (0 * x).

Every abelian group can determine a BP-algebra.

3.8. Theorem. Let $(X; \circ, 0)$ be an abelian group. If we define $x * y := x \circ y^{-1}$, then $(X; *, \circ)$ is a *BP*-algebra.

Proof. For any $x \in X$, we have $x * x = x \circ x^{-1} = 0$. Since X is abelian, we have $x * (x * y) = x * (x \circ y^{-1}) = x \circ (x \circ y^{-1})^{-1} = x \circ y \circ x^{-1} = x \circ x^{-1} \circ y = 0 \circ y = y$. Hence, for any $x, y, z \in X$, we have

$$\begin{aligned} (x*y)*(z*y) =& (x \circ y^{-1})*(z \circ y^{-1}) \\ =& (x \circ y^{-1}) \circ (z \circ y^{-1})^{-1} \\ =& (x \circ y^{-1}) \circ (y \circ z^{-1}) \\ =& x \circ (y^{-1} \circ y) \circ z^{-1} \\ =& x \circ z^{-1} \\ =& x * z, \end{aligned}$$

proving the theorem.

3.9. Theorem. Let (X; *, 0) be a *BP*-algebra. Then X is 0-commutative if and only if (0 * x) * (0 * y) = y * x for any $x, y \in X$.

Proof. Assume that (0 * x) * (0 * y) = y * x for any $x, y \in X$. By Theorem 3.3-(i), we have x * (0 * y) = (0 * (0 * x)) * (0 * y) = y * (0 * x).

The converse follows immediately from Proposition 3.7.

3.10. Proposition. If (X; *, 0) is a *BP*-algebra with (x * y) * z = x * (z * y) for any $x, y, z \in X$, then 0 * x = x for any $x \in X$.

Proof. Let x = z = 0 in (x * y) * z = x * (z * y). Then (0 * y) * 0 = 0 * (0 * y). By Theorem 3.3-(i) and (iii), we have 0 * y = y.

3.11. Theorem. If (X; *, 0) is a 0-commutative B-algebra, then (X; *, 0) is a BP-algebra.

Proof. Clearly, (B_1) holds. It follows from Proposition 2.3-(ix) and (ii) that (BP_1) and (BP_2) hold. Thus (X; *, 0) is a *BP*-algebra.

3.12. Theorem. If (X; *, 0) is a *BP*-algebra with (x * y) * z = x * (z * y) for any $x, y, z \in X$, then (X; *, 0) is a *B*-algebra.

Proof. Using Theorem 3.3-(iii), we have x*(z*(0*y)) = x*((z*y)*0) = x*(z*y) = (x*y)*z for any $x, y, z \in X$. Thus (X; *, 0) is a *B*-algebra.

In general, B-algebras need not be a BP-algebra. See the following example.

3.13. Example. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Then (X; *, 0) is a *B*-algebra, but not a *BP*-algebra with (x * y) * z = x * (z * y), since $0 * (1 * 0) = 0 * 1 = 2 \neq 1 = 0 * (0 * 1)$ and $(3 * 1) * 2 = 1 * 2 = 3 \neq 0 = 3 * 3 = 3 * (2 * 1)$.

3.14. Theorem. If (X; *, 0) is a *BP*-algebra, then it is a *BH*-algebra.

Proof. Let x * y = 0 and y * x = 0 for any $x, y \in X$. Using Theorem 3.3-(iii) and (BP_1) , we have x = x * 0 = x * (x * y) = y. Thus X is a BH-algebra.

The converse of Theorem 3.14 need not be true in general.

3.15. Example. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then (X; *, 0) is a BH-algebra, but not a BP-algebra, since $1 * (1 * 2) = 1 * 0 = 1 \neq 2$.

4. A quadratic *BP*-algebra

Let X be a field with $|X| \ge 3$. An algebra (X; *) is said to be *quadratic* if x * y is defined by $x * y = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$, where $a_1, a_2, a_3, a_4, a_5, a_6 \in X$, for any $x, y \in X$. A quadratic algebra (X; *) is said to be a *quadratic BP-algebra* if it satisfies the conditions (B_1) , (BP_1) and (BP_2) .

4.1. Theorem. Let X be a field with $|X| \ge 3$. Then every quadratic BP-algebra (X; *, e) has of the form x * y = x - y + e, where $x, y, z \in X$.

Proof. Define $x * y := Ax^2 + Bxy + Cy^2 + Dx + Ey + F$, where $A, B, C, D, F \in X$ and $x, y \in X$. Consider (B_1) .

e = x * x

$$=(A + B + C)x^{2} + (D + E)x + F$$

It follows that F = e, A + B + C = 0 = D + E, i.e., D = -E. Consider (B₂).

 $x = x * e = Ax^{2} + Bxe + Ce^{2} + Dx + Ee + e.$

It follows that A = 0, Be + D = 1 and $Ce^2 + Ee + e = 0$. Thus B + C = 0, D = 1 - Be. Since D = -E, we have E = -1 + Be. From this information, we have the following more simpler form:

$$x * y = Bxy + Cy^{2} + Dx + Ey + e$$

= $Bxy + (-B)y^{2} + (1 - Be)x + (Be - 1)y + e$
= $B(xy - y^{2} - ex + ey) + (x - y + e)$
= $B(x - y)(y - e) + (x - y + e)$

By Theorem 3.3-(ii), every *BP*-algebra satisfies the condition e * (x * y) = y * x for any $x, y \in X$. Consider e * (x * y).

$$e * (x * y) = B(e - x * y)(x * y - e) + (e - x * y + e)$$

$$= B[e - B(x - y)(y - e) - (x - y + e)]$$

$$[B(x - y)(y - e) + (x - y + e) - e]$$

$$+ [e - B(x - y)(y - e) - (x - y)]$$

$$= B[-B(x - y)(y - e) - (x - y)][B(x - y)(y - e) + (x - y)]$$

$$+ [e - B(x - y)(y - e) - (x - y)]$$

$$= -B[B(x - y)(y - e) + (x - y)]^{2}$$

$$- [B(x - y)(y - e) + (x - y)] + e$$

$$= -B(x - y)^{2}[B(y - e) + 1]^{2} - (x - y)[B(y - e) + 1] + e.$$

Since y * x = B(y - x)(x - e) + (y - x + e) = B(y - x)(x - e) + (y - x) + e, we obtain $-B(x - y)^2[B(y - e) + 1]^2 - (x - y)[B(y - e) + 1] + e = B(y - x)(x - e) + (y - x) + e$. If we let x := e in the above identity, then we have

 $-B(e-y)^{2}[B(y-e)+1]^{2} - (e-y)[B(y-e)+1] + e = (y-e) + e.$

It follows that B = 0. Hence C = 0, E = -1 and D = 1. Thus x * y = x - y + e. It is easy to check that this binary operation satisfies (BP_1) and (BP_2) . This completes the proof.

4.2. Example. (1) Let \mathbb{R} be the set of all real numbers. Define $x * y := x - y + \sqrt{2}$. Then $(\mathbb{R}; *, \sqrt{2})$ is a quadratic *BP*-algebra.

(2) Let $\kappa := GF(p^n)$ be a Galois field. Define $x * y := (x - y) + e, e \in \kappa$. Then $(\kappa; *, e)$ is a quadratic *BP*-algebra.

H. K. Park and H. S. Kim ([13]) proved that every quadratic *B*-algebra (X; *, e), $e \in X$, has the form x * y = x - y + e, where X is a field with $|X| \ge 3$. J. Neggers, S. S. Ahn and H. S. Kim ([10]) introduced the notion of a *Q*-algebra, and obtained that every quadratic *Q*-algebra (X; *, e), $e \in X$, has the form x * y = x - y + e, $x, y \in X$, where X is a field with $|X| \ge 3$. Also, H. S. Kim and H. D. Lee ([8]) showed that every quadratic *BG*-algebra (X; *, e), $e \in X$, has the form x * y = x - y + e, $x, y \in X$, where X is a field with $|X| \ge 3$. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic *BF*-algebra.

4.3. Theorem. ([7]) Let X be a field with $|X| \ge 3$. Then the following are equivalent

(1) (X; *, e) is a quadratic BF-algebra,

(2) (X; *, e) is a quadratic BG-algebra,

(3) (X; *, e) is a quadratic Q-algebra,

(4) (X; *, e) is a quadratic *B*-algebra.

4.4. Theorem. ([13]) Let X be a field with $|X| \ge 3$. Then every quadratic B-algebra on X is a BCI-algebra.

4.5. Theorem. Let X be a field with $|X| \ge 3$. Then every quadratic BP-algebra on X is a BCI-algebra.

Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.4.

On BP-algebras

References

- [1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japo. 30 (1985), 659-661.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japo. 23 (1978), 1-26.
- [5] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347–354.
- [6] C. B. Kim and H. S. Kim, On BG-algebras, Mate. Vesnik 41 (2008), 497-505.
- [7] H. S. Kim and N. R. Kye, On quadratic BF-algebras, Sci. Math. Jpn. 65, 287-290.
- [8] H. S. Kim and H. D. Lee, A quadratic BG-algebras, Int. Math. J. 5 (2004), 529-535.
- [9] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62(2005), 7-12.
- [10] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. Math. & Math. Sci. 27 (2001), 749-757.
- [11] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [12] J. Neggers and H. S. Kim, On B-algebras, Math. Vesnik 54 (2002), 21-29.
- [13] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups and Related Sys., 7(2001), 67-72.
- [14] A. Walendiziak, Some axiomatizations of B-algebras, Math. Slovaca, 56 (2006), 301-306.
- [15] A. Walendiziak, On BF-algebras, Math. Slovaca, 57 (2007), 119–128.