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Abstract

In this paper, we introduce the notion of a BP -algebra, and discuss
some relations with several algebras. Moreover, we discuss a quadratic
BP -algebra and show that the quadratic BP -algebra is equivalent to
several quadratic algebras.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class
of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras
is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([11])
introduced the notion of d-algebras which is another generalization of BCK-algebras,
and then they investigated several relations between d-algebras and BCK-algebras as
well as some other interesting relations between d-algebras and oriented digraphs. Also
they introduced the notion of B-algebras ([9, 12, 13]), i.e., (I) x∗x = e; (II) x∗e = x; (III)
(x ∗ y) ∗ z = x ∗ (z ∗ (e ∗ y)), for any x, y, z ∈ X. A. Walendziak ([14]) obtained another
axiomatization of B-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new
notion, called a BH-algebras which is a generalization of BCH/BCI/BCK-algebras. A.
Walendziak ([15]) introduced a new notion, called an BF -algebra, i.e., (I); (II) and (IV)
e ∗ (x ∗ y) = y ∗ x for any x, y ∈ X. In ([15]) it was shown that a BF -algebra is a
generalizations of a B-algebra. H. S. Kim and N. R. Kye ([7]) introduced the notion of a
quadratic BF -algebra, and obtained that quadratic BF -algebras, quadratic Q-algebras,
BG -algebras and B-algebras are equivalent nations on a field X with |X| ≥ 3, and hence
every quadratic BF -algebra is a BCI-algebra. In this paper, we introduce the notion of
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a BP -algebra, and discuss some relations with several algebras. Moreover, we discuss a
quadratic BP -algebra and show that the quadratic BP -algebra is equivalent to several
quadratic algebras and hence becomes a BCI-algebra.

2. Preliminaries

2.1. Theorem. ([12]) By a B-algebra we mean a non-empty set X with a constant 0
and a binary operation “ ∗ ” satisfying axioms: for all x, y, z ∈ X,

(B1) x ∗ x = 0,
(B2) x ∗ 0 = x,
(B3) (x ∗ y) ∗ z = x ∗ [z ∗ (0 ∗ y)].

2.2. Definition. ([9]) A B-algebra (X; ∗, 0) is said to be 0-commutative if for any x, y ∈
X, x ∗ (0 ∗ y) = y ∗ (0 ∗ x).

2.3. Proposition. ([9]) If (X; ∗, 0) is a 0-commutative B-algebra, then we have the
following properties: for any x, y, z, w ∈ X,

(i) (x ∗ z) ∗ (y ∗ w) = (w ∗ z) ∗ (y ∗ x),
(ii) (x ∗ z) ∗ (y ∗ z) = x ∗ y,

(iii) (z ∗ y) ∗ (z ∗ x) = x ∗ y,
(iv) (x ∗ z) ∗ y = (0 ∗ z) ∗ (y ∗ x),
(v) x ∗ (y ∗ z) = z ∗ (y ∗ x),

(vi) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(vii) [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0,

(viii) (x ∗ (x ∗ y)) ∗ y = 0,
(ix) x ∗ (x ∗ y) = y,
(x) The left cancellation law holds, i.e., x ∗ y = x ∗ z implies y = z.

3. A BP -algebra

In this section, we define BP -algebra and investigate its properties.

3.1. Definition. An algebra (X; ∗, 0) of type (2,0) is called a BP -algebra if it satisfies
(B1) and

(BP1) x ∗ (x ∗ y) = y,
(BP2) (x ∗ z) ∗ (y ∗ z) = x ∗ y, for any x, y, z ∈ X.

3.2. Example. (1). Let X := {0, a, b, c} be a set with the following table:

∗ 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Then (X; ∗, 0) is a BP -algebra.
(2). Let X := {0, a, b, c} be a set with the following table:

∗ 0 a b c

0 0 c b a
a a 0 c b
b b a 0 c
c c b a 0
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Then (X; ∗, 0) is a BP -algebra.

3.3. Theorem. If (X; ∗, 0) is a BP -algebra, then the following hold: for any x, y ∈ X,

(i). 0 ∗ (0 ∗ x) = x,
(ii). 0 ∗ (y ∗ x) = x ∗ y,

(iii). x ∗ 0 = x,
(iv). x ∗ y = 0 implies y ∗ x = 0,
(v). 0 ∗ x = 0 ∗ y implies x = y,

(vi). 0 ∗ x = y implies 0 ∗ y = x,
(vii). 0 ∗ x = x implies x ∗ y = y ∗ x.

Proof. (i). Put x := 0 and y := x in (BP1). Then 0 ∗ (0 ∗ x) = x.
(ii). Using (BP2) and (B1), we have x ∗ y = (x ∗ x) ∗ (y ∗ x) = 0 ∗ (y ∗ x). Hence
0 ∗ (y ∗ x) = x ∗ y.
(iii). Put y := x in (BP1). Then x ∗ (x ∗ x) = x. It follows from (B1) that x ∗ 0 = x.
(iv). By (ii), we have 0 = 0 ∗ 0 = 0 ∗ (x ∗ y) = y ∗ x. Thus y ∗ x = 0.
(v). If 0 ∗ x = 0 ∗ y, we have 0 ∗ (0 ∗ x) = 0 ∗ (0 ∗ y). It follows from (i) that x = y.
(vi). Using (i), we have 0 ∗ y = 0 ∗ (0 ∗ x) = x. Thus 0 ∗ y = x.
(vii). By (ii), we have x ∗ y = 0 ∗ (x ∗ y) = y ∗ x. Thus x ∗ y = y ∗ x.

�

3.4. Theorem. If (X; ∗, 0) is a BP -algebra, then (X; ∗, 0) is a BF -algebra.

Proof. By Theorem 3.3-(iii), (B2) holds. It follows from Theorem 3.3-(ii) that (BF )
holds.

�

The converse of Theorem 3.4 does not hold in general.

3.5. Example. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 2 1 3
1 1 0 1 2
2 2 2 0 2
3 3 1 1 0

Then (X; ∗, 0) is a BF -algebra, but not a BP -algebra, because (1 ∗ 3) ∗ (2 ∗ 3) = 2 ∗ 2 =
0 6= 1 = 1 ∗ 2.

3.6. Definition. A BP -algebra (X; ∗, 0) is said to be 0-commutative if x ∗ (0 ∗ y) =
y ∗ (0 ∗ x) for any x, y ∈ X.

3.7. Proposition. If (X; ∗, 0) is a 0-commutative BP -algebra, then the following hold:
for any x, y, z ∈ X,

(i). (x ∗ z) ∗ (y ∗ z) = (z ∗ y) ∗ (z ∗ x),
(ii). x ∗ y = (0 ∗ y) ∗ (0 ∗ x).

Proof. (i). By Proposition 3.3-(ii), we have

(x ∗ z) ∗ (y ∗ z) =(x ∗ z) ∗ (0 ∗ (z ∗ y))

=(z ∗ y) ∗ (0 ∗ (x ∗ z))
=(z ∗ y) ∗ (z ∗ x).

(ii). Put z := 0 in Proposition 3.7-(i). Then (x ∗ 0) ∗ (y ∗ 0) = (0 ∗ y) ∗ (0 ∗ x). It follows
from Proposition 3.3-(iii) that x ∗ y = (0 ∗ y) ∗ (0 ∗ x).

�
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Every abelian group can determine a BP -algebra.

3.8. Theorem. Let (X; ◦, 0) be an abelian group. If we define x ∗ y := x ◦ y−1, then
(X; ∗, ◦) is a BP -algebra.

Proof. For any x ∈ X, we have x ∗ x = x ◦ x−1 = 0. Since X is abelian, we have
x ∗ (x ∗ y) = x ∗ (x ◦ y−1) = x ◦ (x ◦ y−1)−1 = x ◦ y ◦ x−1 = x ◦ x−1 ◦ y = 0 ◦ y = y. Hence,
for any x, y, z ∈ X, we have

(x ∗ y) ∗ (z ∗ y) =(x ◦ y−1) ∗ (z ◦ y−1)

=(x ◦ y−1) ◦ (z ◦ y−1)−1

=(x ◦ y−1) ◦ (y ◦ z−1)

=x ◦ (y−1 ◦ y) ◦ z−1

=x ◦ z−1

=x ∗ z,

proving the theorem.
�

3.9. Theorem. Let (X; ∗, 0) be a BP -algebra. Then X is 0-commutative if and only if
(0 ∗ x) ∗ (0 ∗ y) = y ∗ x for any x, y ∈ X.

Proof. Assume that (0 ∗ x) ∗ (0 ∗ y) = y ∗ x for any x, y ∈ X. By Theorem 3.3-(i), we
have x ∗ (0 ∗ y) = (0 ∗ (0 ∗ x)) ∗ (0 ∗ y) = y ∗ (0 ∗ x).

The converse follows immediately from Proposition 3.7.
�

3.10. Proposition. If (X; ∗, 0) is a BP -algebra with (x ∗ y) ∗ z = x ∗ (z ∗ y) for any
x, y, z ∈ X, then 0 ∗ x = x for any x ∈ X.

Proof. Let x = z = 0 in (x∗ y)∗ z = x∗ (z ∗ y). Then (0∗ y)∗0 = 0∗ (0∗ y). By Theorem
3.3-(i) and (iii), we have 0 ∗ y = y.

�

3.11. Theorem. If (X; ∗, 0) is a 0-commutative B-algebra, then (X; ∗, 0) is a BP -
algebra.

Proof. Clearly, (B1) holds. It follows from Proposition 2.3-(ix) and (ii) that (BP1) and
(BP2) hold. Thus (X; ∗, 0) is a BP -algebra.

�

3.12. Theorem. If (X; ∗, 0) is a BP -algebra with (x ∗ y) ∗ z = x ∗ (z ∗ y) for any
x, y, z ∈ X, then (X; ∗, 0) is a B-algebra.

Proof. Using Theorem 3.3-(iii), we have x∗(z∗(0∗y)) = x∗((z∗y)∗0) = x∗(z∗y) = (x∗y)∗z
for any x, y, z ∈ X. Thus (X; ∗, 0) is a B-algebra.

�

In general, B-algebras need not be a BP -algebra. See the following example.
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3.13. Example. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 2 1 3
1 1 0 3 2
2 2 3 0 1
3 3 1 2 0

Then (X; ∗, 0) is a B-algebra, but not a BP -algebra with (x ∗ y) ∗ z = x ∗ (z ∗ y), since
0 ∗ (1 ∗ 0) = 0 ∗ 1 = 2 6= 1 = 0 ∗ (0 ∗ 1) and (3 ∗ 1) ∗ 2 = 1 ∗ 2 = 3 6= 0 = 3 ∗ 3 = 3 ∗ (2 ∗ 1).

3.14. Theorem. If (X; ∗, 0) is a BP -algebra, then it is a BH-algebra.

Proof. Let x ∗ y = 0 and y ∗ x = 0 for any x, y ∈ X. Using Theorem 3.3-(iii) and (BP1),
we have x = x ∗ 0 = x ∗ (x ∗ y) = y. Thus X is a BH-algebra.

�

The converse of Theorem 3.14 need not be true in general.

3.15. Example. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 3 0 2
1 1 0 0 0
2 2 2 0 3
3 3 3 1 0

Then (X; ∗, 0) is a BH-algebra, but not a BP -algebra, since 1 ∗ (1 ∗ 2) = 1 ∗ 0 = 1 6= 2.

4. A quadratic BP -algebra

Let X be a field with |X| ≥ 3. An algebra (X; ∗) is said to be quadratic if x ∗ y is
defined by x ∗ y = a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6, where a1, a2, a3, a4, a5, a6 ∈ X,

for any x, y ∈ X. A quadratic algebra (X; ∗) is said to be a quadratic BP -algebra if it
satisfies the conditions (B1), (BP1) and (BP2).

4.1. Theorem. Let X be a field with |X| ≥ 3. Then every quadratic BP -algebra
(X; ∗, e) has of the form x ∗ y = x− y + e, where x, y, z ∈ X.

Proof. Define x ∗ y := Ax2 + Bxy + Cy2 +Dx+ Ey + F , where A,B,C,D, F ∈ X and
x, y ∈ X. Consider (B1).

e =x ∗ x

=(A+B + C)x2 + (D + E)x+ F

It follows that F = e,A+B + C = 0 = D + E, i.e, D = −E.
Consider (B2).

x = x ∗ e = Ax2 +Bxe+ Ce2 +Dx+ Ee+ e.

It follows that A = 0, Be+D = 1 and Ce2 +Ee+ e = 0. Thus B + C = 0, D = 1−Be.
Since D = −E, we have E = −1 + Be. From this information, we have the following
more simpler form:

x ∗ y = Bxy + Cy2 +Dx+ Ey + e

= Bxy + (−B)y2 + (1−Be)x+ (Be− 1)y + e

= B(xy − y2 − ex+ ey) + (x− y + e)

= B(x− y)(y − e) + (x− y + e)
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By Theorem 3.3-(ii), every BP -algebra satisfies the condition e ∗ (x ∗ y) = y ∗ x for any
x, y ∈ X. Consider e ∗ (x ∗ y).

e ∗ (x ∗ y) = B(e− x ∗ y)(x ∗ y − e) + (e− x ∗ y + e)

= B[e−B(x− y)(y − e)− (x− y + e)]

[B(x− y)(y − e) + (x− y + e)− e]
+ [e−B(x− y)(y − e)− (x− y)]

= B[−B(x− y)(y − e)− (x− y)][B(x− y)(y − e) + (x− y)]

+ [e−B(x− y)(y − e)− (x− y)]

= −B[B(x− y)(y − e) + (x− y)]2

− [B(x− y)(y − e) + (x− y)] + e

= −B(x− y)2[B(y − e) + 1]2 − (x− y)[B(y − e) + 1] + e.

Since y ∗ x = B(y − x)(x− e) + (y − x+ e) = B(y − x)(x− e) + (y − x) + e, we obtain

−B(x− y)2[B(y − e) + 1]2 − (x− y)[B(y − e) + 1] + e = B(y − x)(x− e) + (y − x) + e.

If we let x := e in the above identity, then we have

−B(e− y)2[B(y − e) + 1]2 − (e− y)[B(y − e) + 1] + e = (y − e) + e.

It follows that B = 0. Hence C = 0, E = −1 and D = 1. Thus x ∗ y = x − y + e. It is
easy to check that this binary operation satisfies (BP1) and (BP2). This completes the
proof.

�

4.2. Example. (1) Let R be the set of all real numbers. Define x ∗ y := x − y +
√

2.

Then (R; ∗,
√

2) is a quadratic BP -algebra.
(2) Let κ := GF (pn) be a Galois field. Define x ∗ y := (x − y) + e, e ∈ κ. Then (κ; ∗, e)
is a quadratic BP -algebra.

H. K. Park and H. S. Kim ([13]) proved that every quadratic B-algebra (X; ∗, e),
e ∈ X, has the form x ∗ y = x− y+ e, where X is a field with |X | ≥ 3. J. Neggers, S. S.
Ahn and H. S. Kim ([10]) introduced the notion of a Q-algebra, and obtained that every
quadratic Q-algebra (X; ∗, e), e ∈ X, has the form x ∗ y = x− y + e, x, y ∈ X, where X
is a field with |X | ≥ 3. Also, H. S. Kim and H. D. Lee ([8]) showed that every quadratic
BG-algebra (X; ∗, e), e ∈ X, has the form x ∗ y = x − y + e, x, y ∈ X, where X is a
field with |X | ≥ 3. H. S. Kim and N. R. Kye ([7]) introduced the notion of a quadratic
BF -algebra.

4.3. Theorem. ([7]) Let X be a field with |X | ≥ 3. Then the following are equivalent
:
(1) (X; ∗, e) is a quadratic BF -algebra,
(2) (X; ∗, e) is a quadratic BG-algebra,
(3) (X; ∗, e) is a quadratic Q-algebra,
(4) (X; ∗, e) is a quadratic B-algebra.

4.4. Theorem. ([13]) Let X be a field with |X | ≥ 3. Then every quadratic B-algebra
on X is a BCI-algebra.

4.5. Theorem. Let X be a field with |X | ≥ 3. Then every quadratic BP -algebra on
X is a BCI-algebra.

Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.4. �
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