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Abstract

In this article, a testing procedure based on computational approach
test is proposed for the equality of several inverse Gaussian means under
heterogeneity. Not requiring the knowledge of any sampling distribu-
tion, depending heavily on numerical computations and Monte Carlo
simulation, moreover, figuring out the critical region automatically are
the advantages of the computational approach test. We compare it with
some of the existing tests; the parametric bootstrap and the generalized
test variables in terms of type I risks and powers by using Monte Carlo
simulation.
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1. Introduction

Inverse Gaussian (IG) distribution is given in quite a number of books on stochastic
processes and probability. The probability distribution of the first passage time in Brow-
nian motion is given by Schrödinger (1915). Since Tweedie (1945) has shown the inverse
relationship between the cumulant generating function of the first passage time distribu-
tion and that of the normal distribution, it is called as an IG for the first passage time
distribution. Further, as Wald (1947) has derived the limiting form of IG distribution, it
is also called as Wald’s distribution, especially in the Russian literature [4].
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The density function of the two-parameter IG distribution IG (µ,λ) is defined as in
equation (1.1).

(1.1) f (x;µ, λ) =
[

λ
2πx3

]1/2
exp −λ(x−µ)2

2µ2x
, x > 0, µ, λ > 0

Here, µ is the mean parameter and λ is the scale parameter. For the last three
decades, the IG distribution has gained significant attention in describing and analyzing
right-skewed data. For example, Doksum and Hóyland (1992) developed a model for
variable-stress-accelerated life testing experiments based on the IG distributions, Durham
and Padgett (1997) used the IG models to develop a new general method based on
cumulative damage for describing the failure of a system. Seshadri’s (1999) study is a
good reference for other applications of IG distribution in life tests, remote sensing, etc.
[11].

The main appeal of IG models lies in these facts:(1) they could accommodate a variety
of shapes, from highly skewed to almost normal; (2) they are unique among the distribu-
tions for positively right-skewed data (e.g. Weibull, gamma, log normal) on account of
its many elegant and convenient properties sharing with Gaussian models [10]. Hence,
it could be mentioned that IG distribution has several properties analogous to normal
distribution [5, 9, 10].

A very common problem in applied statistics is that of comparing the means of several
populations. It is well known that there exists an analysis of variance (ANOVA) F-test
for the problem of testing the equality of means from several independent samples under
the assumptions of normality. Similarly, for testing equality of IG means when the scale
parameters are the same, an analysis of reciprocals (ANORE) F-test is developed by
Chhikara and Folks (1989) [7]. Since the number of populations having IG distributions
is k, the unknown mean of ith population is µi and the general mean is µ, the null and
alternative hypotheses could be written as shown in equation (1.2).

(1.2) H0 : µ1 = µ2 = · · · = µk = µ and H1 : µi 6= µj , ∃ i 6= j (i, j = 1, · · · , k)

However, the disadvantage of ANORE is that it fails for testing equality of IG means,
when the scale parameters are non-homogeneous. Therefore, to deal with this problem of
comparing IG means in the case of unequal scale parameters, Tian (2006) developed an
approach using the concepts of generalized test variables (GTV) and generalized p-values.
The concept of GTV has been widely applied to a variety of practical settings, where
standard inference methods do not exist. The GTV was proposed by Weerahandi (1995)
in order to test the equality of normal means under heterogeneity and the generalized p-
values approach was introduced by Tsui and Weerahandi (1989) for significance testing of
hypotheses in the presence of nuisance parameters. In Tian’s (2006) article, the concept of
generalized p-value is applied for testing equality of several IG means for the general cases
without the assumption of homogeneity. Simulation results of his study indicate that the
proposed test has excellent type I risk control under both heterogeneity and homogeneity,
whereas the type I risk of the ANORE test could be much larger than the nominal level
under heterogeneity [7, 11]. Ma and Tian (2009) proposed a parametric bootstrap (PB)
approach for testing equality of IG means under heterogeneity. Bootstrap approach is a
computer intensive method used frequently in applied statistics. It is a type of Monte
Carlo method applied on observed data. [7]. Ye et al. (2010) proposed a mixture method
for the common mean problem based on generalized inference and the large sample theory.
However, according to their study, if the sample sizes for each group, ni, are not large
and/or the scale parameter λi is not large compared to µi, the approximate distributions
don’t fit well [6]. Recently, Lin and Wu (2011) have discussed an interval estimation
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method for the common mean of several heterogeneous IG populations. The proposed
method is based on a higher order likelihood-based procedure.

It is important to develop a test procedure for equality of IG means with satisfactory
type I risk regardless of number of groups and the sample sizes. In this paper, a new com-
putational approach test (CAT) is proposed for equality of IG means under heterogeneity.
CAT method based on simulation and numerical computations uses the maximum likeli-
hood estimates (MLEs), but does not require any asymptotic distribution. This approach
provides an algorithmic framework based on the Monte-Carlo simulation and numerical
computations, which can be implemented mechanically by applied researchers to draw
statistical inferences, when a suitable parametric model is assumed for a given data set
[8]. In this article, extensive simulation results are presented to evaluate the type I risk
and power of the proposed CAT approach in comparison to that of the, PB and GTV
approaches.

This article is organized as follows. In Section 2, the tests based on the PB and the
GTV, used for testing the equality of IG means under heterogeneity, are presented. In
Section 3, a new CAT based on simulation and numerical computations, used for the
equality of IG means, is presented. In Section 4, simulation results on type I risk control
and power are presented. Concluding remarks are summarized in Section 5.

2. Tests for Testing Equality of Inverse Gaussian Means under
Heterogeneity

In this section, PB approach and GTV developed for testing equality of several IG
means, without the assumption of equal scale parameters, are presented.

2.1. The Parametric Bootstrap Approach. In this section, a PB approach is pre-
sented that is used for testing equality of several IG means [7].

Let Xi1,Xi2, · · · ,Xini be a random sample from an IG (µi, λi) , i = 1, · · · , k and the
terms in equation (2.1) are defined. It is also well known that equation (2.2) could be
written for i = 1, · · · , k.

(2.1) X̄i = 1
ni

∑ni
j=1 Xij and Vi =

∑ni
j=1

(
1

Xij
− 1

Xi

)
(2.2) X̄i ∼ IG (µi, niλi) and λiVi ∼ χ2

ni−1

The hypotheses of interest are given before as shown in equation (1.2). Then, equation

(2.3) is defined with µ̂ =
∑k
i=1 niλiX̄i∑k
i=1 niλi

. Under null hypothesis H0, Q (λ1, λ2, · · · , λk) ∼
χ2
k−1 [7, 10].

(2.3) Q (λ1, λ2, · · · , λk) =
∑k
i=1 niλi

(
1

Xi
− 1

µ̂

)
The PB approach involves sampling from the estimated models. Based on the test

statistic Q in equation (2.3), the PB pivot variable could be developed as follows. Firstly,

equation (2.4) is written with λ̂i = ni/Vi and λBi ∼
χ2
ni−1

Vi
, i = 1, · · · , k. Then the PB

pivot variable, based on the statistic in equation (2.3), is given by equation (2.5). In

equation (2.5), µ̂B =
∑k
i=1 niλBiX̄Bi∑k
i=1 niλBi

[7].

(2.4) X̄Bi ∼ IG
(∑k

i=1 niλ̂i X̄i∑k
i=1 niλ̂i

, niλ̂i
)

(2.5) QB

(
X̄B1, · · · , X̄Bk, λB1, · · · , λBk

∣∣X̄1, · · · , X̄k,V1, · · · ,Vk

)
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=
∑k
i=1 niλBi

(
1

XBi
− 1

µ̂B

)
For a given data set with (x̄1, x̄2, · · · , x̄k) and (v1, v2, · · · , vk), m bootstrap samples,

Q
(i)
B , i = 1, · · · ,m, are drawn. The PB approach rejects H0 at significance level α, as

shown in equation (2.6). Here, QB0 is an observed value of QB in equation (2.5), as given

in equation (2.7). Here, µ̃ and λ̃i, i = 1, · · · , k are the MLEs under H0 from the observed
samples [7].

(2.6) p =
#
(
Q

(i)
B
≥QB0

)
m

≤ α

(2.7) QB0 =
∑k
i=1 niλ̃i

(
1
xi
− 1

µ̃

)
The EM-algorithm for calculating µ̃ and λ̃i is described as below. The log-likelihood

function under null-hypotheses H0 is as shown in equation (2.8).

(2.8) log (L (µ, λ1, · · · , λk)) =
∑k
i=1

ni
2

log (λi)−
∑k
i=1

∑ni
j=1

λi
2µ2xij

(xij − µ)2 + const

Here, xij , i = 1, · · · , k, j = 1, · · · , ni are observed values of Xij . The MLEs of
µ, λ1, · · · , λk under H0 have no closed forms. The estimates can be obtained through the

iterations as below: updating the estimates from l-step estimates
(
λ

(l)
1 , · · · , λ(l)

k , µ
(l)
)

by equation (2.9). Here, initial value µ(0) could set as grand mean 1
k

∑k
i=1 x̄i.

(
λ

(l)
1

, · · · , λ(l)
k , µ

(l)
)

converge to the MLEs under H0 denoted as
(
λ̃1, · · · , λ̃k, µ̃,

)
[7].

(2.9) λ
(l+1)
i = ni/

∑ni
i=1

(
1
xij
− 1

µ(l)

)2

, i = 1, · · · , k, µ(l+1) =
∑k
i=1 niλ

(l+1)
i x̄i∑k

i=1 niλ
(l+1)
i

Moreover, the algorithm for calculating p-value using the PB approach could be given
as shown below [7]. Algorithm:

1. For a given data (xi1, xi2, · · · , xini) , i = 1, · · · , k, calculate observed statistics (x̄1, x̄2,

· · · , x̄k) and (v1, v2, · · · , vk). Then calculate the MLEs µ̃, λ̃1, · · · , λ̃k under null hypothe-
ses. Compute QB0 as defined in equation (2.7).

2. Independently generate X̄Bi ∼ IG
(∑k

i=1 niλ̂ix̄i∑k
i=1 niλ̂i

, niλ̂i
)

and λBi ∼
χ2

(ni−1)
vi

, i = 1, · · · , k.

Then compute QB in equation (2.5).

3. Repeat step 2 a total m times and obtain m values of QB , denoted as Q
(i)
B , i =

1, 2, · · · ,m.

4. The percentage that Q
(i)
B
′s (i = 1, 2, · · · ,m) are greater than or equal to QB0 is a

Monte Carlo estimate of the p-value for testing H 0 vs. H 1.

2.2. A Generalized Test Variable Approach. Weerahandi (1995) presented a GTV
for the equality of several Gaussian means under heterogeneity. A parallel test for IG
distribution is developed as follows [11].

Let Xi1,Xi2, · · · ,Xini be a random sample from an IG (µi, λi) population, with X̄i as
the ith sample mean for i = 1, · · · , k. Let x̄i denotes the ith observed sample mean for
i = 1, · · · , k. It is well known that both of the equation (2.1) and equation (2.2) could be
written as it is done before in PB approach section. The generalized pivot for λi could
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be written as shown in equation (2.10). Here, vi is the observed value of Vi. Obviously,
Rλi coincides with the traditional pivot for λi [7, 11].

(2.10) Rλi = λiVi
vi
∼

χ2
ni−1

vi

Under the null hypothesis that is given in equation (1.2), equation (2.1) could be

written. Here, µ̂ =
∑k
i=1 niλiX̄i∑k
i=1 niλi

is as given before in Section 2.1. In the same vein of the

GTV for the equality of normal means, a potential GTV is defined for the equality of IG

means as in equation (2.12). Here, q (Rλ1 ,Rλ2 , · · · ,Rλk ) =
∑k
i=1 niRλi

(
1
x̄i
− 1

Rµ̂

)
with

Rµ̂ =
∑k
i=1 niRλi

x̄i∑k
i=1 niRλi

. That is, q (Rλ1 ,Rλ2 , · · · ,Rλk ) is Q (λ1, λ2, · · · , λk) with X̄i replaced

by the observed value x̄i and λi, replaced by the corresponding pivot Rλi for i = 1, · · · , k
[7, 10, 11].

(2.11) Q (λ1, λ2, · · · , λk) =
∑k
i=1 niλi

(
1

Xi
− 1

µ̂

)
∼ χ2

k−1

(2.12) T = Q(λ1,λ2,··· ,λk)

q(Rλ1 ,Rλ2 ,··· ,Rλk )

The proposed test statistic T satisfies the three conditions in order to be an actual
GTV:

First of all, as X̄i = x̄i, Vi = vi, Rλi = λi (i = 1, · · · , k) and Q (λ1, · · · , λk) =
q (Rλ1 ,Rλ2 , · · · ,Rλk ). Hence, the observed value of T is tobs = 1. Secondly, under null
hypothesis, Q (λ1, λ2, · · · , λk) ∼ χ2

k−1 and q (Rλ1 ,Rλ2 , · · · ,Rλk ) are functions of a set of

independent random variables χ2
ni−1 and observed values x̄i and vi for i = 1, 2, · · · , k.

Thus, T does not depend on any unknown parameters. Thirdly, T tends to take large
values for deviations from null hypothesis. Consequently, T becomes an actual GTV for
testing the equality of IG means [11]. As T tends to take larger than 1 for deviations from
null hypothesis, the generalized p-value could be obtained as shown in equation (2.13).
Here, Gk−1 [· · · ] represents the cumulative distribution function of χ2

k−1 distribution and

the expectation E {· · · } is taken with respect to k independent χ2
ni−1 (i = 1, 2, · · · , k)

random variables [7, 11].

(2.13)
p− value = Pr ob (T ≥ tobs = 1 |H0 )

= Pr ob (Q (λ1, λ2, · · · , λk) ≥ q (Rλ1 ,Rλ2 , · · · ,Rλk ) |H0 )
= 1− E {Gk−1 [q (Rλ1 ,Rλ2 , · · · ,Rλk )]}

Based on the simulation results in Tian (2006), the proposed test based on the concept
of GTV was strongly recommended being used instead of ANORE test for testing equality
of IG means, owing to the fact that it has excellent type I risk control under both
homogeneity and heterogeneity.

3. The Computational Approach Test for Testing Equality of In-
verse Gaussian Means under Heterogeneity

In this section, a test procedure is given based on CAT for testing equality of several
IG means under the unequal scale parameters. Firstly, before applying developed CAT
procedure for testing the null hypothesis given in equation (1.2), the H 0 is expressed in

terms of suitable scalar η. η is defined as shown in equation (3.1). Here, µ̄ =
∑k
i=1 niµi/n

and n =
∑k
i=1 ni.
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(3.1) η = η (µ1, · · · , µk) =
∑k
i=1 ni

(
1
µi
− 1

µ

)
It is clear that testing H0 against H1 is equivalent to testing H∗0 : η = 0 against H∗1 :

η > 0. Thus, MLE of η can be used as a test statistic. If H0 is true then η=0, otherwise

η is getting greater than 0. In this study, η =
∑k
i=1 ni

(
1
µi
− 1

µ

)
is chosen. However, one

can choose another suitable expression. The choice of η is the most important point for
the success of the CAT method.

The test procedure of our proposed CAT could be given as shown below:

i) The MLE of the parameters are obtained as

µ̂i(ML) = X̄i. and λ̂−1
i(ML) = 1

ni

∑ni
j=1

(
X−1
ij − X̄−1

i.

)
Therefore, the test statistic is rewritten as η̂ML =

∑k
i=1 ni

(
1

Xi.
− 1

X

)
. The observed

value of η̂MLis η̂ML0.

ii) If H 0 or H∗0 is true, then Xij∼ IG (µ,λi) (1 ≤ j ≤ ni, 1 ≤ i ≤ k) Here, µ and
(λ1, · · · , λk) are nuisance parameters. Hence, MLEs of µ and λi based on the assumption
under null hypothesis (µ1 = µ2 = · · · = µk = µ) give the restricted maximum likelihood
estimates (RMLEs) of these parameters. The procedure of obtaining RMLEs of the µ
and λi parameters could be given as follows:

Firstly, under the restricted model, log - likelihood function of the sample xi1, xi2,
· · · , xini is given as in equation (3.2).

(3.2) L = 1
2

∑k
i=1 ni log λi

2π
− 3

2

∑k
i=1

∑ni
j=1 log xij− 1

2µ2

∑k
i=1

∑ni
j=1 λixij+

1
µ

∑k
i=1 niλi−

1
2

∑k
i=1

∑ni
j=1

λi
xij

Differentiating the equation (3.2) with respect to µ and λi yields the following results:

(3.3)

∂L
∂µ

= 1
µ3

∑k
i=1

∑ni
j=1 λixij −

1
µ2

∑k
i=1 niλi

∂L
∂λi

= ni
2λi

+ ni
µ
− 1

2

∑ni
j=1

1
xij
− 1

2µ2

∑ni
j=1 xij , i = 1, ..., l

As can be seen from equation (3.3), the RMLEs of the µ and λ parameters have no
closed forms. Therefore, the RMLEs of these parameters could be obtained using the it-

erations given in equation (2.9). Here µ(l), λ
(l)
1 , · · · , λ(l)

k converge to the RMLEs denoted

as µ̂RML, λ̂i(RML).

iii) Generate artificial sample Xi1, . . . , Xini , i = 1, . . . , k i.i.d. from IG(µ̂RML,

λ̂i(RML)) a large of number of times (say, m times). For each of these replicated samples,

recalculate the values of η̂
(j)
ML (j = 1, ...,m).

iv) Calculate the p-value as p =
#
(
η̂
(j)
ML

>η̂ML0

)
m

. In the case of p<α, H0 is rejected.

4. A Simulation Study

In this section for testing equality of IG means under heterogeneity, the GTV, PB
approaches and CAT are compared according to type I risks and powers for different
combinations of parameters (µ, λ) and sample sizes. For this purpose, we consider some
cases from smaller to larger sample sizes with different number of groups as k=3, k=4
and k=5. For specified nominal level of α=0.05, we used m=10000 times to calculate the
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simulated type I risks and powers of these tests.Firstly, we calculated simulated type I
risks of tests under null hypothesis. The numerical results for estimated type I risks are
given as in Table 1 to Table 3.

Table 1. Estimated type I risks of three tests for k=3.

µ n λ1, λ2, λ3 PB GTV CAT

30 30 30 0.059 0.046 0.048
15 30 35 40 0.063 0.048 0.049

30 40 50 0.058 0.047 0.047
10 30 30 30 0.058 0.049 0.048

20 30 35 40 0.056 0.046 0.047
30 40 50 0.059 0.051 0.050
30 30 30 0.054 0.046 0.048

30 30 35 40 0.049 0.045 0.047
30 40 50 0.054 0.048 0.050

30 30 30 0.062 0.048 0.047
15 30 35 40 0.056 0.043 0.044

30 40 50 0.060 0.049 0.046
20 30 30 30 0.059 0.050 0.049

20 30 35 40 0.054 0.045 0.042
30 40 50 0.058 0.048 0.048
30 30 30 0.533 0.046 0.045

30 30 35 40 0.053 0.048 0.047
30 40 50 0.059 0.052 0.053

Table 2. Estimated type I risks of three tests for k=4.

µ n λ1, λ2, λ3, λ4 PB GTV CAT

30 30 30 30 0.055 0.053 0.042
15 30 35 40 45 0.054 0.051 0.042

30 40 50 60 0.053 0.049 0.044
10 30 30 30 30 0.054 0.050 0.046

20 30 35 40 45 0.051 0.049 0.044
30 40 50 60 0.052 0.050 0.045
30 30 30 30 0.052 0.050 0.046

30 30 35 40 45 0.048 0.046 0.045
30 40 50 60 0.049 0.048 0.047

30 30 30 30 0.053 0.048 0.043
15 30 35 40 45 0.055 0.052 0.045

30 40 50 60 0.055 0.052 0.044
20 30 30 30 30 0.054 0.052 0.044

20 30 35 40 45 0.054 0.052 0.048
30 40 50 60 0.053 0.051 0.048
30 30 30 30 0.053 0.051 0.048

30 30 35 40 45 0.052 0.052 0.048
30 40 50 60 0.052 0.050 0.047

As seen from Table 1-Table 3, while the type I risks of PB approach exceed the nominal
level in the case of k=3, they close to the 0.05 for k=5. GTV performs contrast to the
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Table 3. Estimated type I risks of three tests for k=5.

µ n λ1, λ2, λ3, λ4,λ5 PB GTV CAT

30 30 30 30 30 0.055 0.059 0.044
15 30 35 40 45 50 0.053 0.057 0.043

30 40 50 60 70 0.051 0.055 0.044
10 30 30 30 30 30 0.055 0.059 0.049

20 30 35 40 45 50 0.052 0.055 0.046
30 40 50 60 70 0.049 0.054 0.043
30 30 30 30 30 0.053 0.054 0.050

30 30 35 40 45 50 0.052 0.053 0.045
30 40 50 60 70 0.049 0.051 0.044

30 30 30 30 30 0.049 0.054 0.040
15 30 35 40 45 50 0.051 0.056 0.044

30 40 50 60 70 0.051 0.055 0.042
20 30 30 30 30 30 0.051 0.053 0.043

20 30 35 40 45 50 0.049 0.052 0.043
30 40 50 60 70 0.049 0.054 0.047
30 30 30 30 30 0.053 0.056 0.049

30 30 35 40 45 50 0.048 0.051 0.043
30 40 50 60 70 0.049 0.050 0.043

PB approach that its type I risks close to 0.05 for k=3, whereas they exceed the 0.05 for
k=5. However, the CAT method seems to have type I risks lower also almost close to
the nominal level for k=3, k=4 and k=5.

After calculating the type I risks of three methods, we calculated the estimated power
of the tests for different combinations of parameters and sample sizes.

Table 4. Estimated power of three tests for k=3.

n λ1, λ2, λ3 µ1, µ2, µ3 PB GTV CAT

10 11 12 0.108 0.091 0.092
30 30 30 10 12 14 0.235 0.205 0.209

10 13 16 0.385 0.343 0.356
15 10 11 12 0.118 0.098 0.104

30 35 40 10 12 14 0.263 0.229 0.247
10 13 16 0.429 0.391 0.420
10 11 12 0.128 0.107 0.112

30 40 50 10 12 14 0.276 0.245 0.266
10 13 16 0.458 0.419 0.450

10 11 12 0.176 0.162 0.166
30 30 30 10 12 14 0.431 0.409 0.422

10 13 16 0.689 0.669 0.681
30 10 11 12 0.179 0.166 0.174

30 35 40 10 12 14 0.484 0.464 0.476
10 13 16 0.734 0.717 0.743
10 11 12 0.197 0.181 0.188

30 40 50 10 12 14 0.517 0.495 0.516
10 13 16 0.790 0.776 0.795



A New Computational Approach for Testing Equality of... 589

Table 5. Estimated power of three tests for k=4.

n λ1, λ2, λ3, λ4 µ1, µ2, µ3, µ4 PB GTV CAT

10 11 12 13 0.152 0.143 0.129
30 30 30 30 10 12 14 16 0.346 0.337 0.330

10 13 16 19 0.559 0.553 0.554
15 10 11 12 13 0.158 0.153 0.148

30 35 40 45 10 12 14 16 0.406 0.398 0.399
10 13 16 19 0.625 0.621 0.643
10 11 12 13 0.175 0.167 0.166

30 40 50 60 10 12 14 16 0.449 0.442 0.445
10 13 16 19 0.687 0.686 0.712

10 11 12 13 0.271 0.266 0.260
30 30 30 30 10 12 14 16 0.673 0.669 0.670

10 13 16 19 0.899 0.897 0.900
30 10 11 12 13 0.323 0.317 0.319

30 35 40 45 10 12 14 16 0.756 0.751 0.769
10 13 16 19 0.943 0.944 0.956
10 11 12 13 0.347 0.339 0.344

30 40 50 60 10 12 14 16 0.798 0.795 0.810
10 13 16 19 0.965 0.965 0.973

Table 6. Estimated power of three tests for k=5.

n λ1, λ2, λ3, λ4,λ5 µ1, µ2, µ3, µ4, µ5 PB GTV CAT

10 11 12 13 14 0.201 0.209 0.184
30 30 30 30 30 10 12 14 16 18 0.481 0.497 0.480

10 13 16 19 21 0.671 0.693 0.678
15 10 11 12 13 14 0.242 0.252 0.236

30 35 40 45 50 10 12 14 16 18 0.583 0.599 0.597
10 13 16 19 21 0.770 0.788 0.807
10 11 12 13 14 0.276 0.291 0.270

30 40 50 60 70 10 12 14 16 18 0.652 0.667 0.671
10 13 16 19 21 0.824 0.842 0.860

10 11 12 13 14 0.408 0.413 0.400
30 30 30 30 30 10 12 14 16 18 0.855 0.860 0.859

10 13 16 19 21 0.967 0.969 0.972
30 10 11 12 13 14 0.493 0.498 0.497

30 35 40 45 50 10 12 14 16 18 0.925 0.928 0.937
10 13 16 19 21 0.987 0.989 0.993
10 11 12 13 14 0.565 0.572 0.569

30 40 50 60 70 10 12 14 16 18 0.961 0.962 0.964
10 13 16 19 21 0.995 0.995 0.997

The numerical results for estimated power of the three tests are presented as above in
Table 4 to Table 6. Since the type I risks of PB approach exceed the nominal level for
k=3, it appears to be more powerful than the other two tests. If both of the CAT and
GTV are compared for k=3, the CAT appears to be more powerful than the GTV.

For k=4 and n=15, the PB approach appears to be more powerful than the other two
tests. However, it could be emphasized that when the sample size increases i.e., n=30, the



590 E. Y. Gökpınar, E. Polat, F. Gökpınar, S. Günay

CAT performs a bit more better than the other two tests in terms of power. Additionally,
the CAT is positively affected from the increments in the differences between the scale
parameters and the means of groups.

For k=5, the GTV appears to be more powerful than other tests because of its type I
risks exceed the nominal level. When the differences between scale parameters and means
of groups are increased, the CAT appears to be more powerful than the PB approach.

5. Conclusion

In this article, we have proposed the CAT for testing the equality of several inverse
Gaussian means, especially, under heterogeneity. We have compared the CAT with some
of the existing tests; the PB and GTV. For a different sample sizes and parameters, we
have investigated the performance of these three tests using Monte Carlo simulation. It
could be observed from the simulation results that for k=3 the PB approach seems to
have type I risks exceeding the nominal level and for k=5 the GTV performs in a similar
way. However, the type I risks of CAT are generally less than 0.05 for all the numbers
of groups. Therefore, we could mention that the CAT is not affected from the changes
in the number of groups. Furthermore, according to power comparison results, the CAT
appears to be more powerful than the other tests, when the differences between scale
parameters and means of groups are increased.

Consequently, in respect of our simulation study, even for comparing different number
of groups (as k=3, 4 or 5), CAT could be suggested as a good alternative for testing the
equality of inverse Gaussian means under heterogeneity of scale parameters.
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