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Abstract

In this paper, we prove some new inequalities of Simpson’s type for func-
tions whose derivatives of absolute values are h—convex and h—concave
functions. Some new estimations are obtained. Also we give some so-
phisticated results for some different kinds of convex functions.
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1. Introduction

The following inequality is well known in the literature as Simpson’s inequality;

) g [ rwae- L0 op (S0 < |50 -,

where the mapping f : [a,b] — R is assumed to be four times continuously differentiable
on the interval and f* to be bounded on (a,b) , that is,

] - 100 <
o t€(a,b)

For some results which generalize, improve and extend the inequality (1.1) see the papers
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1.1. Definition. [5] We say that f : I — R is Godunova-Levin function or that f belongs
to the class Q (I) if f is non-negative and for all x,y € I and t € (0,1) we have

(12)  f(tz+(1-t)y) < @+%

The class Q(I) was firstly described in [5] by Godunova-Levin. Among others, it is
noted that nonnegative monotone and nonnegative convex functions belong to this class
of functions.

1.2. Definition. [4] We say that f: I CR — R is a P—function or that f belongs to
the class P (I) if f is nonnegative and for all z,y € I and t € [0,1], we have

(13)  flz+1-t)y) <f(z)+f(y).

1.3. Definition. [8] Let s € (0,1] be a fixed real number. A function f : [0,00) — [0, 00)
is said to be s—convex (in the second sense) if

(1L4)  flz+ (@ =t)y) <t°f(@)+ 1 -1)"f(y),

for all z,y € [0,00) and t € [0,1]. This class of s-convex functions is usually denoted

by K2.

In 1978, Breckner introduced s—convex functions as a generalization of convex func-
tions [8]. Also, in that one work Breckner proved the important fact that the setvalued
map is s—convex only if the associated support function is s-convex function [9]. Of
course, s—convexity means just convexity when s = 1.

1.4. Definition. [7] Let h : J C R — R be a positive function . We say that f : 1 C
R — R is h—convez function, or that f belongs to the class SX (h,I), if f is nonnegative
and for all z,y € I and t € (0,1) we have

(15)  flz+ (A —t)y) <h(t)f(zx)+hA—-1)f(y).

If inequality (1.5) is reversed, then f is said to be h—concave, i.e. f € SV (h,I).
Obviously, if h (t) = ¢, then all nonnegative convex functions belong to SX (h,I) and all
nonnegative concave functions belong to SV (h, I); if h (t) = 1, then SX (h,I) = Q (I); if
h(t) =1, then SX (h,I) D P (I); and if h (t) = t°, where s € (0,1), then SX (h,I) D K2.

1.5. Remark. [7] Let h be a non-negative function such that
ha) >«

for all « € (0,1). If f is a non-negative convex function on I , then for z,y € I, a € (0,1)
we have

flox+ (1 —a)y) <af(@)+ (1 -a)f(y) < h(@)f(z) +h(1l - a)f(y).

So, f € SX(h,I). Similarly, if the function h has the property: h(a) < aforall a € (0,1),
then any non-negative concave function f belongs to the class SV (h,I).

1.6. Definition. [7] A function h : J — R is said to be a supermultiplicative function
if

(1.6)  h(zy) > h(x)h(y)
for all z,y € J.
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If inequality (1.6) is reversed, then h is said to be a submultiplicative function. If
equality held in (1.6), then h is said to be a multiplicative function.

In [1], Sarikaya et.al established the following Simpson-type inequality for convex
functions:

1.7. Theorem. Let f : I C R — R, be differentiable mapping on I° such that f' €
Li[a,b], where a,b € I witha <b. If | f'| is a convez on [a, b], then the following inequality
holds:

0 [Hr@var () +r0] - L [ 1@
5(b—a)

<

[ @]+ [ ®)]

In [10], Sarikaya et.al established the following Hadmard-type inequality for h—convex
functions:

1.8. Theorem. Let f € SX (h,I), a,b € I, witha <b and f € L1 ([a,b]). Then

19 G (57) <5t [rwe<@ ol [ roa

For recent results and generalizations concerning h—convex functions see [7], [10].
The aim of this paper is to establish new inequalities for functions whose derivatives
in absolute value are h—convex and h—concave functions.

2. Inequalities for h—convex and h—concave functions

To prove our new result we need the following lemma (see [3]).

2.1. Lemma. Let f : I C R — R be an absolutely continuous mapping on I° where
a,b € I with a < b. Then the following equality holds:

§lr@sar () rm] -

:(bfa)/olk(t)f'(taJr(17t)b)dt,

[ t—2, te0,3)
k(t)_{ i-5 te {%,1]
2.2. Theorem. Let h : J C R — R be a non-negative function, f : I C [0,00) = R be

a differentiable function on I° such that h?, f' € L|a,b] where a,b € I° with a < b and
h(a) > a. If |f'| is h—convez on I, then

(2.1)
‘b_a/ I %{f +f()+2f<a—2¢—b)H
_ (-0 (1+2p+1>é

<" (5o (/Oth(t)dt>q+</hq(t)dt>q
+ |f ()] (/th(l—t)dt)q—i—</Ilhq(1—t)dt)q .

-
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1,01 _
where;—kgfl.

Proof. From Lemma 2.1, h—convexity of |f’| and properties of absolute value, we have

i [ ey [ ()]

=(b—a) / E@)f (ta—|—(1—t)b)dt‘

0

<(b-a) (/
s(b—@{/ol
o
=<b—a>|f’<a>|{/0é
+<b—a>|f'<b>|{/0é

By Hoélder’s inequality, we get

i o128 )
g(b—aﬂf%@|{<éé pﬁ) (/éh%ﬂdgq

(ffife) (s df>}

t—é’|f’(ta+(1—t)b)|dt+

! 5
) t—6’|f'(ta+(1—t)b)]dt>

t—l'( YIf (@) +h(1=t)|f (b)])dt

t— g‘ (@) |f (@) +h@—1t)|f (b)])dt}

! 5
. t—é‘h(t)dt
2
1

1
t—%hﬂ—ﬂﬁ+/‘t—%hu—ﬂﬁ
6 1 6

p_ L
6

h(t) dt +

=

P
6

t_,
6

1
5
+(/1 -
2
Since
1 1 1
2 1P s (1 P 2 1\? 1 1 1
/0 t_é dtf/o (é_t> dif—!—/l (t_é) dt7p+1<6p+1+3p+1>
6
and

P 8 (5 P 1 5\7 1 1 1
dt:/é (a*t) dt+/g <t76) dt:p+1(6p+l+3p+1),
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b_a/f )do - él{f S (53]
52 (s55) < {irn (£ o) (freon) |
o [(/thﬂ—ﬂdt) </ SR dt) ”

which completes the proof. 0

we obtain

2.3. Corollary. In Theorem 2.2, if we choose p = q = 2, we obtain

e o i )
< bg\_fa{|f’(a)| [(/jh(t2)dt>2+ </11h(t2)dt>2]
+|F )] [(/Oéh(u—t)?)dt)éjL (/llh((1—t)2)dt>5”

where h is supermultiplicative.

2.4. Corollary. In Theorem 2.2, if f (a) = f (%52) = f (b) and h(t) =1, then we have

o o(5)
<2 (0 () e

=2 () i @l + 1 el

2.5. Corollary. In Theorem 2.2, if we choose h (t) = t, we obtain

[ s [He e ()]
ORI [( W) (s - ()]
v (- (3)) (45 ]
ROEyEs ek (qil)é [If’Q(aN 1) (>- (;)”

2.6. Theorem. Let h:J C R — R be a nonnegative supermultiplicative functions,
f:IC[0,00) — R be a differentiable function on I° such that f' € L |a,b] where a,b € I°
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with a < b and h (a) > a. If |f'| is h—convex on I, then

s[5 ()
(22) < @-a{[f @|Al+][f ®)]B]}

where

Proof. From Lemma 2.1, h—convexity of |f’| and properties of absolute value, we have

i[5 (5)

:(b*a)‘/Olk(t)f'(taJr(lft)b)dt‘

S(b_a){/j ’t_é']f'(ta+(1—t)b)|dt+/ll‘t—2‘\f’(ta+(1—t)b)|dt}
g(ba){/j ’tfé‘(h(t)]f'(a)\+h(1ft)]f’(b)|)dt
+/11‘t—2‘(h(t)}f’(a)|+h(1—t)|f’(b)|)dt}

. {/06 (5-1) @1 @l = ha o] @)

+/j (t—é) (@) |f (@] +h@—=1t)|f (b)])dt
+/l(6 <%—t> (R@)|f (@) +h@—=1t)|f (b)])dt

+/g (t— %) (h@)|f (@] +h(@—=2t)|f (b),)dt}.
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By properties of function h, we can write

e s 250 ()
’ h

1

v-avra{ (i) (g

5

Sl fo et

e[ ) (o)
+/7§h{(17t) (gft)}dﬁ/;h{(kt) (tz)}dt}

2 6

-

which completes the proof. O

2.7. Corollary. In Theorem 2.6, if f (a) = f (52) = f (b) and h(t) = 1, then we have

ﬁ/ﬂbf(w)dx—f(a;b)‘ < (b—a){|f @] +]7 ®)]}.

2.8. Remark. In Theorem 2.6, if we choose h(t) = ¢, then we obtain the inequality
(1.7).

2.9. Theorem. Let h:J C R — R be non-negative functions, f: 1 C [0,00) = R be a

differentiable function on I° such that f' € L[a,b] where a,b € I° with a <b. If |f'| is
h—concave on I, then

b
‘bia/ f(z)dz —

< b—a [2+2°F2
= 12 p+1

e ()]

1

E,a—i—b
()

S W =

s
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Proof. From Lemma 2.1 and using the Hélder inequality, we have

i [ s (R e (2]

b—a 2

<(b—-a)

/Olk(t)f’(taJr(l—t)b)dt‘

g(b—a)( 01|k(t)|pdt); (/01|f’(ta+(1—t)b)|th)‘l’

Since | f’| is h-concave on I, by inequalities (1.8) we have

1 / a+ b
()
Therefore, we get

2h (1)
e a5 ()]

q

/1]f’(ta+(1—t)b)|thg

b—a 2
1 1P 1 517 % 1 a+b q%
<(b- t— 2| dt t— | dt !
<e-af ["|i- +/ : 2h(%)f(Q)
Since
1 1 1
2 1P s (1 P 2 1\? 1 1 1
/0 b= dtf/o (é—t) d1t+/l (t_6> dt*p+1(6p+1+3P+1)
6
and
1 P 5 P 1 P
5 6 (5 5 1 1 1
/% b= dt_/% <6—t> cht+/g (t_6> dt_p+1<6p+1+3p+1),
we obtain
1 b 1 a)+ f(b a+b
e 2320 )]
1
<b—a(2+2p+2>fl’ e f,(a+b)
- 12 p+1 h(3) 2 )|
This completes the proof. O

2.10. Corollary. In Theorem 2.9, if we choose h(t) = t, then we obtain

e e [ (23]

<b—a 1+ 2rt1L %f, a+b
_— 2 .

- 6 p+1
3. APPLICATIONS TO SPECIAL MEANS

We now consider the means for arbitrary real numbers «, 8 (a # 3). We take

(1) Arithmetic mean :

A(a75):a;—/87 a75€R+'
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(2) Logarithmic mean:

_ a-f +
L(a’ﬂ)_ln|a|fln|6|’ ‘al#‘ﬂ|3a7ﬁ#07 O‘356R .
(3) Generalized log — mean:

ﬂn+1 _ an+1

Ln(a, B) = [( r , neZ\{-1,0}, a, B eR".

n+ (B —a)
Now using the results of Section 2, we give some applications for special means of real
numbers.

3.1. Proposition. Let a,b € R", 0 <a <b andn € N,n > 1. Then, we have

L7 (a,b) — % [A(a™,b") — A™(a, b)]‘

8 (1 () e (o (2))

Proof. The assertion follows from Corollary 2.5 applied for f(z) = 2",z € R,n e N. O

=

3.2. Proposition. Let a,b € R", a < b. Then, we have

L7 (a,b) — A™(a, )] < (b—a) L—Z + 1 ] .

b?
Proof. The assertion follows from Corollary 2.7 applied for f(z) = %, z € [a, b]. O
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