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Abstract

In the present paper, we obtain coefficient estimates and distortion and
growth theorems for certain subclass of close-to-convex functions. The
results presented here contain those given in earlier works as in some
special cases.
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1. Introduction

Let A denote the class of functions of the form

(1.1) f (z) = z +

∞∑

n=2

anz
n

which are analytic and univalent in the open unit disk U = {z ∈ C : |z| < 1} . Let S, K
and S∗ denote the usual subclasses of A whose members are univalent, close-to-convex
and starlike in U, respectively. By S∗(α), we also denote the class of starlike functions of
order α(0 ≤ α < 1).

For two functions f and g analytic in U, we say that the function f(z) is subordinate
to g(z) in U, and write as:

f ≺ g or f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z), analytic in U with

w(0) = 0 and |w(z)| < 1 ,

such that

f(z) = g(w(z)) (z ∈ U).
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In particular, if the function g is univalent in U, then f(z) is subordinate to g(z) in
U(cf. [1]) if and only if

f(0) = g(0) and f(U) ⊂ g(U).

Recently, Kowalczyk et al. [4] discussed a class Ks(γ) of analytic functions related to
the starlike functions: A function f(z) ∈ A is said to be in the class Ks(γ) if it satisfies
the inequality:

Re

( −z2f ′(z)
g(z)g(−z)

)
> γ (0 ≤ γ < 1; z ∈ U),

where g(z) ∈ S∗(1/2).
By simple calculations, we see that the above inequality is equivalent to

∣∣∣∣
z2f ′(z)

g(z)g(−z) + 1

∣∣∣∣ <
∣∣∣∣
z2f ′(z)

g(z)g(−z) − 1 + 2γ

∣∣∣∣ (0 ≤ γ < 1; z ∈ U).

Motivated by the class Ks(γ), we introduce a new class K
(k)
s (γ, α, β) of analytic functions

related to starlike functions as follows:

1.1. Definition. Let K
(k)
s (γ, α, β) denote the class of functions in A satisfying the

inequality:

(1.2)

∣∣∣∣
zkf ′(z)

gk(z)
− 1

∣∣∣∣ < β

∣∣∣∣
αzkf ′(z)

gk(z)
+ 1− (1 + α)γ

∣∣∣∣

(0 ≤ α ≤ 1; 0 < β ≤ 1; 0 ≤ γ < 1; z ∈ U),

where gk(z) is defined by

(1.3) gk(z) =

k−1∏

ν=0

ε−νg(ενz)

(
εk = 1; g(z) ∈ S

∗
(
k − 1

k

)
; k ≥ 1

)
.

We note that K
(2)
s (0, 1, 1) = Ks, where Ks is the class of functions which was defined

by Gao and Zhou [2]. Moreover, K
(2)
s (γ, 1, 1) = Ks(γ) and K

(k)
s (γ, 1, 1) = K

(k)
s (γ) which

were studied by Kowalczyk et al. [4] and Seker [6], respectively so the class K
(k)
s (γ, α, β)

are generalizations of Ks(γ) and K
(k)
s (γ).

In the present paper, we investigate characterization theorems, coefficient inequalities,

growth and distortion theorems for functions belonging to the class K
(k)
s (γ, α, β).

2. Coefficient Estimates

First of all, we show in which way our class is associated with the appropriate subor-
dination.

2.1. Theorem. A function f(z) ∈ K(k)
s (γ, α, β) if and only if there exits gk(z) satisfying

the condition (1.3) such that

(2.1)
zkf ′(z)

gk(z)
≺ 1 + β[1− (1 + α)γ]z

1− αβz (z ∈ U).

Proof. Let f(z) ∈ K(k)
s (γ, α, β). Then, for α 6= 1 and β 6= 1, squaring and expanding

both sides of (1.2), we see that the region of G(z) = zkf ′(z)/gk(z) for z ∈ U is contained
in the disk C whose center is {1 + αβ2[1 − (1 + α)γ]}/(1 − α2β2) and radius is β(1 +
α)(1− γ)/(1− α2β2). Since q(z) = {1 + β[1− (1 + α)γ]z}/(1− αβz) maps the unit disk
U to the disk C and q(z) is univalent in U, we obtain the relation (2.1). �
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Conversely, assume that the relation (2.1) holds true. Then we have

zkf ′(z)

gk(z)
≺ 1 + β[1− (1 + α)γ]w(z)

1− αβw(z)
,

(0 ≤ α ≤ 1; 0 < β ≤ 1; 0 ≤ γ < 1; z ∈ U),

where w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 for z ∈ U. Therefore from the

above equation, we obtain the inequality (1.2), that is, f(z) ∈ K(k)
s (γ, α, β).

2.2. Remark. From Theorem 2.1, we see that, if f(z) ∈ K(k)
s (γ, α, β), then

(2.2) Re

(
zf ′(z)

gk(z)/zk−1

)
> γ (z ∈ U),

because of

Re

(
1 + β[1− (1 + α)γ]z

1− αβz

)
> γ (z ∈ U).

In order to give the coefficient estimate of functions belonging to the class Kk
s (γ, α, β),

we shall require the following lemma.

2.3. Lemma. [7] Let

(2.3) g(z) = z +

∞∑

n=2

bnz
n ∈ S

∗
(
k − 1

k

)
,

then

(2.4) Gk (z) =
gk(z)

zk−1
= z +

∞∑

n=2

Bnz
n ∈ S

∗ ⊂ S,

where gk(z) is given by (1.3).

2.4. Remark. (i) In particular, for k = 2, the coefficients Bn in (2.4) is expressed as
follows:

B2n−1 = 2b2n−1 − 2b2b2n−2 + ...+ (−1)n2bn−1bn+1 + (−1)n+1b2n.

(ii) If g(z) ∈ S∗((k − 1)/k), then from Lemma 2.3., Gk(z) given by (2.4) belongs to
S∗. Then by (2.2), we see that the class Kk

s (γ, α, β) is a subclass of the class K of
close-to-convex functions.

Next, we prove the sufficient condition for functions to belong to the class Kk
s (γ, α, β).

2.5. Theorem. Let f(z) = z +
∑∞
n=2 anz

n and g(z) = z +
∑∞
n=2 bnz

n be analytic in U.
If

(2.5)

∞∑

n=2

(1 + αβ)n |an|+
∞∑

n=2

[1 + β |1− (1 + α)γ|] |Bn| ≤ β(1 + α)(1− γ)

(0 ≤ α ≤ 1; 0 < β ≤ 1; 0 ≤ γ < 1)

where the coefficients Bn (n = 2, 3, · · · ) are given by (2.4), then f(z) ∈ Kk
s (γ, α, β).

Proof. Let the functions f(z) and gk(z) be given by (1.1) and (1.3), respectively. Now,
we obtain

∆ =

∣∣∣∣zf
′(z)− gk(z)

zk−1

∣∣∣∣− β
∣∣∣∣αzf

′(z) +
[1− (1 + α)γ]gk(z)

zk−1

∣∣∣∣

=

∣∣∣∣∣
∞∑

n=2

nanz
n −

∞∑

n=2

Bnz
n

∣∣∣∣∣−
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−β
∣∣∣∣∣(1 + α)(1− γ)z + α

∞∑

n=2

nanz
n + [1− (1 + α)γ]

∞∑

n=2

Bnz
n

∣∣∣∣∣ .

Thus, for |z| = r(0 ≤ r < 1), we have, from (2.5),

∆ ≤
∞∑

n=2

n |an| |z|n +

∞∑

n=2

|Bn| |z|n

− β
(

(1 + α)(1− γ) |z| − α
∞∑

n=2

n |an| |z|n − |1− (1 + α)γ|
∞∑

n=2

|Bn| |z|n
)

= −β(1 + α)(1− γ) |z|+
∞∑

n=2

(1 + αβ)n |an| |z|n +

∞∑

n=2

[1 + β |1− (1 + α)γ| ] |Bn| |z|n

<

(
−β(1 + α)(1− γ) +

∞∑

n=2

(1 + αβ)n |an|+
∞∑

n=2

[1 + β |1− (1 + α)γ| ] |Bn|
)

≤ 0.

Thus we have
∣∣∣∣
zkf ′(z)

gk(z)
− 1

∣∣∣∣ < β

∣∣∣∣
αzkf ′(z)

gk(z)
+ 1− (1 + α)γ

∣∣∣∣ ,

that is, f(z) ∈ K(k)
s (γ, α, β). This completes the proof of Theorem 2.5. �

In the following theorem, we give the coefficient estimates of functions belonging to

the class K
(k)
s (γ, α, β).

2.6. Theorem. Let f(z) = z +
∑∞
n=2 anz

n ∈ S, g(z) = z +
∑∞
n=2 bnz

n ∈ S, and satisfy
the inequality (2.1). Then, for, n ≥ 2, we have

(2.6)

|nan −Bn|2 − [β(1 + α)(1− γ)]2

≤ (1 + β |(1 + α)γ − 1|)
n−1∑

k=2

{
2k |akBk|+ [1 + β |(1 + α)γ − 1|] |Bk|2

}
,

where Bn is given by (2.4).

Proof. Suppose that the condition (1.2) is satisfied. Then, by using the a similar method
as in the proof of (p. 30, [5]), we have

(2.7)
zf ′(z)

Gk(z)
=

1 + [(1 + α)γ − 1]zφ(z)

1 + αzφ(z)
(z ∈ U),

where φ is analytic in U, |φ(z)| ≤ β for z ∈ U and Gk(z) is given by (2.4). Then
from (2.7), we have

(
αzf ′(z)− [(1 + α)γ − 1]Gk(z)

)
zφ(z) = Gk(z)− zf ′(z)

Thus, putting

zφ(z) =

∞∑

n=1

tnz
n,
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we obtain

(2.8)

(
(1 + α)(1− γ)z + α

∞∑

n=2

nanz
n − [(1 + α)γ − 1]

∞∑

n=2

Bnz
n

) ∞∑

n=1

tnz
n

=

∞∑

n=2

Bnz
n −

∞∑

n=2

nanz
n.

Equating the coefficient of zn in (2.8), we have

Bn − nan =(1 + α)(1− γ)tn−1 + {2αa2 − [(1 + α)γ − 1]B2}tn−2

+ ...+ {(n− 1)αan−1 − [(1 + α)γ − 1]Bn−1}t1.

Thus the coefficient combination on the right side of (2.8) depends only upon the coeffi-
cient combinations:

{2αa2 − [(1 + α)γ − 1]B2}, ..., {(n− 1)αan−1 − [(1 + α)γ − 1]Bn−1}.

Hence for n ≥ 2, the equation (2.8) can be written as

(2.9)

[
(1 + α)(1− γ)z +

n−1∑

k=2

(kαak − [(1 + α)γ − 1]Bk) zk
]
zφ(z)

=

n∑

k=2

(Bk − kak) zk +

∞∑

k=n+1

ckz
k.

Then, squaring the modulus of the both sides of (2.9) and integrating along |z| = r < 1,
so that by Parseval’s identity (p. 192, [1]), we obtain

(2.10)

n∑

k=2

|kak −Bk|2 r2k +

∞∑

k=n+1

|ck|2 r2k

≤ β2

(
[(1 + α)(1− γ)]2 r2 +

n−1∑

k=2

|kαak − [(1 + α)γ − 1]Bk|2 r2k
)
.

Letting r → 1 on the left side of (2.10), we obtain

n∑

k=2

|kak −Bk|2 ≤ β2

(
[(1 + α)(1− γ)]2 +

n−1∑

k=2

|kαak − [(1 + α)γ − 1]Bk|2
)
.

Hence we have

|nan −Bn|2 < [β(1 + α)(1− γ)]2 + β2
n−1∑

k=2

|kαak − [(1 + α)γ − 1]Bk|2−

−
n−1∑

k=2

|kak −Bk|2 =

= [β(1 + α)(1− γ)]2 + (β2α2 − 1)

n−1∑

k=2

k2 |ak|2 +

+
{

(β [(1 + α)γ − 1])2 − 1
} n−1∑

k=2

|Bk|2 +
(
αβ2 |(1 + α)γ − 1|+ 1

) n−1∑

k=2

2k |ak| |Bk| ≤
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≤ [β(1 + α)(1− γ)]2 + (β |(1 + α)γ − 1|+ 1)2
n−1∑

k=2

|Bk|2 +

+ (β |(1 + α)γ − 1|+ 1)

n−1∑

k=2

2k |ak| |Bk| ,

which implies the inequality (2.6). Therefore, we complete the proof of Theorem 2.6. �

Finally, we provide the growth and the distortion theorems for functions belonging to

the class K
(k)
s (γ, α, β).

2.7. Theorem. If f(z) ∈ K(k)
s (γ, α, β), then

(2.11)
1− β [1− (1 + α)γ] r

(1 + αβr)(1 + r2)
≤
∣∣f ′(z)

∣∣ ≤ 1 + β [1− (1 + α)γ] r

(1− αβr)(1− r2)
(|z| = r < 1)

and

(2.12)

β(1 + α)(1− γ)

(1− αβ)2
ln

1 + αβr

1 + r
+

(1 + β[1− (1 + α)γ])r

(1− αβ)(1 + r)
≤ |f(z)|

≤ β(1 + α)(1− γ)

(1− αβ)2
ln(1− αβr)(1− r)− (1 + β[1− (1 + α)γ])r

(1− αβ)(1− r) (|z| = r < 1),

The results are sharp.

Proof. If f(z) ∈ K(k)
s (γ, α, β), then there exists function gk(z) satisfying (1.2). Then it

follows from the Lemma 2.3. that the function Gk(z) given by (2.4) is a starlike function.
Hence from (p. 70, [1]), we have

(2.13)
r

1 + r2
≤ |Gk(z)| ≤ r

1− r2 (|z| = r < 1).

Let us define p(z) by

p(z) =
zf ′(z)

Gk(z)
(z ∈ U).

Then by using a similar method as in (p. 105, [3]), we have

(2.14)
1− β [1− (1 + α)γ] r

1 + αβr
≤ |p(z)| ≤ 1 + β [1− (1 + α)γ] r

1− αβr (|z| = r < 1).

Thus from (2.13) and (2.14), we have

1− β [1− (1 + α)γ] r

(1 + αβr)(1 + r2)
≤
∣∣f ′(z)

∣∣ ≤ 1 + β [1− (1 + α)γ] r

(1− αβr)(1− r2)
(|z| = r < 1) ,

which gives us (2.11). Upon integrating (2.11) from 0 to r, we have the inequality (2.12).
Moreover, the results are sharp for the functions given, respectively, by

f1(z) =
β(1 + α)(1− γ)

(1− αβ)2
ln

1 + αβz

1 + z
+

(1 + β[1− (1 + α)γ])z

(1− αβ)(1 + z)
(z ∈ U)

and

f2(z) =
β(1 + α)(1− γ)

(1− αβ)2
ln(1− αβz)(1− z)− (1 + β[1− (1 + α)γ])z

(1− αβ)(1− z) (z ∈ U).

�
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