Hacettepe Journal of Mathematics and Statistics
Volume 42 (3) (2013), 211222

SOME NEW IDENTITIES CONCERNING

GENERALIZED FIBONACCI
AND LUCAS NUMBERS

Zafer Siar*, Refik Keskin®

Received 09:08:2012 : Accepted 08:05:2012

Abstract
In this paper we obtain some identities containing generalized Fibonacci
and Lucas numbers. Some of them are new and some are well known.
By using some of these identities we give some congruences concerning
generalized Fibonacci and Lucas numbers such as

Vimnsr = (~(—0")"V,  (mod Vin),

Usrnntr = (— (=t)™)"U,  (mod V),
and

Vamntr = (=)™ V., (mod Up,),

Usmntr = (—8)"" U, (mod Uy,).
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1. Introduction

Let k and ¢ be nonzero real numbers. Generalized Fibonacci sequence {U, } is defined
by Up =0, Uy =1, and Un41 = kU, + tU,—1 for n > 1 and generalized Lucas sequence
{Vn} is defined by Vy = 2, Vi =k, and V1 = kV,, + tVsi—1 for n > 1. U, and V,, are
called generalized Fibonacci numbers and generalized Lucas numbers respectively.

For k = t = 1, we have classical Fibonacci and Lucas sequences {F,} and {L,}.
For k =2 and t = 1, we have Pell and Pell-Lucas sequences {P,} and {Q.}. For more
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information about generalized Fibonacci and Lucas numbers one can consult [1], [2], [3],
and [4]. For t = 1, the sequence {U,} has been investigated in [5] and [6].
Generalized Fibonacci and Lucas numbers for negative subscript are defined as

_Un
(1L1) U, = oE and V_,, = =

respectively.
Now assume that k2 + 4t > 0. Then it is well known that

(1.2) U, = % and V,, = a" + "

where oo = (k + Vk% + 4t)/2 and 8 = (k — Vk? + 4t)/2. The above identities are known
as Binet formulae. Let o and 3 be the roots of the equations z? — kx — t = 0. Clearly
a+ B =k, a—=+Vk?+4t, and af = —t. Moreover, it can be seen that

(1.3) Vi =Un+1 +tUn—1 = kU, + 2tU,—1

and

(1.4)  (K* +4t)Un = Vg1 + Vo1

for every n € Z

For t = 1, F(Un, V,) are all the integer solutions of the equation z? — (k? +4)y? = F4
and for t = —1, F(Un, V4,) are all the integer solutions of the equation x? — (k* —4)y* = 4.
Also, for t = 1, F(Un, Un—1) are all the integer solutions of the equation 2% —kzy—y? = F1
and for t = —1, F(Un,Un—1) are all the integer solutions of the equation 22 —kay+y? =
1 (see[7],[8], and [9]).

Many identities concerning generalized Fibonacci and Lucas numbers can be proved
by using Binet formulae, induction and matrices. In the literature, the matrices

0 1 k t
REIE
are used in order to produce identities (see[4],[10]). Since
k t 0 1
3]V k]

are similar matrices, they give the same identities.

In this study we will characterize all the 2 x 2 matrices X satisfying the relation
X? = kX + tI. Then we will obtain different identities by using this property. In fact
the matrices

k t 0 1
HHEN
are special cases of the 2 X 2 matrices X satisfying X% = kX + tI.

2. Main Theorems

2.1. Theorem. If X is a square matriz with X2 =kX + tl, then X" = Up X +tUn—_11
for every n € Z.
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Proof. If n = 0, then the proof is obvious. It can be shown by induction that X" =
UnX + tU,—11 for every n € N. We now show that X" = U_, X 4+ tU_,,_11 for every
n€N. Let Y = kI — X = —tX~". Then

Y?= (kI — X)* =k’ — 2kX + X2
= kT — 2kX 4+ kX +t1 = k(kI — X) 4+ tI = kY +tI.
Thus Y" = U,Y + tU,_11 and this shows that
(=t)"X " =UnY + tUpr I = Un(kl — X) 4+ tUn—11
= (kUp 4 tUn-1)I — UpX = —Up X + Upy11.

U, X nt1d .. . _
Then we get X" = (Zﬁ)” + [(]7;)171 . This implies that X" = U_, X +tU_,,_11 by

(1.1). This completes the proof. ]

2.2. Theorem. Let X be an arbitrary 2 x 2 matriz. Then X2 = kX +tI if and only if
X is of the form

X:[a b ]withdetX:—t
c k—a

or X = M where \ € {«a, B}, where a = (k+ Vk? +4t)/2 and f = (k — Vk? + 4t)/2.

Proof. Assume that X2 = kX + ¢tI. Then the minimum polynomial of X must divides
x? — kx —t. Therefore it must be z —a or z — 8 or 2° — kx —t. In the first case X = al, in
the second case X = I, and in the third case, since X is 2 X 2 matrix, its characteristic
polynomial must be 2% — ka — ¢, so its trace is k and its determinant is —t. The argument

reverses. 0
2.3. Corollary. If X = [ Z k‘fa ] is a matrix with det X = —t, then X" =
aUn + tUn—1 bU, }
cU, Unt1 —alU, |7
Proof. Since X2 = kX + tI, the result follows from Theorem 2.1. O

2.4. Corollary. a" = aU, + tU,—1 and 8" = BU, + tUp—1 for every n € Z.

Proof. Take X = [ g 2 } with det X = a8 = —t. Then by Theorem 2.1, it follows
that
X — a0 | | aUn+tUn-1 0
N VG 0 BU, + tUp—1
This implies that a" = aU,, + tU,—1 and 8" = BU, + tUp—1. O
2.5. Corollary. U, = % and V,, = a"™ + B" for every n € Z.
Proof. The result follows from Corollary 2.4. O
[ k/2 (K2 +4t))2 w [ Va/2 (B +40)U,/2
2.6. Corollary. Let S = { 1/2 k)2 . Then S™ = Un/2 Vi /2
for every n € Z.
Proof. Since S? = kS + tI, the proof follows from Corollary 2.3. O
|kt n_ | U1 tUg
2.7. Corollary. Let X = [ 10 } Then X™ = [ U, U,y }
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Proof. Since X2 = kX + tI, the proof follows from Corollary 2.3. O

2.8. Lemma. Let a, b, and ka + b be nonzero real numbers and let k* + 4t be not a
perfect square. Then

<T'L> @b Uspr = —(—t)"
i=o \/ j=0

3
/N
S 3
\/
—
|
IS
=
.
—
X
Q
+
>
=
3
|
<.
=
1

and

Proof. Let Z[a] = {aa+b|a, b€ Z}. Define p: Z[a] = Z[a] by p(aa+b) =af+b=
a(k — a) + b = —aa + ka + b. Then it can be shown that ¢ is ring homomorphism.
Moreover, it can be shown that ¢ is injective. On the other hand, we get

—aUp + Upy1 = —aUn + kUp + tUp—1 = p(aUy + tUp—1)
— p(a™) = B = (—t)"a".

Then it is seen that

o((ac+0)"a") = p((aa +b)")p(a") = (—aa + ka +b)" (1) a™"

(—a)! (ka + )"~ (Uj—r + tUj—r—1)

> (—a) (ka+b)" 7o’ "

—a ((t)r (n> (—a)’ (ka + b)"jUjr)
i=o \/
+ ((t)T+1 3 (?) (—a)’ (ka + b)"jUj—r—1>
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n N B
J

) a’b"” aUJ+T+tU]+7” 1))

£ (o)

+ < (i’; jbn J(kU]+7‘ +tU +r— 1))
7=0

( (n) an JUJ+T> + (Z (n) ajbnjUj+T+1> .
=0 i=o \J

Then the proof follows. O

On the other hand, we have

o((ac + b)" (Z

j=0

[
"(

||
:A/—\

2.9. Theorem. Let m, r € Z with m # 0 and m # 1. Then
Unzn+r = i (n> Uj Un J Uj+rt
— \ j
=
and
an+r = Z (TL) U%U,Z:jl‘/j+’rtnig
i=o \/
Proof. From Corollary 2.6, it follows that
an+r (kQ + 4t)Umn+r

Smn+r — 2 2
Umn+r an+7‘
2 2

On the other hand, S™ = U, S + tU,,—11 and therefore

Smn+r — (Sm)nS'r — (UmS + tUmfl.I)nST _ Z (’;") U] U’ﬂ ]tn JSJ+7‘
j=0

S (VAU e S0 S (YULUL T

LS (AT U 33 (VUAULI Vi

=
=}
<

7=0 j=0
Then the proof follows. |
2.10. Corollary. Letm, r € Z with m # 0 and m # 1. If k* + 4t is not a perfect square,
then
T S n jrrn—j
Umn+r = _(_t) Z < ) (_U’m)JUm+J1Uj*T

— \ j

J
and

T . n jrrm—j
an+7‘ = (715) ( ) (*Um)]Um_,'_Jl‘/j_r.
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Proof. The proof follows from Lemma 2.8 and Theorem 2.9 by taking a = U,, and
b=tUn-1 ]

2.11. Corollary. V;? — (k* + 4t)U2 = 4(—t)" for every n € Z.
Proof. From Theorem 2.9, it follows that
det S™ = (det S)" = (—¢t)"
and
E? 4+ 4t)U?2

n_Vr?_(
det S" = 1

Then the proof follows. |

2.12. Theorem. Letn € N and m be a nonzero integer. Then

5]

21)  2Vmnir= > <2”j> UZVI=2 (12 4 4t)7V,+
=0
LEJ( n >U2j+1vn_2j—1(k2+4t)j+1U
o \2j+1)7m ’
and
" 1 3] n 2j1,n—2j 7.2 j
(22)  2"Umnir = 5 2 <2j> UV~ 2 (k° + 4t)’ U+

|2z ]
O
j=0

0 k%244t

Proof. Let K = S +tS~! = { 1 0

] . Then K% = (k? + 4t)’T and K¥ %! =
(k* + 4t)7 K. Since

™ = %(le + UnK),
it follows that

ST — (ST ST = (%(vmf +UnK)"S" = 2% ( 3 (?) UZngVTZL_j> S

j=0

and therefore

SRS

2]
n 2jy n—2j r2j gr n 2j+1yn—2j—1 pr2j+1 gr
2j> Uyl Vi S"+ <2j + 1> Uy Vi, S

7=0

n

> U2V (K +4t) S”

Il
—
Il 3
) o
— /NJ—\ /N
<o

n 2j+1yn=2-1(1.2 | 40T F Q"
+ . <2j+1>Um m (k" +4t)’KS
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Since

(k* + 40U, (k* + 40V,

- 2 2
kS = Vi (k* + 4t)U,

2 2

and
an+r (k2 + 4t)Umn+r
mn—+r __ 2 2
S B Umn+r an+7‘ ’
2 2

the proof follows.

2.13. Theorem.

(2.3) Um+n = UnUnt1 + tUnm—1Uy,

and

(2.4) (=) 'Um-n = Upn-1Up — UnUn—1

for every m, n € Z.

Proof. Let X = { llc 8 } . Then from Corollary 2.7, it follows that
U, tU, U, tU,
m4n __ myn __ m-+1 m n+1 n
Rt It | It

and

men :Xm(Xn)71 _ [ Um+1 tU’m :| I: Un+1 tUn :|1

Um tUmfl Un tUnfl
[ Upir U 1 tUn_1  —tUn
T Un tUmer | (0" | ~Un Ui |7

Then the proof follows.

217

d

Now we give some identities, which we will use later. All the given identities can be

shown by using the previously obtained formulae for S™ and X™.

) UnVig1 +tUn-1Vin = Vaim

) ViV — (K + 40U Uy = 2(—t)" Vin—n,

) UnVi = UnVi = 2(=t)"Upm—n

) VilVa = Vign + (=) Vin—n

) (B 44 UnUn = Vi — (=) Vinen

0) UnVi =Unin+ (=)"Un-n

2.11)  (=t)"Vi—n = U1V — Vos1Un

2.12)  ViVigo — Viiy = (—t)"(K* + 4t)

2.14. Theorem. Let m, n, r € Z with r # 0. Then
UpUnmintr = UnirUnir — (=) UpUp,
UrUmin—r = UnUp — (=) " Up— o Un —r,

and

UTUWH—TL = UmUn+'r - (7t)TUm—rUn-
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Proof. Take a = U[}H and consider A = [ Z kfa } with det A = —t. Then by

T

Corollary 2.3, we get

Uiy v bU
an [ alp + tUp_1 bUn ] _| o Tt "
cUn Unt1 = aln cUp Unt1 — Urtr Un
Ur
Using (2.3) and (2.4) we see that
M bU,,
An — UT T
cU, 7_(_t) Un—r
n Ur
. Ur+1 .
Since det A = —t and a = , it follows that
s
be — kU Urg1 +tUZ — U2y _ Ur(kUpy1 +tU;) — Uz,
- U? N U?
CUlUra = U2y —(=1)"
o U? N
by (2.4). If we consider the matrix multiplication A" A™ = A™*™ then we get the
result. O

2.15. Corollary. U, Up_, — U2 = —(—t)"fTUf for allm, r € Z.

Proof. Since det A = —t, det A™ = (det A)™ = (—t)". Moreover, since

_ 772
det A" = —(~t) T Baor o2 = (-t (—U"”U;};T U") = (-1)",

it can be seen that Uy Up_r — U2 = —(—t)"iTUf. O
2.16. Theorem. Let m, n, r € Z. Then

ViViintr = Vingr Vagr + (=) (k> + 48) U Uy,

ViVign—r = (k> + 40U Un 4 (=) Vi Vir—r,
and

‘/W‘Um-!—n = Unvm+r + (_t)rvn—rUnp

Proof. Take a = V‘T/'H and consider B = [ Z kga ] with det B = —t. Then by

r

Corollary 2.3, we get

N Vr+1

g _ [ Un +tUns bU, | Ty UnttUna bUn
= cUy, Unt1 —aU, | U, Ups1 — Vrt1 v,
Ve
Using (2.5) and (2.11) we see that
i n—+r
bU,
B =| "
cU, 7(—t)’"Vn,r
L Vi
Vr+1

Since det B = —t and a =

, it follows that

T
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ke + V2=V Ve(BVe + V) = ViR

be V2 - V2
ViV = V2L (C0)T (R +4t)
N V2 - V2
by (2.12). If we consider the matrix multiplication B*B™ = B™"" then we get the
result. |

2.17. Corollary. Vi Vii_r — (k* + 4) U2 = (=t)"""V;? for alln, r € Z.
Proof. Since det B = —t, det B" = (det B)"™ = (—t)". Moreover, since

2 2
rVn+r Vn—'r _chg _ (—t)T (Vn+rVn—r (k +4t)Un) — (_t)n

v, Vi iz V2

it can be seen that V4,V — (k2 + 4t)U3 = (ft)”frVrQ. O

det B" = (—t)

3. Sums and Congruences

Now we will give some sums containing generalized Fibonacci and Lucas numbers.
Then we will give some congruences concerning generalized Fibonacci and Lucas numbers.
Firstly, we will prove a lemma to use in the following theorems. It can be seen that

(3.1) " =a"V, — (="

and

(32)  o® =a"U,Vk? + 4t + (—t)"

by (1.2). Now we can give the following lemma.
3.1. Lemma.

(3.3) 8" =85"V, — (-t)"I

and

(3.4) S =U,KS" 4 (—t)"I

for every n € N, where K is as in Theorem 2.12.

Proof. Let Z[a] = {aac+b|a, beZ} and Z[S] = {aS+b|a, b€ Z}. We define a
function ¢ : Z[a] — Z[S], given by ¢(aa+b) = aS +bl. Then ¢ is ring homomorphism.
Moreover it is clear that ¢(a) = S and therefore we get p(a™) = (p(a))” = S™. Thus
from (3.1), we get

52 = (p(a))™ = p(a™) = p(a"Va — (=)") = 8"Va — (=1)" .
That is, $*" = S™V,, — (—t)"I. Also from (3.2), we get
5% = (p(@)™ = p(a”") = p(Un VK> +4ta” + (=1)") =
Un (\/k2 n 4t> S™ 4+ (—t)"1.
Since

2
o (VI 1) = p(20— k) =25 — kT = H e ] — K,

we get S%" = U, KS™ + (—t)"I. O
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3.2. Theorem. Let m,r € Z . Then

Usmntr = (—(=1)™)" Y @ VaUmjir(=(=)™) 7

3=0
and

Van-H" - (_(_t)m)n Z (?) Vr{Lij+T(_(_t)m)_j

Jj=0

for every n € N.

Proof. 1t is known that

(3.5) 8% =8"V,, — (=)™
by (3.3). Taking the n-th power of (3.5), we get
S = (ST Ve — ()" D) =Y <’;> VA(=(=t)") 5.
j=0

Multiplying both sides of this equation by S”, we obtain

n

ST = (— (=)™ (’;) VA(=(=t)™) 7 5mt

Jj=0

Thus it follows that

U2mn+r = (7(7t)m)n Z (?) VTJr‘lUmj+T(7(7t)m)7j
=0

and
myn = n 7 my—j
by Corollary 2.6. O

3.3. Corollary. Let k and t be integers. Then for all n,m € NU{0} and r € Z such
that mn+1r > 0 if t # +1, we get

Usmntr = (= (—=)™)"U, (mod Vi)
and
‘/Q'mn-!—r = (— (—t)m)”Vr (Il’lOd Vm)

3.4. Theorem. Let m, r € Z and m be nonzero integer. Then
15]

U2mn+r = (7t)mn <
0

J
2N L )
mn j ] m(—27—1
+(=t) (zj H)Umj+ Vamjimar D) (—t)™ 270
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and

1]
VVerH»’r _ (_t)mn ( n) U72n? V2mj+TDjt72mj

2

mn n . X g

+ (_t) Z <2J + 1) U'r2r‘17+1U2m]'+m+rD]+1(—t) (—2j—1)
J

or every n € N, where D = k? + 4t.
[ Y

Proof. It is known that
S*" = U KS™ + (=)™ 1
by (3.4). It is clear that

SanJr'r _ (UmKSm + (_t)ml)n ST — (?) U%Kj((_t)m)nfjsijrr.

j=0
On the other hand, it can be seen that K% = D] and K**! = D7 K. Therefore, we get

L3]
San+r _ (_t)mn Z <27:L]> UTanKth72ij2mj+'r
§=0

n—1

27 ]
SHSUNEDY <2jn+1>U’2"jHK2j“(t)m(2j1>52mj+m+r

Jj=

L3 " o o
= (" (m) U pigami gt
J

Jj=0
n

L5+
mn n 2541 j m(—2j—1) 2mj4+m-+r
+ (=t . U7 D (—t KS .
(=) ]E:O (2] +1> (=)

The proof follows from Corollary 2.6. (]

3.5. Corollary. Let k and t be integers. Then for all nym € N and r € Z such that
mn+r >0 ift#+1, we getl

U2mn+7‘ = (7t)mn Ur (mod Um)
and

V2mn+r = (7t)mn ‘[r (mod Um)
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