
Hacettepe Journal of Mathematics and Statistics
Volume 42 (2) (2013), 115 – 123

SOME INEQUALITIES RELATED TO

THE PRINGSHEIM, STATISTICAL AND

σ-CORES OF DOUBLE SEQUENCES
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Abstract

The statistical convergence of double sequences was presented by
Mursaleen-Edely and Tripathy in two ways, [10, 16]. The statistical
core of double sequences was introduced by Çakan- Altay, [1]. The
σ-convergence and σ-core of double sequences were defined by Çakan-
Altay-Mursaleen, [5]. In this paper, we will study some new inequal-
ities related to the Pringsheim, statistical and σ-cores of double se-
quences. To achieve this goal, we will characterize some classes of
four-dimensional matrices.
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1. Introduction

Let `∞ and c be the Banach spaces of real bounded and convergent sequences with
the usual supremum norm. Let σ be a one-to-one mapping from N, the set of natural
numbers, into itself. A continuous linear functional φ on `∞ is said to be an invariant
mean or a σ-mean if and only if

(i) φ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k,
(ii) φ(e) = 1, where e = (1, 1, 1, . . .),
(iii) φ(x) = φ(xσ(k)) for all x ∈ `∞.
Throughout this paper we consider the mapping σ having no finite orbits, that is

σp(k) 6= k for all positive integers k ≥ 0 and p ≥ 1, where σp(k) is pth iterate of σ at k.
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Thus, a σ-mean extends the limit functional on c in the sense that φ(x) = limx for all
x ∈ c, [9]. Consequently, c ⊂ Vσ where Vσ is the set of bounded sequences all of whose
σ-means are equal.

In the case σ(k) = k + 1, a σ-mean often called a Banach limit and Vσ is the set f of
almost convergent sequences, introduced by Lorentz, [6]. It can be shown [14] that

Vσ = {x ∈ `∞ : limp tpn(x) = s uniformly in n, s = σ − limx}

where

tpn(x) =
xn+xσ(n)+···+xσp(n)

p+1
, t−1,n(x) = 0.

We say that a bounded sequence x = (xk) is σ-convergent if and only if x ∈ Vσ.
We denote by Z the subset of Vσ consisting of all sequences with σ-limit zero. It is
well-known [14] that x ∈ `∞ if and only if (φ(x)− x) ∈ Z and Vσ = Z ⊕ Re.

A double sequence x = [xj,k]∞j,k=0 is said to be convergent to a number l in the
Pringsheim sense or P-convergent if for every ε > 0 there exists N ∈ N such that
|xj,k − l| < ε whenever j, k > N , [13]. In this case, we write P − limx = l. In what
follows, we will write [xj,k] in place of [xj,k]∞j,k=0. In [11], the concepts P -limit superior
and inferior were defined for a double sequence x and the Pringsheim core (P -core) of
such a sequence given as [P − lim inf x, P − lim supx].

A double sequence x is said to be bounded if there exists a positive number M such
that |xj,k| < M for all j, k, i.e., if

‖x‖ = sup
j,k
|xj,k| <∞.

Let `2∞ be the space of all real bounded double sequences. We should note that
in contrast to the case for single sequences, a convergent double sequence need not be
bounded. By c∞2 , we mean the space of all P-convergent and bounded double sequences.

Let A = [am,n,j,k]∞j,k=0 be a four dimensional infinite matrix of real numbers for all
m,n = 0, 1, . . . . The sums

∞∑
j=0

∞∑
k=0

am,n,j,kxj,k

are called the A-transforms of the double sequence x and denoted by Ax. We say that
a sequence x is A-summable to the limit s if the A-transform of x exists for all m,n =
0, 1, . . . and convergent in the Pringsheim sense, i.e.,

lim
p,q→∞

p∑
j=0

q∑
k=0

am,n,j,kxj,k = ym,n

and

lim
m,n→∞

ym,n = s.

We say that the matrix A = [am,n,j,k] is conservative if x ∈ c∞2 implies that Ax ∈ c∞2 .
In this case, we write A ∈ (c∞2 , c

∞
2 ). If A is conservative and P − limAx = P − limx for

all x ∈ c∞2 , we call the matrix A RH-regular and write A ∈ (c∞2 , c
∞
2 )reg.
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It is known [2] that A is conservative if and only if

P − lim
m,n

am,n,j,k = vj,k for each j, k;(1.1)

P − lim
m,n

∑
j

∑
k

am,n,j,k = v;(1.2)

P − lim
m,n

∑
j

|am,n,j,k| = vk for each k;(1.3)

P − lim
m,n

∑
k

|am,n,j,k| = vj for each j;(1.4)

P − lim
m,n

∑
j

∑
k

|am,n,j,k| exists;(1.5)

‖A‖ = sup
m,n

∑
j

∑
k

|am,n,j,k| <∞.(1.6)

It can be also seen [8, 15] that A is RH-regular if and only if (1.1) with vjk = 0, (1.2)
with v = 1, (1.3) and (1.4) with vk = vj = 0, and the conditions (1.5), (1.6), hold.

For a conservative matrix A, we can define the functional

Γ(A) = v −
∑
j

∑
k

vj,k.

In the case A is a RH-regular, Γ(A) = 1.
Let E ⊆ N × N and E(m,n) = {(j, k) : j ≤ m, k ≤ n}. Then, the double natural

density of E is defined by

δ2(E) = P − lim
m,n

|E(m,n)|
mn

if the limit on the right hand side exists; where the vertical bars denotes the cardinality
of the set E(m,n).

A real double sequence x = [xj,k] is said to be statistical (or briefly st-) convergent
[10, 16] to the number L if for every ε > 0, the set {(j, k) : |xj,k − L| > ε} has double
natural density zero. In this case, we write st2-limx = L. Let st2 be the space of all st-
convergent double sequences. Clearly, a convergent double sequence is also st-convergent
but the converse it is not true, in general. Also, note that a st-convergent double sequence
need not be bounded. For example, consider the sequence x = [xj,k] defined by

xj,k =

{
jk , if j and k are squares,
1 , otherwise.

(1.7)

Then, clearly st2 − limx = 1. Nevertheless x neither convergent nor bounded. The
st2 − lim sup and st2 − lim inf of a double sequence were introduced in [1] and also the
statistical core of a double sequence was defined by the closed interval [st2− lim sup, st2−
lim inf].

The σ-convergence of double sequences was introduced in [5] as follows:
A double sequence x = [xj,k] of real numbers is said to be σ-convergent to a limit l if

lim
p,q

1

(p+ 1)(q + 1)

p∑
s=0

q∑
t=0

xσs(j),σt(k) = l uniformly in j, k.

Also, the σ-core of double sequences was defined in the same paper as the closed interval
[−Cσ(−x), Cσ(x)], where

Cσ(x) = lim sup
p,q

sup
j,k

1

(p+ 1)(q + 1)

p∑
s=0

q∑
t=0

xσs(j),σt(k).
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let V 2
σ be the space of all bounded and σ-convergent double sequences and Z2

σ ⊂ V 2
σ be

the space of all sequences with σ-limit zero.
Some concepts related to the single sequences were extended to the double sequences.

For example, we can refer [1, 2, 3, 5, 7, 12, 17, 18] and some others.
In this paper, we will study some new inequalities related to the Pringsheim, statistical

and σ-cores of double sequences. To achieve this goal, we also characterize some classes
of four-dimensional matrices in the following lemmas.

2. Lemmas

First of all, we shall quote some known results.

2.1. Lemma. [4, Th. 2.1] A ∈ (`2∞, Z
2
σ) if and only if (1.6) holds and

lim
p,q→∞

α(p, q, j, k, s, t) = 0 for each j, k,(2.1)

lim
p,q→∞

∑
j

∣∣α(p, q, j, k, s, t)| = 0 for each k,(2.2)

lim
p,q→∞

∑
k

∣∣α(p, q, j, k, s, t)| = 0 for each j,(2.3)

lim
p,q→∞

∑
j

∑
k

∣∣α(p, q, j, k, s, t)| = 0,(2.4)

where the limits are uniformly in s, t and

α(p, q, j, k, s, t) =
1

(p+ 1)(q + 1)

p∑
m=0

q∑
n=0

aσm(s),σn(t),j,k.

2.2. Lemma. [3, Th. 2.1] A ∈ (c∞2 , V
2
σ )reg if and only if (1.6), (2.1), (2.2), (2.3) hold

and

lim
p,q→∞

∑
j

∑
k

α(p, q, j, k, s, t) = 1,(2.5)

lim
p,q→∞

∑
j

∑
k

∣∣α(p, q, j, k, s, t)| exists,(2.6)

where the limits are uniformly in s, t.

One can prove that A ∈ (c∞2 , V
2
σ ) if and only if the conditions (1.6), (2.2), (2.3, (2.6)

hold and

lim
p,q→∞

α(p, q, j, k, s, t) = ujk

lim
p,q→∞

∑
j

∑
k

α(p, q, j, k, s, t) = u

uniformly in s, t. If A ∈ (c∞2 , V
2
σ ), we can define the functional

Γσ(A) = u−
∑
j

∑
k

uj,k.

Note that in the case A ∈ (c∞2 , V
2
σ )reg, Γσ(A) = 1.

The class of matrices (V 2
σ , c
∞
2 )reg was characterized in Theorem 3.3 of [5]. A little

generalization of that result is:
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2.3. Lemma. A ∈ (V 2
σ , c
∞
2 ) if and only if A is RH-conservative and

P − lim
m,n

∑
j

∑
k

|∆10| = 0,(2.7)

P − lim
m,n

∑
j

∑
k

|∆01| = 0,(2.8)

where ∆10 = am,n,j,k−am,n,σ(j),k−vj,k+vσ(j),k and ∆01 = am,n,j,k−am,n,j,σ(k)−vj,k+
vj,σ(k).

2.4. Lemma. [2, Lemma 2.1] Let A be matrix such that the conditions (1.6), (1.1) with
vj,k = 0, (1.3) with vk = 0 and (1.4) with vj = 0 hold. Then, for any y ∈ `2∞ such that
‖y‖ ≤ 1 we have

P − lim sup
m,n

∑
j

∑
k

am,n,j,kyj,k = P − lim sup
m,n

∑
j

∑
k

|am,n,j,k|.(2.9)

2.5. Lemma. [2, Lemma 2.2] Let A = [am,n,j,k] be RH-conservative and λ ∈ R+. Then,

P − lim sup
m,n

∑
j

∑
k

|am,n,j,k − vj,k| ≤ λ(2.10)

if and only if

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)+ ≤ λ+ Γ(A)

2

and

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)− ≤ λ− Γ(A)

2
;

where for any γ ∈ R, γ+ = max{0, γ} and γ− = max{−γ, 0}.

2.6. Lemma. [2, Th. 2.3] Let A = [am,n,j,k] be RH-conservative. Then, for some
constant λ ≥ |Γ(A)| and for all x ∈ `2∞, one has

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)xj,k ≤
λ+ Γ(A)

2
L(x)− λ− Γ(A)

2
l(x)(2.11)

if and only if (2.10) holds.

2.7. Lemma. A ∈ (st2 ∩ `2∞, V 2
σ ) if and only if A ∈ (c∞2 , V

2
σ ) and

lim
p,q→∞

∑
j∈E

∑
k∈E

∣∣α(p, q, j, k, s, t)− uj,k| = 0(2.12)

for every E ⊆ N× N with δ2(E) = 0.

Proof. Let A ∈ (st2 ∩ `2∞, V 2
σ ). Then, since c∞2 ⊂ st2 ∩ `2∞, A ∈ (c∞2 , V

2
σ ). Now, let us

define a sequence z = [zj,k] by using a sequence x = [xj,k] ∈ `2∞ as follows

zj,k =

{
xj,k , if j, k ∈ E,

0 , otherwise

where E ⊆ N× N with δ2(E) = 0. Then, it is clear that z ∈ st2 and st2 − lim z = 0. So,
by the assumption, Az ∈ Z2

σ. On the other hand, since

Az =
∑
j

∑
k

am,n,j,kxj,k,
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the matrix B = [bm,n,j,k] defined by, for all m,n ∈ N,

bm,n,j,k =

{
am,n,j,k − uj,k , if j, k ∈ E,

0 , otherwise

is in the class (`2∞, Z
2
σ). Thus, the condition (2.12) follows from Lemma 2.1.

To the sufficiency, suppose that A ∈ (c∞2 , V
2
σ ) and the condition (2.12) holds. Choose

a sequence x ∈ st2∩`2∞ with st2−limx = L, say. Then, for any ε > 0, δ2(E) = δ2({(j, k) :
|xj,k − L| > ε}) = 0 and |xj,k − L| ≤ ε whenever j, k 6= E. Now, we can write∑

j

∑
k

am,n,j,kxj,k =
∑
j

∑
k

am,n,j,k(xj,k − L) + L
∑
j

∑
k

am,n,j,k.

Since A ∈ (c∞2 , V
2
σ ), by Lemma 2.2

σ − lim
∑
j

∑
k

am,n,j,kxj,k = P − lim
p,q

∑
j

∑
k

α(p, q, j, k, s, t)xj,k

= P − lim
p,q

∑
j

∑
k

α(p, q, j, k, s, t)(xj,k − L) + Lα.

On the other hand, since∣∣∣∑
j

∑
k

α(p, q, j, k, s, t)(xj,k − L)−
∑
j

∑
k

vj,k(xj,k − L)
∣∣∣

=
∣∣∣∑
j

∑
k

[α(p, q, j, k, s, t)− vj,k](xj,k − L)
∣∣∣

≤ ‖xj,k − L‖
∑
j,k∈E

|α(p, q, j, k, s, t)− vj,k|+ ε‖A‖,

from (2.12) we get that

lim
p,q

∑
j

∑
k

α(p, q, j, k, s, t)(xj,k − L) =
∑
j

∑
k

vj,k(xj,k − L).

This completes the proof. �

3. The Main Results

3.1. Theorem. Let A = [am,n,j,k] be RH-conservative. Then, for some constant λ ≥
|Γ(A)| and for all x ∈ `2∞, we have

(3.1) P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)xj,k ≤

λ+ Γ(A)

2
Cσ(x) +

λ+ Γ(A)

2
Cσ(−x)

if and only if (2.7), (2.8) and (2.10) hold.

Proof. Firstly, let (3.1) holds. Then, since Cσ(x) ≤ L(x) and Cσ(−x) ≤ −l(x) for all
x ∈ `2∞, the necessity of (2.10) follows from Lemma 2.6. Now, for all m,n, j, k ∈ N, define
a matrix B = [bm,n,j,k] by bm,n,j,k = am,n,j,k−vj,k and then a matrix C = [cm,n,j,k] with
cmnjk = (bm,n,j,k− bm,n,σ(j),k). Then, C satisfies the hypothesis of Lemma 2.4. Hence, for

a y ∈ `2∞ such that ‖y‖ ≤ 1, we have (2.9) with cm,n,j,k in place of am,n,j,k. Also, for the
same y, as in Theorem 3.3 in [5] we can write∑

j

∑
k

cm,n,j,kyσ(j),k =
∑
j

∑
k

bm,n,j,k(yj,k − yσ(j),k).(3.2)
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So, we have from (3.1) that

P − lim sup
m,n

∑
j

∑
k

|cm,n,j,k| = P − lim sup
m,n

∑
j

∑
k

bm,n,j,k(yj,k − yσ(j),k)

≤ λ+ Γ(A)

2
Cσ(yj,k − yσ(j),k) +

λ+ Γ(A)

2
Cσ(yσ(j),k − yj,k).

Since (yj,k − yσ(j),k) ∈ Z2
σ, we get the necessity of (2.7). By the same argument one can

prove the necessity of (2.8).
Conversely, suppose that (2.7), (2.8) and (2.10) hold. For any x ∈ `2∞, let us write

again (3.2). Since (xj,k − xσ(j),k) ∈ Z2
σ,

P − lim
m,n

∑
j

∑
k

bm,n,j,k(xj,k − xσ(j),k) = 0.

Thus, by taking infimum over z ∈ Z2
σ in (2.11), we get that

inf
z∈Z2

σ

{
P − lim sup

m,n

∑
j

∑
k

bm,n,j,k(xj,k + zj,k)
}
≤ λ+ Γ(A)

2
inf
z∈Z2

σ

L(x+ z)−

λ− Γ(A)

2
inf
z∈Z2

σ

l(x+ z) =
λ+ Γ(A)

2
Wp(x) +

λ− Γ(A)

2
Wp(−x).

On the other hand, since P − limBz = 0 for z ∈ Z2
σ,

inf
z∈Z2

σ

{
P−lim sup

m,n

∑
j

∑
k

bm,n,j,k(xj,k+zj,k)
}
≥ P−lim sup

m,n

∑
j

∑
k

bm,n,j,kxj,k+

inf
z∈Z2

σ

{
P − lim sup

m,n

∑
j

∑
k

bm,n,j,kzj,k
}

= P − lim sup
m,n

∑
j

∑
k

bm,n,j,kxj,k.

Where B is as in the part of necessity. Since Wp(x) = Cσ(x) for all x ∈ `2∞ (see [5]), we
conclude that (3.1) holds and the proof is completed. �

In the case Γ(A) > 0 and λ = Γ(A), we have the following result.

3.2. Theorem. Let A be RH-conservative and x ∈ `2∞. Then,

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)xj,k ≤ Γ(A)Cσ(x)

if and only if (2.7), (2.8) hold and

P − lim sup
m,n

∑
j

∑
k

|am,n,j,k − vj,k| = Γ(A).(3.3)

We should state that in the case σ(n) = n + 1, Theorems 3.1-3.2 reduces to the
Theorems 2.5-2.6 in [2].

3.3. Theorem. Let A = [am,n,j,k] be RH-conservative. Then, for some constant λ ≥
|Γ(A)| and for all x ∈ `2∞, one has

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)xjk ≤
λ+ Γ(A)

2
β(x) +

λ+ Γ(A)

2
α(−x)(3.4)

if and only if (2.10) holds and

P − lim sup
m,n

∑
j∈E

∑
k∈E

|am,n,j,k − vj,k| = 0(3.5)

for every E ∈ N × N with δ2(E) = 0, where β(x) = st2 − lim supx and α(x) = st2 −
lim inf x.
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Proof. Let (3.4) holds. Since β(x) ≤ L(x) and α(−x) ≤ −l(x) (see [1]), we get the
necessity of (2.10) from Lemma 2.6. Now, for any E ∈ N × N with δ2(E) = 0, let us
define a matrix D = [dm,n,j,k] by

dm,n,j,k =

{
am,n,j,k − vj,k , if j, k ∈ E,

0 , otherwise;

for all j, k,m, n ∈ N. Then, the matrix D satisfies the conditions of Lemma 2.4. For the
same E, let us choose a sequence (yj,k) as follows:

yj,k =

{
1 , if j, k ∈ N,
0 , otherwise.

(3.6)

Then, since st2 − lim y = β(y) = α(y) = 0, from (3.4) we get that

P − lim sup
m,n

∑
j∈E

∑
k∈E

|am,n,j,k − vj,k| ≤
λ+ Γ(A)

2
β(x) +

λ+ Γ(A)

2
α(−x) = 0.

Conversely, suppose that (2.10) and (3.5) hold. Let E1 = {(j, k) : xj,k > β(x) + ε}
and E2 = {(j, k) : xj,k < α(x) − ε}. Then, since δ2(E1) = δ2(E2) = 0 (see [1]),
δ2(E) = δ2(E1 ∩ E2) = 0. Now, we can write

(3.7)
∑
j

∑
k

(am,n,j,k − vj,k)xj,k =
∑
j∈E

∑
k∈E

(am,n,j,k − vj,k)xj,k+

∑
j /∈E

∑
k/∈E

(am,n,j,k − vj,k)+xj,k −
∑
j /∈E

∑
k/∈E

(am,n,j,k − vj,k)−xj,k.

Now, by (3.5), one can see that the first sum on the right hand side of (3.7) goes to zero.
So, from Lemma 2.5 we have (3.4) and the proof is completed. �

In the case Γ(A) > 0 and λ = Γ(A), we have the following result.

3.4. Theorem. Let A be RH-conservative and x ∈ `2∞. Then,

P − lim sup
m,n

∑
j

∑
k

(am,n,j,k − vj,k)xj,k ≤ Γ(A)β(x)

if and only if (3.3) and (3.5) hold.

Here, we should note that when A is RH-regular, Theorem 3.4 reduced to the Theorem
3.4 in [1].

3.5. Theorem. Let A ∈ (c∞2 , V
2
σ ). Then, for some constant λ ≥ |Γσ(A)| and for all

x ∈ `2∞, one has

(3.8) P − lim sup
p,q

sup
s,t

∑
j

∑
k

(α(p, q, j, k, s, t)− uj,k)xj,k ≤

λ+ Γσ(A)

2
β(x) +

λ+ Γσ(A)

2
α(−x)

(2.12) hold and

P − lim sup
p,q

sup
s,t

∑
j

∑
k

|α(p, q, j, k, s, t)− uj,k| ≤ λ.(3.9)

Proof. Let us define a matrix B = [bm,n,j,k] by bm,n,j,k = (α(p, q, j, k, s, t)− uj,k). Then,
since A ∈ (c∞2 , V

2
σ ), the matrix B satisfies the hypothesis of Lemma 2.4. So, for a y ∈ `2∞

such that ‖y‖ ≤ 1, we have (2.9) with bm,n,j,k in place of am,n,j,k. Now, by choosing
the sequence y = (yj,k) in (3.6) for which st2 − lim y = 0 we get the necessity of (3.9)
from (3.8). On the other hand, the necessity of (2.12) can be obtained easily by using
the same method for the necessity of (3.5).
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Conversely, let us choose again the set E in Theorem 3.3 and write (3.7) with bm,n,j,k
in place of am,n,j,k, where bm,n,j,k is as above. Then, the proof can be seen by the same
reasons for the sufficiency of Theorem 3.3. �
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