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Abstract

In this paper, some new oscillation criteria are obtained for the second-
order quasi-linear neutral delay differential equation(

r(t)|
(
x(t) + p(t)x(τ(t))

)′|α−1(x(t) + p(t)x(τ(t))
)′)′

+

f
(
t, x(σ(t))

)
= 0, t ≥ t0

under the case when
∫∞
t0

1

r
1
α (t)

dt <∞. Our results improve and supple-

ment some known results in the literature. An example is also provided
to illustrate the main results.
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1. Introduction

This paper is concerned with the oscillation problem of the second-order quasi-linear
neutral delay differential equation

(1.1)
(
r(t)|z′(t)|α−1z′(t)

)′
+ f

(
t, x(σ(t))

)
= 0, t ≥ t0,

where z(t) = x(t) + p(t)x(τ(t)) and α > 0 is a constant.
Throughout this paper, we will assume that the following conditions hold.
(A1) r ∈ C1([t0,∞),R), r(t) > 0, p ∈ C([t0,∞),R) and 0 ≤ p(t) ≤ p1 < 1;
(A2) τ ∈ C([t0,∞),R), τ(t) ≤ t, limt→∞ τ(t) = ∞, σ ∈ C1([t0,∞),R), σ(t) ≤ t,

σ′(t) > 0 and limt→∞ σ(t) =∞;
(A3) f(t, u) ∈ C([t0,∞) × R,R), and there exists a function q ∈ C

(
[t0,∞), [0,∞)

)
such that q(t) is not identically zero on any ray of the form [tx,∞) for any t∗ ≥ t0 and

f(t, u)sgn u ≥ q(t)|u|α, for u 6= 0 and t ≥ t0.
By a solution of (1.1), we mean a function x ∈ C([Tx,∞),R) for some Tx ≥ t0 which

has the property that r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),R) and satisfies (1.1) on [Tx,∞).
As is customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros
on [t0,∞), otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory
if all of its nonconstant solutions are oscillatory.

We note that neutral delay differential equations find numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high speed computers where the lossless
transmission lines are used to interconnect switching circuits; see Hale [1].

In the last few years, many studies have been made on the oscillatory behavior of
solutions of differential equations, we refer to the recent papers [2–21] and the references
cited therein.

Agarwal et al. [2], Chern et al. [3], Džurina and Stavroulakis [4], Kusano et al. [5, 6]
and Mirzov [7] observed some similar properties between

(1.2)
(
r(t)|x′(t)|α−1x′(t)

)′
+ q(t)|x[σ(t)]|α−1x[σ(t)] = 0, t ≥ t0

and the corresponding linear equation(
r(t)x′(t)

)′
+ q(t)x(t) = 0, t ≥ t0.

Very recently, Džurina and Hudáková [8], Bacuĺıková and Lacková [9], Liu and Bai [11],
Xu and Meng [12], Dong [13] and Ye and Xu [14] established some oscillation criteria for
(1.2) with neutral term under the condition when∫ ∞

t0

1

r
1
α (t)

dt =∞.

Especially, [12] obtained some sufficient conditions which guarantee that every solution
of

(1.3)
(
r(t)

∣∣(x(t) + p(t)x(τ(t))
)′∣∣α−1(

x(t) + p(t)x(τ(t))
)′)′

+ q(t)|x(σ(t))|α−1x(σ(t)) = 0, t ≥ t0

is either oscillatory or tends to zero for the case when

(1.4)

∫ ∞
t0

1

r
1
α (t)

dt <∞.

Han et al. [15] found a mistake in [14]. In order to correct the mistake, they examined
the oscillation of (1.1) for the case when (1.4), τ(t) = t − τ, p′(t) ≥ 0 and σ(t) ≤ t − τ.
Obviously, τ(t) = t − τ, p′(t) ≥ 0 and σ(t) ≤ t − τ are restrictions. To the best of our
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knowledge, there are no results which ensure that every solution of (1.1) oscillates under
the case when p′(t) ≤ 0.

Motivated by the papers [9, 12, 14, 15], the aim of this paper is to further study
the oscillation of (1.1). We establish some new criteria and our results improve and
complement those results obtained in [12, 15].

In what follows, all functional inequalities considered in this paper are assumed to
hold eventually, that is they are satisfied for all sufficiently large t.

2. Oscillation criteria

In this section, we will derive some oscillation criteria for (1.1). For the sake of
convenience, we let

π(t) :=

∫ ∞
t

1

r
1
α (s)

ds and d+(t) := max{0, d(t)}.

2.1. Theorem. Suppose that (1.4) holds and there exists a constant k > 0 such that
p(t) ≤ kπ(t). Moreover, assume that there exists a real-valued function ρ ∈ C1

(
[t0,∞), (0,∞)

)
such that

(2.1) lim sup
t→∞

∫ t

t0

[
ρ(s)q(s)

(
1− p(σ(s))

)α
− 1

(α+ 1)α+1

r(σ(s))((ρ′(s))+)α+1

ρα(s)(σ′(s))α

]
ds = ∞.

If

(2.2) lim sup
t→∞

∫ t

t0

[
Kq(s)πα(σ(s))πα(s)−

(
α

α+ 1

)α+1
1

π(s)r
1
α (s)

]
ds =∞

holds for all constants K > 0, then every solution of (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for all
t ≥ t1. Then z(t) ≥ x(t) > 0 for t ≥ t1 and it follows from (1.1) that

(2.3)
(
r(t)|z′(t)|α−1z′(t)

)′ ≤ −q(t)xα(σ(t)) ≤ 0.

Thus, r(t)|z′(t)|α−1z′(t) is a nonincreasing function. Now we have two possible cases for
z′(t) : (i) z′(t) > 0 eventually, (ii) z′(t) < 0 eventually.

(i) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. Then, proceeding as in the proof of
Theorem 2.1 in [14], we can get a contradiction to (2.1).

(ii) Assume that z′(t) < 0 for t ≥ t2 ≥ t1. We define the function ω by

(2.4) ω(t) =
r(t)(−z′(t))α−1z′(t)

zα(t)
, t ≥ t1.

Then ω(t) < 0 for t ≥ t1. Noting (r(t)|z′(t)|α−1z′(t))′ ≤ 0, then r(t)|z′(t)|α−1z′(t) is
nonincreasing and

(2.5) z′(s) ≤ r
1
α (t)

r
1
α (s)

z′(t), s ≥ t.

Integrating (2.5) from t to l, we get

z(l) ≤ z(t) + r
1
α (t)z′(t)

∫ l

t

ds

r
1
α (s)

, l ≥ t.
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Letting l → ∞ in the above inequality and using limt→∞ z(t) = c ≥ 0 (c is finite), we
obtain

(2.6) z(t) + r
1
α (t)z′(t)π(t) ≥ c.

From (2.4) and (2.6), we have

(2.7) ω(t)πα(t) ≥ −1.

On the other hand, from (2.3), we see that there exists a constant c1 > 0, such that

(2.8) −r
1
α (t)z′(t) ≥ c1.

Substituting (2.8) into (2.6), we obtain

(2.9) z(t) ≥ c1π(t) + c.

If limt→∞ z(t) = 0, then limt→∞ x(t) = 0 due to 0 < x(t) ≤ z(t). Thus, for ε = c1/(2k),
we have x(τ(t)) < c1/(2k). So

(2.10) x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− c1
2k
p(t) ≥ c1π(t)− c1

2k
p(t) ≥ c1

2
π(t).

If limt→∞ z(t) = c > 0, then for any ε > 0, we have c + ε > z(t) > c. Pick 0 < ε <
(c(1− p1))/p1. Then from the definition of z and (2.9), we get

(2.11) x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− p1(c+ ε) ≥ mz(t) ≥ mc1π(t),

where

m =
c− p1(c+ ε)

c+ ε
> 0.

It follows from (2.10) and (2.11) that there exists a constant M > 0 such that

(2.12) x(t) ≥Mπ(t).

Now, differentiating (2.4), we see that

ω′(t) =
(r(t)(−z′(t))α−1z′(t))′zα(t)− αr(t)(−z′(t))α−1z′(t)zα−1(t)z′(t)

z2α(t)
.

From the above equality and (2.3), we have

(2.13) ω′(t) ≤ −q(t)x
α(σ(t))

zα(t)
− αr(t)(−z′(t))α−1z′(t)zα−1(t)z′(t)

z2α(t)
.

Note that z′(t) < 0. Then there exists a constant M1 > 0 such that z(t) ≤ M1. Thus
from (2.4), (2.12) and (2.13) we obtain

(2.14) ω′(t) +

(
M

M1

)α
q(t)πα(σ(t)) +

α

r
1
α (t)

(−ω(t))
α+1
α ≤ 0, t ≥ t3 ≥ t2.

Multiplying (2.14) by πα(t) and integrating it from t3 to t yields

(2.15) πα(t)ω(t)− πα(t3)ω(t3) + α

∫ t

t3

r−
1
α (s)πα−1(s)ω(s)ds+(

M

M1

)α ∫ t

t3

q(s)πα(σ(s))πα(s)ds+ α

∫ t

t3

πα(s)

r
1
α (s)

(−ω(s))
α+1
α ds ≤ 0.

Set p = (α+ 1)/α, q = α+ 1, and

a = −(α+ 1)
α

α+1 π
α2

α+1 (t)ω(t), b =
α

(α+ 1)
α

α+1
π−

1
α+1 (t).
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Using Young’s inequality

|ab| ≤ 1

p
|a|p +

1

q
|b|q, a, b ∈ R, p > 1, q > 1,

1

p
+

1

q
= 1,

we get

−απα−1(t)ω(t) ≤ απα(t)(−ω(t))
α+1
α +

(
α

α+ 1

)α+1
1

π(t)
.

Therefore, we have

−απ
α−1(t)ω(t)

r
1
α (t)

≤ απ
α(t)(−ω(t))

α+1
α

r
1
α (t)

+

(
α

α+ 1

)α+1
1

π(t)r
1
α (t)

.

It follows from the last inequality and (2.15) that

(2.16)

∫ t

t3

[(
M

M1

)α
q(s)πα(σ(s))πα(s)−

(
α

α+ 1

)α+1
1

π(s)r
1
α (s)

]
ds ≤

πα(t3)ω(t3) − πα(t)ω(t) ≤ πα(t3)ω(t3) + 1

due to (2.7), which contradicts (2.2). This completes the proof.
Now, we will give a criterion which insure that every solution x of (1.1) is oscillatory

or satisfies limt→∞ x(t) = 0.

2.2. Theorem. Suppose that (1.4) holds. Further, assume that there exists a real-valued
function ρ ∈ C1

(
[t0,∞), (0,∞)

)
such that (2.1) holds. If

(2.17) lim sup
t→∞

∫ t

t0

[
Kq(s)πα(s)−

(
α

α+ 1

)α+1
1

π(s)r
1
α (s)

]
ds =∞

holds for all constants K > 0, then every solution of (1.1) is oscillatory or satisfies
limt→∞ x(t) = 0.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for all
t ≥ t1. Then z(t) ≥ x(t) > 0 for t ≥ t1. In view of (1.1), we get (2.3) and there exist two
possible cases of the sign of z′(t).

(i) Assume that z′(t) > 0 for t ≥ t2 ≥ t1. Then, proceeding as in the proof of
Theorem 2.1 in [14], we can get a contradiction to (2.1).

(ii) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. We define the function ω as in (2.4), then
we obtain (2.5)–(2.7) and (2.13). Obviously, limt→∞ z(t) = c ≥ 0, where c is finite. If
limt→∞ z(t) = 0, then limt→∞ x(t) = 0 due to 0 < x(t) ≤ z(t). If limt→∞ z(t) = c > 0,
proceeding as in the proof of Theorem 2.1, we can get (2.11). That is, there exists a
constant m > 0 such that x(t) ≥ mz(t). Thus

xα(σ(t))

zα(t)
=
xα(σ(t))

zα(σ(t))

zα(σ(t))

zα(t)
≥ mα.

It follows from the above inequality, (2.4) and (2.13) that

ω′(t) +mαq(t) +
α

r
1
α (t)

(−ω(t))
α+1
α ≤ 0, t ≥ t3 ≥ t2.

The rest of the proof is similar to that of Theorem 2.1, and so is omitted. The proof is
complete.

Next, we will establish another oscillation criterion for (1.1).
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2.3. Theorem. Assume that (1.4) holds and there exists a constant k > 0 such that
p(t) ≤ kπ(t). Furthermore, assume that there exists a function ρ ∈ C1

(
[t0,∞), (0,∞)

)
such that (2.1) holds. If

(2.18)

∫ ∞
t0

1

r
1
α (v)

[∫ v

t0

q(u)πα(σ(u))du

] 1
α

dv =∞,

then every solution of (1.1) is oscillatory.

Proof. Assume the converse. Let x be a nonoscillatory solution of (1.1). Without
loss of generality we may assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0
and x(σ(t)) > 0 for t ≥ t1. Then z(t) ≥ x(t) > 0 for t ≥ t1. Similar to the proof of
Theorem 2.1 we have (2.3) and there exist two possible cases of the sign of z′(t).

If z′(t) > 0 for t ≥ t2 ≥ t1, then we back to the proof of Theorem 2.1 in [14], and we
can get a contradiction to (2.1).

If z′(t) < 0 for t ≥ t2 ≥ t1, proceeding as in the proof of Theorem 2.1, we obtain
(2.12) for some constant M > 0. Hence, from (2.3) and (2.12), we have

(r(t)(−z′(t))α)′ ≥ q(t)xα(σ(t)) ≥Mαq(t)πα(σ(t)).

Integrating the above inequality from t3 (t3 ≥ t2) to t, we get

(2.19) r(t)(−z′(t))α ≥ r(t3)(−z′(t3))α +Mα

∫ t

t3

q(u)πα(σ(u))du ≥

Mα

∫ t

t3

q(u)πα(σ(u))du.

Integrating the last inequality from t3 to t, we obtain

z(t3)− z(t) ≥M
∫ t

t3

1

r
1
α (v)

[∫ v

t3

q(u)πα(σ(u))du

] 1
α

dv,

which contradicts (2.18). This completes the proof.
In the following, we obtain a sufficient condition which guarantee that every solution

x of (1.1) oscillates or satisfies limt→∞ x(t) = 0.

2.4. Theorem. Assume that (1.4) holds. Moreover, assume that there exists a function
ρ ∈ C1

(
[t0,∞), (0,∞)

)
such that (2.1) holds. If

(2.20)

∫ ∞
t0

1

r
1
α (v)

[∫ v

t0

q(u)du

] 1
α

dv =∞,

then every solution of (1.1) is oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for all
t ≥ t1. Then z(t) ≥ x(t) > 0 for t ≥ t1. In view of (1.1), we get (2.3) and there exist two
possible cases of the sign of z′(t).

(i) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. Then, proceeding as in the proof of
Theorem 2.1 in [14], we can get a contradiction to (2.1).

(ii) Assume that z′(t) < 0 for t ≥ t2 ≥ t1. Clearly, limt→∞ z(t) = c ≥ 0, where c is
finite. If limt→∞ z(t) = 0, then limt→∞ x(t) = 0 due to 0 < x(t) ≤ z(t). If limt→∞ z(t) =
c > 0, proceed as in the proof of Theorem 2.1, we can get (2.11). That is, there exists a
constant m > 0 such that x(t) ≥ mz(t). Note that z(t) ≥ c > 0. From (2.3) and (2.11),
we obtain

(r(t)(−z′(t))α)′ ≥ q(t)xα(σ(t)) ≥ (mc)αq(t).



Oscillation results for second-order quasi-linear neutral delay differential equations 137

The rest of the proof is similar to that of Theorem 2.3, and so is omitted. The proof is
complete.

3. Applications

In this section, we shall give some applications to illustrate our results.
In 2006, Xu and Meng [12] studied (1.3) and obtain some oscillatory criteria. For

example

3.1. Theorem. [12, Theorem 2.3] Assume that (1.4) holds, 0 ≤ p(t) < 1, p′(t) ≥ 0,
limt→∞ p(t) = A. Further, assume that there exists a function ξ ∈ C1

(
[t0,∞), (0,∞)

)
such that ξ′(t) ≥ 0 and∫ ∞( 1

r(t)ξ(t)

∫ t

ξ(s)q(s)ds

) 1
α

dt =∞.

If (2.1) holds for ρ(t) =
∫ t
t0

(
1/(r1/α(s))

)
ds, then every solution of (1.3) is oscillatory

or satisfies limt→∞ x(t) = 0.

Clearly, when 0 ≤ p(t) ≤ p1 < 1, Theorem 2.4 improves results of [12, Theorem 2.3],
since we remove the conditions τ(t) = t− τ, p′(t) ≥ 0 and limt→∞ p(t) = A.

In the following, we will give an example to illustrate our results.
Example 3.1 Consider the equation

(3.1)
(
t2
(
x(t) +

γ

t
x(τ(t))

)′)′
+ βσ(t)x(σ(t)) = 0, t ≥ 1,

where γ > 0 and β > 0 are constants.
Let t0 = 1, α = 1, r(t) = t2, p(t) = γ/t and q(t) = βσ(t). Then π(t) = 1/t and∫ ∞

1

1

r
1
α (v)

[∫ v

1

q(u)πα(σ(u))du

] 1
α

dv =∞.

Furthermore, let ρ(t) = 1. Then∫ ∞
t0

[
ρ(s)q(s)

(
1− p(σ(s))

)α − 1

(α+ 1)α+1

r(σ(s))((ρ′(s))+)α+1

ρα(s)(σ′(s))α

]
ds ≥∫ ∞

t0

β(1 − p1)σ(s)ds = ∞,

and

lim sup
t→∞

∫ t

t0

[
Kq(s)πα(σ(s))πα(s)−

(
α

α+ 1

)α+1
1

π(s)r
1
α (s)

]
ds =∞,

when Kβ > 1/4. Hence, by Theorems 2.1 and 2.3, equation (3.1) is oscillatory.

3.2. Remark. One can easily see that Theorem 2.1 and Theorem 2.3 complement the
results given in [15]. It is also interesting to further study equation (1.1) for the case when
(1.4), since there are unknown results, e.g., when p(t) > kπ(t), k is a positive constant.
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[10] B. Bacuĺıková, J. Džurina, Oscillation of third-order neutral differential equations, Math.
Comput. Modelling 52, 215–226, 2010.

[11] L. Liu, Y. Bai, New oscillation criteria for second-order nonlinear neutral delay differential

equations, J. Comput. Math. Appl. 231, 657–663, 2009.
[12] R. Xu, F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay

differential equations, Appl. Math. Comput. 182, 797–803, 2006.
[13] J. G. Dong, Oscillation behavior of second order nonlinear neutral differential equations

with deviating arguments, Comput. Math. Appl. 59, 3710–3717, 2010.

[14] L. H. Ye, Z. T. Xu, Oscillation criteria for second-order quasilinear neutral delay differential
equations, Appl. Math. Comput. 207, 388–396, 2009.

[15] Z. Han, T. Li, S. Sun, Y. Sun, Remarks on the paper [Appl. Math. Comput. 207 (2009)

388–396], Appl. Math. Comput. 215, 3998–4007, 2010.
[16] Z. Han, T. Li, S. Sun, W. Chen, On the oscillation of second-order neutral delay differential

equations, Adv. Differ. Equ. 2010, 1–8, 2010.

[17] Z. Han, T. Li, S. Sun, W. Chen, Oscillation criteria for second-order nonlinear neutral
delay differential equations, Adv. Differ. Equ. 2010, 1–23, 2010.

[18] T. Li, Z. Han, P. Zhao, S. Sun, Oscillation of even-order neutral delay differential equations,

Adv. Differ. Equ. 2010, 1–9, 2010.
[19] Z. Han, T. Li, S. Sun, W. Chen, Oscillation of second order quasilinear neutral delay

differential equations, J. Appl. Math. Comput. 40, 143–152, 2012.

[20] T. Li, Z. Han, C. Zhang, S. Sun, On the oscillation of second-order Emden-Fowler neutral
differential equations, J. Appl. Math. Comput. 37, 601–610, 2011.

[21] S. Sun, T. Li, Z. Han, Y. Sun, Oscillation of second-order neutral functional differential
equations with mixed nonlinearities, Abstr. Appl. Anal. 2011 1–15, 2011.


