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Abstract

In this paper we find a general approach to find closed forms of sums
of products of arbitrary sequences satisfying the same recurrence with
different initial conditions. We apply successfully our technique to sums
of products of such sequences with indices in (arbitrary) arithmetic
progressions. It generalizes many results from literature. We propose
also an extension where the sequences satisfy different recurrences.
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1. Introduction

We consider a generic (nondegenerate, that is, δ =
√
p2 − 4q 6= 0) binary recurrence

satisfying

(1.1) Xn+1 = pXn − qXn−1, n ∈ Z

with some initial conditions. Let α, β be the roots of the equation x2 − px+ q = 0, and
so, α+ β = p, αβ = q, δ = α− β. We associate the companion Lucas sequence Ln which
also satisfies (1.1) together with L0 = 2, L1 = p, and so Ln = αn + βn.

Let {U (j)
n }pj=1 be a set of p binary sequences, all of which will satisfy the recurrence

(1.1) with some initial conditions, such that the Binet formula for these sequences is

U (j)
n = Ajα

n +Bjβ
n, n ∈ Z,

where Aj =
U

(j)
1 −U(j)

0 β

δ
, Bj =

U
(j)
0 α−U(j)

1
δ

.
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For easy notation, we will denote the recurrence {Xn} given by (1.1) by {Xn (p, q, a, b)}
where a = X0 and b = X1 are initial conditions of it.

Several authors investigated products of two terms of a sequence or products of two
sequences, and also, the sums of these products. As a first example, note that the sum
of square terms of Fibonacci numbers [7, 8, 12] is

n∑
i=1

F 2
i = FnFn+1.

The sum of products of variable subscripted terms of certain second order recurrences
have been considered by several authors. For example (see [11])

n∑
i=1

FiFi+2 =F2n+1F2n+2 − 1,

n∑
i=1

FiFi+1 =F 2
2n+1 − 1,

n∑
i=1

F2i−1F2i+3 =
(
3F 2

2n+2 − 2F 2
2n+1 + 7n− 1

)
/5.

Certainly, the classical Fibonacci, Fn and Pell numbers Pn are Fn = Xn (1,−1, 0, 1)
and Pn = Xn (2,−1, 0, 1). Generalizations of the above sums by taking different recur-
rences and their variable subscripted terms have also been studied. For example, in [9],
the author found

∑n
i=1 FiPi. Melham [10] looked at the sum of the squares of the se-

quence {Xn (2, 1, 0, 1)}. Recently, in [2, 3, 4, 5, 6], the authors gave several formulas for
sums of squares of even and odd Fibonacci, Lucas and Pell-Lucas numbers, and their
sums of products of even and odd subscripted terms. Also the authors of [1] established
several formulas for sums and alternating sums of products of certain subscripted terms
of recurrences {Xn (p, q, 0, 1)} and {Xn (p, q, 2, p)} .

It is our goal in this paper to propose a general approach for the theory of closed forms
for sums of products of nondegenerate second-order recurrent sequences, thus generalizing
many of these kind of results that the reader can find scattered throughout the literature.

2. Main Results

Let P(n) be the power set of {1, 2, . . . , n}, that is the set of all subsets of {1, 2, . . . , n}.
Given a sequence of p functions fj(i), j = 1, . . . , p, for all M ∈ P(p), we let FM (i) =∑
`∈M f`(i), F∅(i) = 0, and for simplicity, F (i) = F{1,...,p}(i) =

∑p
`=1 f`(i). Let us define

a set of twisted product sequences, indexed by the sets M ∈ P(p), in the following way:

for a set M ∈ P(p), we let W
(M)
n be a (M-twisted product) rational sequence satisfying

(1.1) with the Binet formula

W (M)
n =

∏
j∈M

Aj
∏
k 6∈M

Bk

αn +

∏
j∈M

Bj
∏
k 6∈M

Ak

βn.

Further, we use M̄ = {1, 2, . . . , p} \M , for the complement of the set M in {1, 2, . . . , p}.
We shall first show that W

(M)
n is a rational sequence, even more precise that W

(M)
n ∈

1

δ2
p−1 Z.

2.1. Lemma. For any integer n, the twisted product sequences satisfy

W (M̄)
n = qnW

(M)
−n .

Proof. Straightforward using the Binet formula. �
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2.2. Theorem. For p, n ∈ Z, we have

W (M)
n ∈ 1

δ2p−1 Z.

Proof. We will prove the claim by induction. First, we let p = 2, and consider two
sequences Un = A1α

n + B1β
n, Vn = A2α

n + B2β
n (for simplicity of notations). We

write the superscript sets as {a, . . .} instead of ({a, . . .}). The associated twisted product
sequences are

W {1,2}n = A1A2α
n +B1B2β

n,

W {1}n = A1B2α
n +B1A2β

n,

W {2}n = A2B1α
n +A1B2β

n,

W ∅n = B1B2α
n +A1A2β

n.

Since our index n runs through the entire set of integers, by Lemma 2.1, it will be

sufficient to consider only the case of W
{1,2}
n , and W

{1}
n .

First, using the expressions for A1, A2, B1, B2 in terms of initial conditions of Un, Vn,
and simplifying, we get

δ2(A1A2 +B1B2) = 2U1V1 − p(U0V1 + U1V0) + (p2 − 2q)U0V0 ∈ Z

δ2(A1A2α+B1B2β) = pU1V1 − 2q(U1V0 + U0V1) + pqU0V0 ∈ Z.

Further,

δ2(A1B2 +B1A2) = p(U1V0 + V1U0)− 2qU0V0 − 2U1V1 ∈ Z

δ2(A1B2α+B1A2β) = (p2 − 2q)U1V0 − p(U0V0q + U1V1) + 2U0V1q ∈ Z.

Now, let Un ∈ Z and, from the induction step, assume that Vn ∈ 1

δ2
p−1 Z. As before,

writing δ2W
{1,2}
0 , δ2W

{1,2}
1 , δ2W

{1}
0 , δ2W

{1}
1 in terms of U0, U1, V0, V1, we see that each

term in these expressions contains only one factor based on either V0, or V1 ∈ 1

δ2
p−1 Z,

and therefore W
{1,2}
i ,W

{1}
i ∈ 1

δ2
p Z, i = 0, 1. Certainly, since the initial terms of the

twisted product sequences are in 1
δ2
p Z, so is W

(M)
n . �

We show now our general approach to finding sums of products of recurrences.

2.3. Theorem. Given a set of p functions fj(i), j = 1, . . . , p, such that fj(i)− f`(i) is
a function of j, ` only and it does not depend on i, we have

n∑
i=0

p∏
j=1

U
(j)

fj(i)
=

1

2

∑
M∈P(p)

n∑
i=0

qF (i)−FM (i)W
(M)

2FM (i)−F (i).

Proof. First, we associate to every set M ∈ P(p) a bit string ε of length p in the usual
manner (a 1 bit appears in the bit string if and only if its corresponding position appears
in M , otherwise the bit is 0). For ε ∈ Zp2, we let wt(ε) to be the Hamming weight of
the bit string ε, that is, the number of 1’s in its expression, and supp(ε) = {i1 < i2 <
. . . < iwt(ε)} to be the support of ε (the positions where 1’s appear in ε). Certainly,
supp(ε) ⊆ {1, 2, . . . , p}.
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Next, we compute the product

p∏
j=1

U
(j)

fj(i)
=

p∏
j=1

(
Ajα

fj(i) +Bjβ
fj(i)

)
=

∑
ε=(ε1,...,εp)∈Zp2

p∏
j=1

A
εj
j B

1−εj
j αεjfj(i)β(1−εj)fj(i)

=
1

2

∑
ε∈Zp2

 ∏
j∈supp(ε)

∏
k 6∈supp(ε)

AjBkα
∑
j∈supp(ε) fj(i)β

∑
k 6∈supp(ε) fk(i)

+
∏

j∈supp(ε)

∏
k 6∈supp(ε)

AkBjβ
∑
j∈supp(ε) fj(i)α

∑
k 6∈supp(ε) fk(i)


=

1

2

∑
M∈P(p)

(αβ)
∑
j 6∈M fj(i)

∏
j∈M

∏
k 6∈M

AjBkα
∑
j∈M fj(i)−

∑
j 6∈M fj(i)

+
∏
j∈M

∏
k 6∈M

AkBjβ
∑
j∈M fj(i)−

∑
j 6∈M fj(i)


=

1

2

∑
M∈P(p)

qF (i)−FM (i)W
(M)

2FM (i)−F (i),

from which our theorem follows easily. �

Obviously, if the sum
∑n
i=0 q

F (i)−FM (i)W
(M)

2FM (i)−F (i) can be simplified, then the pre-

vious theorem takes quite an attractive form. The rest of the paper is devoted in finding
various functions fj for which such a sum can be computed. Many papers are investi-
gating sums of products of very few recurrences (mostly two) where the indices are very
specific linear functions. We will attack this case in its full generality here and solve it
completely, by taking fj to be arbitrary linear functions.

Let Wn be our generic sequence satisfying (1.1) such that Wn = Aαn + Bβn, and
recall that Ln = αn + βn is the companion Lucas sequence.

2.4. Lemma. For a, b, c, d ∈ Z, we have the generating function

n∑
i=0

xa+biWc+di = xa
qdxb(n+2)Wc+dn − xb(n+1)Wc+d(n+1) − xbqdWc−d +Wc

x2bqd − xbLd + 1
.
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Proof. Using Binet formula for Wn, we obtain

n∑
i=0

xbiWc+di = Aαc
n∑
i=0

(xbαd)i +Bβc
n∑
i=0

(xbβd)i

= Aαc
(xbαd)n+1 − 1

xbαd − 1
+Bβc

(xbβd)n+1 − 1

xbβd − 1

=
Axb(n+2)βdαc+d(n+1) −Axb(n+1)αc+d(n+1) −Axbαcβd +Aαc

+Bxb(n+2)αdβc+d(n+1) −Bxb(n+1)βc+d(n+1) −Bxbβcαd +Bβc

x2b(αβ)d − xb(αd + βd) + 1

=
qdxb(n+2)(Aαc+dn +Bβc+dn)− xb(n+1)(Aαc+d(n+1) +Bβc+d(n+1))

−qdxb(Aαc−d +Bβc−d) + (Aαc +Bβc)

x2bqd − xbLd + 1

=
qdxb(n+2)Wc+dn − xb(n+1)Wc+d(n+1) − xbqdWc−d +Wc

x2bqd − xbLd + 1
.

�

Taking Wn = un = Xn (p, q, 0, 1) , we reach at the following result:

n∑
i=0

(−1)i ur+4i = (−1)n
υ4n+r+2 + ur−2

v2

where vn = Xn (p, q, 2, p) . One can also find this result in [1, Lemma 5].
Let fj(i) = aj + bji be linear functions. Under these conditions,

F (i)− FM (i) =

p∑
j=1

(aj + bji)−
∑
j∈M

(aj + bji)

=

∑
j 6∈M

aj

+

∑
j 6∈M

bj

 i = a(M̄) + b(M̄)i,

where we use the notations a(M̄) =
∑
j 6∈M aj and b(M̄) =

∑
j 6∈M bj . We shall also use

a(M) =
∑
j∈M aj , b

(M) =
∑
j∈M bj . Further,

2FM (i)− F (i) =
∑
j∈M

(aj + bji)−
∑
j 6∈M

(aj + bji)

=
(
a(M) − a(M̄)

)
+
(
b(M) − b(M̄)

)
i.

Applying Lemma 2.4 with x := q, a := a(M̄), b := b(M̄), c := a(M) − a(M̄), d :=

b(M) − b(M̄), and using Theorem 2.3 we obtain our next result.
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2.5. Theorem. Given a set of linear functions fj(i) = aj + bji, and binary sequences

U
(j)
k satisfying (1.1) with some initial conditions, we have

n∑
i=0

p∏
j=1

U
(j)

fj(i)
=

1

2

∑
M∈P(p)

qa
(M)

qb
(M)+b(M̄)(n+1)W

(M)

a(M)−a(M̄)+n(b(M)−b(M̄))

−qb
(M̄)(n+1)W

(M)

a(M)−a(M̄)+(n+1)(b(M)−b(M̄))

−qb
(M)

W
(M)

a(M)+a(M̄)−b(M)−b(M̄)
+W

(M)

a(M)−a(M̄)

qb(M) − qb(M̄)Lb(M)−b(M̄) + 1
.

3. A Particular Case

To understand our general result better, we shall consider now a particular case of two
binary recurrences, which is the case most often encountered in literature. Let Un, Vn be
two binary recurrent sequences satisfying (1.1) with some initial conditions. The Binet
formula indicates that

Un = A1α
n +B1β

n,

Vn = A2α
n +B2β

n,

where A1 = U0β−U1
β−α , B1 = U1−U0α

β−α , A2 = V0β−V1
β−α , B2 = V1−V0α

β−α .

As before, we take the twisted productsW
{1,2}
n ,W

{1}
n , satisfying (1.1), with initial con-

ditionsW
{1,2}
0 = A1A2+B1B2,W

{1,2}
1 = A1A2α+B1B2β, W

{1}
0 = A1B2+B1A2,W

{1}
1 =

A1B2α+B1A2β, so that W
{1,2}
n = A1A2α

n +B1B2β
n, and W

{1}
n = A1B2α

n +B1A2β
n.

From Theorem 2.2 we know that W
{1}
n ,W

{1,2}
n ∈ 1

δ2
Z. We next consider the example

f1(i) = r + ki, f2(i) = s+ ki.

3.1. Theorem. Let k, r, s be fixed integers. We have
n∑
i=0

Ur+kiVs+ki = qsW
{1}
r−s

qk(n+1) − 1

qk − 1

+
q2kW

{1,2}
r+s+2kn −W

{1,2}
r+s+2k(n+1) − q

2kW
{1,2}
r+s−2k +W

{1,2}
r+s

q2k − L2k + 1
.

Proof. First,

Ur+kiVs+ki = (A1α
r+ki +B1β

r+ki)(A2α
s+ki +B2β

s+ki)

= (A1A2α
r+s+2ki +B1B2β

r+s+2ki)

+ (A1B2α
r+kiβs+ki +A2B1α

s+kiβr+ki)

= W
{1,2}
r+s+2ki + qs+ki(A1B2α

r−s +A2B1β
r−s)

= W
{1,2}
r+s+2ki + qs+kiW

{1}
r−s.(3.1)

In the notations of Theorem 2.5, the previous product will be

1

2

(
qf1(i)+f2(i)W ∅−F (i) + qf2(i)W

{1}
f1(i)−f2(i) + qf1(i)W

{2}
f2(i)−f1(i)

+W
{1,2}
f1(i)+f2(i)

)
= W

{1,2}
f1(i) + qf2(i)W

{1}
f1(i)−f2(i).
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Using (3.1), we separate the sum
∑n
i=0 Ur+kiVs+ki into two sums. First,

(3.2)

n∑
i=0

qs+kiW
{1}
r−s = qsW

{1}
r−s

n∑
i=0

(qk)i = qsW
{1}
r−s

qk(n+1) − 1

qk − 1
,

(we could have also used Lemma 2.4 with x := q, a = s, b = k and c = r − s, d = 0).
Next, using Lemma 2.4 with x := q, a = b = 0 and c = r + s, d = 2k, we get

n∑
i=0

Wt+`i =
q`Wt+`n −Wt+`(n+1) − q`Wt−` +Wt

q` − L` + 1
.

and the second sum becomes
n∑
i=0

W
{1,2}
r+s+2ki =

q2kW
{1,2}
r+s+2kn −W

{1,2}
r+s+2k(n+1) − q

2kW
{1,2}
r+s−2k +W

{1,2}
r+s

q2k − L2k + 1
,

which finishes the proof of our theorem. �

If we take un = Xn (p, q, 0, 1) and vn = Xn (p, q, 2, p) (p 6= 0,
√
p2 − 4q 6= 0), then by

required arrangements, we obtain for k = 2
n∑
i=0

ur+2ivs+2i =
v4n+r+s+2 − vr+s−2 − p (n+ 1) qrus−r

p (p2 − 4q)

which is the main result of [1, Theorem 1].

References

[1] Belbachir H. and Bencherif, F. Sums of products of generalized Fibonacci and Lucas num-

bers, Arxiv:0708.2347v1, 2009.
[2] Cerin, Z. Sums of products of generalized Fibonacci and Lucas numbers, Demons. Math.,

42 (2), 247–258, 2009.

[3] Cerin, Z. On Sums of Products of Horadam Numbers, Kyungpook Math. J., 49, 483–492,
2009.

[4] Cerin, Z. and Gianella G.M. On sums of squares of Pell-Lucas numbers, Integers 6A15, 16
pp., 2006.

[5] Cerin, Z. Alternating sums of Fibonacci products, Atti Semin. Mat. Fis. Univ. Modena

Reggio Emilia 53 (2), 331–344, 2005.
[6] Cerin, Z. Some alternating sums of Lucas numbers, Cent. Eur. J. Math. 3 (1) , 1–13, 2005.
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