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Abstract

This paper is concerned with the work of the authors’ [M.Akbulak
and D. Bozkurt, on the norms of Toeplitz matrices involving Fibonacci
and Lucas numbers, Hacettepe Journal of Mathematics and Statistics,
37(2), (2008), 89-95] on the spectral norms of the matrices: A = [Fi−j ]
and B = [Li−j ], where F and L denote the Fibonacci and Lucas num-
bers, respectively. Akbulak and Bozkurt have found the inequalities for
the spectral norms of n×n matrices A and B, as for us, we are finding
the equalities for the spectral norms of matrices A and B.
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1. Introduction and Preliminaries

The matrix T = [tij ]
n−1
i,j=0 is called Toeplitz matrix such that tij = tj−i. In Section 2,

we calculate the spectral norms of Toeplitz matrices

(1) A = [Fj−i]
n−1
i,j=0

and

(2) B = [Lj−i]
n−1
i,j=0

where Fk and Lk denote k-th the Fibonacci and Lucas numbers, respectively.
Now we start with some preliminaries. Let A be any n × n matrix. The spectral

norm of the matix A is defined as ‖A‖2 =
√

max
1≤i≤n

|λi (AHA)| where AH is the conju-

gate transpose of matrix A. For a square matrix A, the square roots of the eigenvalues
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of AHA are called singular values of A. Generally, we denote the singular values as
σn =

{√
λi : λi is eigenvalue of matrix AHA

}
. Moreover, the spectral norm of matrix A

is the maximum singular value of matrix A. The equation det(A− λI) = 0 is known as
the characteristic equation of matrix A and the left-hand side known as the character-
istic polynomial of matrix A. The solutions of characteristic equation are known as the
eigenvalues of matrix.

Fibonacci and Lucas numbers are the numbers in the following sequences, respectively:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . and 2, 1, 3, 4, 7, 11, 18, 29, 47, . . .

in addition, these numbers are defined backwards by

0, 1,−1, 2,−3, 5,−8, 13,−21, . . . and 2,−1, 3,−4, 7,−11,−18, 29,−47, . . .

2. Main Results

2.1. Theorem. Let the matrix A be as in (1). Then the singular values of A are

σ1,2 =

{
Fn, if n is even√
F 2
n − 1, if n is odd

and σm = 0, where m=3,4,. . . ,n.

Proof. From matrix multiplication

AAH =

[
n−1∑
k=0

Fk−iFk−j

]n−1

i,j=0

.

By using mathematical induction principle on n, we have

n−1∑
k=0

Fk−iFk−j =


Fn−1Fn−(i+j) + F−iF−j , if n is odd

FnFn−(i+j+1), if n is even
.

Since the singular values of matrix A are the square roots of the eigenvalues of matrix
AAH , we must find the roots of characteristic equation

∣∣λI −AAH
∣∣ = 0, for this there

are two cases.

Case I: If n is odd, since AAH =
[
Fn−1Fn−(i+j) + F−iF−j

]n−1

i,j=0
, in this case the

characteristic equation:

∣∣∣λI −AAH
∣∣∣ =

∣∣∣∣∣∣∣∣∣
λ− Fn−1Fn −F 2

n−1 · · · −Fn−1F1

−F 2
n−1 λ− Fn−1Fn−2 − F−1F−1 · · · −Fn−1F0 − F−1F1−n

...
...

...
−Fn−1F1 −Fn−1F0 − F1−nF−1 · · · λ− Fn−1F−n+2 − F1−nF1−n

∣∣∣∣∣∣∣∣∣ = 0.

Let e [(i, j) , r, k] be an elementary row operation, where e [(i, j) , r, k] is addition of k
times of addition of ith and jth rows to rth row. Firstly, we apply e [(i+ 1, i+ 2) , i,−1],
(i = 1, 2, . . . , n− 2) . Secondly, we add proper times of first n− 2 rows to (n− 1)th row
and then to nth row, so we have
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∣∣∣λI −AAH
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −λ −λ 0 · · · 0 0 0
0 λ −λ −λ · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · λ −λ −λ
0 0 0 0 · · · 0 λ− F 2

n + 1 0
0 0 0 0 · · · 0 0 λ− F 2

n + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

= λn−2 (λ− F 2
n + 1

)2
= 0.

Hence, the singular values of the matrix A are

σ1,2 = F 2
n − 1, σm = 0, where m = 3, 4, . . . , n.

Case II : If n is even, since AAH =
[
FnFn−(i+j+1)

]n−1

i,j=0
, the characteristic equation:

∣∣∣λI −AAH
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

λ− FnFn−1 −FnFn−2 · · · −FnF1 −FnF0

−FnFn−2 λ− FnFn−3 · · · −FnF0 −FnF−1

...
...

...
...

−FnF1 −FnF0 · · · λ− FnF3−n −FnF2−n

−FnF0 −FnF−1 · · · −FnF2−n λ− FnF1−n

∣∣∣∣∣∣∣∣∣∣∣
= 0.

If we apply elemanter row operations in Case I to the determinant given above, we have

∣∣∣λI −AAH
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −λ −λ 0 · · · 0 0 0
0 λ −λ −λ · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · λ −λ −λ
0 0 0 0 · · · 0 λ− F 2

n 0
0 0 0 0 · · · 0 0 λ− F 2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

= λn−2 (λ− F 2
n

)2
= 0.

In that case, the singular values of the matrix A are

σ1,2 = F 2
n , σm = 0, where m = 3, 4, . . . , n.

Thus the proof is completed. �

2.2. Corollary. Let the matrix A be as in (1), then ‖A‖2 =

{
Fn, if n is even√
F 2
n − 1, if n is odd

.

Proof. The proof is trivial from Theorem 2.1. �

2.3. Theorem. Let the matrix B be as in (2). Then the singular values of B are

σ1,2 =

{
Ln ± 1, if n is odd√
F 2
n − 1, if n is even

and σm = 0, where m = 3, 4, . . . , n.

Proof. From matrix multiplication

BBH =

[
n−1∑
k=0

Lk−iLk−j

]n−1

i,j=0

.
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By using mathematical induction principle on n, we have

n−1∑
k=0

Lk−iLk−j =


Fn−(i+j+1)Ln−1 + Fn−(i+j+2)Ln+2 − 5F−iF−j , if n is odd

5FnFn−(i+j+1), if n is even
.

Firstly, we must find the roots of characteristic equation
∣∣λI −BBH

∣∣ = 0, for this there
are two cases.

Case I: If n is odd, sinceBBH =
[
Fn−(i+j+1)Ln−1 + Fn−(i+j+2)Ln+2 − 5F−iF−j

]n−1

i,j=0
,

in this case the characteristic equation:

∣∣∣λI −BBH
∣∣∣ =

∣∣∣∣∣∣∣∣∣
λ− Fn−1Ln−1 − Fn−2Ln+2 · · · −F0Ln−1 − F−1Ln+2

−Fn−2Ln−1 − Fn−3Ln+2 · · · −F−1Ln−1 − F−2Ln+2 + 5F−1F1−n

...
...

−F0Ln−1 − F−1Ln+2 · · · λ− F1−nLn−1 − F−nLn+2 + 5F1−nF1−n

∣∣∣∣∣∣∣∣∣ = 0.

If we apply elementary row operations in Case I of Theorem 2.1 to the determinant given
above, we have

∣∣∣λI −BBH
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −λ −λ 0 · · · 0 0 0
0 λ −λ −λ · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · λ −λ −λ
0 0 0 0 · · · 0 λ− a1 2Fn−3Ln

0 0 0 0 · · · 0 −2Fn−1Ln λ− a2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

= λn−2 [λ2 −
(
(Ln − 1)2 + (Ln + 1)2

)
λ+ (L2

n − 1)2
]

= 0

where a1 = (Ln − 1)2 − (2Fn−2 − 2)Ln and a2 = (Ln + 1)2 + (2Fn−2 − 2)Ln. Hence, the
singular values of the matrix B are

σ1,2 = Ln ± 1, σm = 0, where m = 3, 4, . . . , n.

Case II: If n is even, since BBH =
[
5FnFn−(i+j+1)

]n−1

i,j=0
, in this case the characteristic

equation:

∣∣∣λI −BBH
∣∣∣ =

∣∣∣∣∣∣∣∣∣
λ− 5FnFn−1 −5FnFn−2 · · · −5FnF0

−5FnFn−2 λ− 5FnFn−3 · · · −5FnF−1

...
...

...
−5FnF0 −5FnF−1 · · · λ− 5FnF1−n

∣∣∣∣∣∣∣∣∣ = 0.

If we apply elementary row operations in Case I of Theorem 2.1 to the determinant given
above, we have
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∣∣∣λI −BBH
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −λ −λ 0 · · · 0 0 0
0 λ −λ −λ · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · λ −λ −λ
0 0 0 0 · · · 0 λ− L2

n + 4 0
0 0 0 0 · · · 0 0 λ− L2

n + 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

= λn−2 (λ− L2
n + 4

)2
= 0.

Hence, the singular values of the matrix B are

σ1,2 =
√
L2

n − 4, σm = 0, where m = 3, 4, . . . , n.

Thus the proof is completed. �

2.4. Corollary. Let the matrix B be as in (2), then ‖B‖2 =

{
Ln + 1, if n is odd√
L2

n − 4, if n is even
.

Proof. The proof is trivial from Theorem 2.3. �
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