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Abstract

In this paper, study of necessary conditions for existence of fixed point
of multivalued mappings satisfying Ciric type contractive conditions
in the setting of generalized metric spaces is initiated. Examples to
support our results are presented. Since every symmetric generalized
metric reduces to an ordinary metric, we give a new example of a non-
symmetric generalized metric to justify the study of fixed point theory
in generalized metric spaces.
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1. Introduction and Preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has
been at the center of rigorous research activity. Mustafa and Sims [10] generalized the
concept of a metric space. Based on the notion of generalized metric spaces, Mustafa
et al. ([9, 11, 12]) obtained some fixed point theorems for mappings satisfying different
contractive conditions. Abbas and Rhoades [1] motivated the study of common fixed
point theory in generalized metric spaces. Recently, Saadati et al. [14] proved some fixed
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point results for contractive mappings in partially ordered G− metric spaces. Abbas et
al. [2] obtain some periodic point results in generalized metric spaces.

The aim of this paper is to prove various fixed points results for multivalued mappings
taking closed values in generalized metric spaces. It is worth mentioning that our results
do not rely on the notion of continuity of the mappings involved therein. Our results
extend and unify various comparable results in ([4], [5] and [13]).
Consistent with Mustafa and Sims [10], the following definitions and results will be needed
in the sequel.

1.1. Definition. Let X be a nonempty set. Suppose that a mapping G : X ×X ×X →
R+ satisfies:

(a) G(x, y, z) = 0 if x = y = z;
(b) 0 < G(x, y, z) for all x, y ∈ X, with x 6= y;
(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, with y 6= z;
(d) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry);
(e) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a G− metric on X and (X,G) is called a G− metric space.

1.2. Definition. A sequence {xn} in a G− metric space X is:

(i) a G− Cauchy sequence if, for any ε > 0, there is an n0 ∈ N ( the set natural
number ) such that for all n,m, l ≥ n0, G(xn, xm, xl) < ε,

(ii) a G− Convergent sequence if, for any ε > 0, there is an x ∈ X and an n0 ∈ N,
such that for all n,m ≥ n0, G(x, xn, xm) < ε.

A G− metric space on X is said to be G− complete if every G− Cauchy sequence in
X is G− convergent in X. It is known that {xn} G− converges to x ∈ X if and only if
G(xm, xn, x)→ 0 as n,m→∞ [10].

1.3. Proposition. [10] Let X be a G− metric space. Then the following are equivalent:

(1) {xn} is G− convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xn, xm, x)→ 0 as n,m→∞.

1.4. Definition. A G− metric on X is said to be symmetric if G(x, y, y) = G(y, x, x)
for all x, y ∈ X.

1.5. Proposition. Every G− metric on X will define a metric dG on X by

dG(x, y) = G(x, y, y) +G(y, x, x), ∀ x, y ∈ X.

For a symmetric G− metric space

dG(x, y) = 2G(x, y, y), ∀ x, y ∈ X.

However, if G is not symmetric, then the following inequality holds:

3

2
G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y), ∀ x, y ∈ X.

Now we give an example of non-symmetric G− metric.

1.6. Example. Let X = {1, 2, 3}, G : X ×X ×X → R+, be defined as
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(x, y, z) G(x, y, z)

(1, 1, 1), (2, 2, 2), (3, 3, 3) 0

(1, 1, 2), (1, 2, 1), (2, 1, 1),
(2, 2, 3), (2, 3, 2), (3, 2, 2),
(1, 1, 3), (1, 3, 1), (3, 1, 1),
(1, 2, 2), (2, 1, 2), (2, 2, 1),
(2, 3, 3), (3, 2, 3), (3, 3, 2)

1

(1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2), (3, 2, 1),
(1, 3, 3), (3, 1, 3), (3, 3, 1)

2

Note that G satisfies all of the axioms of a generalized metric but G(1, 1, 3) 6= G(1, 3, 3).
Therefore G is not a symmetric on X.
Let X be a G− metric space. We denote by P (X) the family of all nonempty subsets of
X, and by Pcl(X) the family of all nonempty closed subsets of X.
A point x in X is called a fixed point of a multivalued mapping T : X → Pcl(X) provided
x ∈ Tx. The collection of all fixed point of T is denoted by Fix(T ).

2. Fixed Point Theorems

Kannan [4] proved a fixed point theorem for a single valued self mapping T of a metric
space X satisfying the property

d(Tx, Ty) ≤ h{d(x, Tx) + d(y, Ty)}
for all x, y in X and for a fixed h ∈ [0, 1

2
). Cirić [3] proved a fixed point theorem for a

single valued self mapping T of a metric space X satisfying the property

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + e[d(x, Ty) + d(y, Tx)]

for all x, y in X and for a fixed a, b, c, e ≥ 0 with a + b + c + 2e < 1. Latif and
Beg [5] introduced the notion of a K− multivalued mapping, which is the extension
of Kannan mappings, to multivalued mappings. Continuing in this direction, Rus et
al. [13] coined the term R− multivalued mapping, which is a generalization of a K−
multivalued mapping.
In this section, we obtain some fixed point theorems for a multivalued mapping satis-
fying Ciric type contractive conditions on generalized metric spaces without using the
continuity condition.

2.1. Theorem. Let X be a complete G− metric space and T : X → Pcl(X). If for each
x, y ∈ X, ux ∈ T (x) there exist uy ∈ T (y) such that

(2.1) G(ux, uy, uy) ≤ hmax{G(x, y, y), G(x, ux, ux), G(y, uy, uy),

1

2
[G(x, uy, uy) + G(y, ux, ux)]},

where h ∈ [0, 1), then T has a fixed point.

Proof. Let x0 be an arbitrary point ofX, and x1 ∈ T (x0). Then there exists an x2 ∈ T (x1)
such that

G(x1, x2, x2) ≤ hmax{G(x0, x1, x1), G(x0, x1, x1), G(x1, x2, x2),

1

2
[G(x0, x2, x2) +G(x1, x1, x1)]}

= hmax{G(x0, x1, x1), G(x1, x2, x2),
1

2
[G(x0, x2, x2)]}.
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But, from property (e) of Definition 1.1,

G(x0, x2, x2)

2
≤ 1

2
[G(x0, x1, x1) +G(x1, x2, x2)]

≤ max{G(x0, x1, x1), G(x1, x2, x2)},

and we now have

(2.2) G(x1, x2, x2) ≤ hmax{G(x0, x1, x1), G(x1, x2, x2)}.

If G(x1, x2, x2) = 0, then, by (1) of proposition 1 in [10], x1 = x2. Then x2 ∈ T (x1) =
T (x2), and x2 is a fixed point of T.
If G(x1, x2, x2) 6= 0, then (2.2) becomes

G(x1, x2, x2) ≤ hG(x0, x1, x1).

Continuing this process, we obtain a sequence {xn} in X, that is for xn ∈ T (xn−1), there
exists xn+1 ∈ T (xn) such that

G(xn, xn+1, xn+1) ≤ hmax{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1),

(G(xn−1, xn+1, xn+1) +G(xn, xn, xn))/2}
= hmax{G(xn−1, xn, xn), G(xn, xn+1, xn+1),

(G(xn−1, xn+1, xn+1))/2}
= hmax{G(xn−1, xn, xn), G(xn, xn+1, xn+1)}.

Without loss of generality we may assume that xn 6= xn+1 for each n, since, otherwise,
it follows that xn+1 is a fixed point of T.

Thus we have

G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn) ≤ ... ≤ hnG(x0, x1, x2).

For any m > n ≥ 1, repeated use of property (e) gives

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) + ...+G(xm−1, xm, xm)

≤ [hn + hn+1 + ...+ hm−1]G(x0, x1, x1) ≤ hn

1− hG(x0, x1, x1),

and so G(xn, xm, xm)→ 0 as n,m→∞. Hence {xn} is a G− Cauchy sequence. By the
G− completeness of X, there exist a u ∈ X such that {xn} converges to u. Let n ≥ N
be given. Then, for each xn ∈ T (xn−1), there exists a un ∈ T (u) such that

G(un, un, u) ≤ G(xn, un, un) +G(xn, xn, u)

≤ hmax{G(xn−1, u, u), G(xn−1, xn, xn), G(u, un, un),

1

2
[G(xn−1, un, un) +G(u, xn, xn)]}+G(xn, xn, u)

≤ hmax{G(xn−1, u, u), G(xn−1, xn, xn), G(un, un, u),

1

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)]}+G(xn, xn, u).

Now, if

max{G(xn−1, u, u), G(xn−1, xn, xn), G(un, un, u),

1

2
[G(xn−1, u, u) +G(un, un, u) +G(u, xn, xn)]}

= G(xn−1, u, u),

implies that

G(un, un, u) ≤ hG(xn−1, u, u) +G(xn, xn, u).
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Taking limit as n→∞, implies G(un, un, u)→ 0, and un → u.
If

max{G(xn−1, u, u), G(xn−1, xn, xn), G(un, un, u),

1

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)]}

= G(xn−1, xn, xn),

then

G(un, un, u) ≤ hG(xn−1, xn, xn) +G(xn, xn, u)

≤ hG(xn−1, u, u) + 2G(xn, xn, u).

On letting limit n→∞, implies G(un, un, u)→ 0, and un → u.
In case

max{G(xn−1, u, u), G(xn−1, xn, xn), G(un, un, u),

1

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)]}

= G(un, un, u),

then

G(un, un, u) ≤ hG(un, un, u) +G(xn, xn, u)

which further implies that

G(un, un, u) ≤ 1

1− hG(xn, xn, u).

Taking the limit as n→∞, implies G(un, un, u)→ 0, gives un → u.
Finally, if

max{G(xn−1, u, u), G(xn−1, xn, xn), G(un, un, u),

1

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)]}

=
1

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)],

then

G(un, un, u)

≤ h

2
[G(xn−1, u, u) +G(un, un, u) +G(xn, xn, u)] +G(xn, xn, u)

≤ h

2
G(xn−1, u, u) +

1

2
G(u, un, un) +

3

2
G(xn, xn, u),

which further implies

G(un, un, u) ≤ hG(xn−1, u, u) + 3G(xn, xn, u).

Taking the limit as n→∞, implies that G(un, un, u)→ 0.
Thus un → u as n→∞. Since un ∈ T (u) and T (u) is closed, it follows that u ∈ T (u). �

The following corollary generalizes Theorem 3.1 of Rus et al. [13] to G− metric spaces.

2.2. Corollary. Let X be a complete G− metric space and T : X → Pcl(X). If for each
x, y ∈ X, ux ∈ T (x), there exists a uy ∈ T (y) such that

(2.3) G(ux, uy, uy) ≤ a1G(x, y, y) + a2G(x, x, y) + a3G(x, ux, ux)

+ a4G(x, x, ux) + a5G(y, uy, uy) + a6G(y, y, uy),



26 M. Abbas, T. Nazır, B. E. Rhoades

where ai ≥ 0 for i = 1, 2, ..., 6 and a1 + a3 + a5 + 2(a2 + a4 + a6) < 1, then T has a fixed
point.

Proof. Note that (2.3) implies that

G(ux, uy, uy) ≤ hmax{G(x, y, y), G(x, ux, ux), G(y, uy, uy),

G(x, x, y)

2
,
G(x, x, ux)

2
,
G(y, y, uy)

2
},

where h = a1 + a3 + a5 + 2(a2 + a4 + a6) < 1.
Which further implies that

G(ux, uy, uy) ≤ hmax{G(x, y, y), G(x, ux, ux), G(y, uy, uy)},

and the result follows from Theorem 2.1. �

2.3. Example. Let X = [0,∞) and G(x, y, z) = max{|x− y| , |y − z| , |z − x|} be a
symmetric G−metric on X. Define T : X → Pcl(X) as

Tx = [0,
x

6
].

Now for case x = y, ux ∈ Tx. Take uy = 0, then

G(ux, uy, uy)

= ux ≤
x

6

≤ 2

12
(0) +

3

12
(
5x

6
) +

3

12
(x)

≤ 1

12
(x− y) +

1

12
(x− y) +

2

12
(x− ux) +

1

12
(x− ux) +

2

12
(y − uy) +

1

12
(y − uy)

= a1G(x, y, y) + a2G(x, x, y) + a3G(x, ux, ux)

+a4G(x, x, ux) + a5G(y, uy, uy) + a6G(y, y, uy).

Thus (2.3) is satisfied with a1 + a3 + a5 + 2(a2 + a4 + a6) =
11

12
.

Now when x < y, ux ∈ Tx. Take uy = 0, then

G(ux, uy, uy)

= ux ≤
x

6

≤ 2

12
(0) +

3

12
(
5x

6
) +

3

12
(x)

≤ 1

12
(y − x) +

1

12
(y − x) +

2

12
(x− ux) +

1

12
(x− ux) +

2

12
(y − uy) +

1

12
(y − uy)

= a1G(x, y, y) + a2G(x, x, y) + a3G(x, ux, ux)

+a4G(x, x, ux) + a5G(y, uy, uy) + a6G(y, y, uy).

Thus (2.3) is satisfied with a1 + a3 + a5 + 2(a2 + a4 + a6) =
11

12
.
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Finally for, y < x, ux ∈ Tx. Take uy =
y

6
, then

G(ux, uy, uy)

= |ux − uy| ≤ ux + uy ≤
1

6
(x+ y)

≤ 2

12
(x− y) +

3

12
(
5x

6
) +

3

12
(
5y

6
)

≤ 1

12
(x− y) +

1

12
(x− y) +

2

12
(x− ux) +

1

12
(x− ux) +

2

12
(y − uy) +

1

12
(y − uy)

= a1G(x, y, y) + a2G(x, x, y) + a3G(x, ux, ux)

+a4G(x, x, ux) + a5G(y, uy, uy) + a6G(y, y, uy).

Thus (2.3) is satisfied with a1 + a3 + a5 + 2(a2 + a4 + a6) =
11

12
.

Hence all conditions of Corollary 2.2 are satisfied. Moreover, T has a fixed point.

2.4. Corollary. Let X be a complete G− metric space and T : X → Pcl(X). If for each
x, y ∈ X, ux ∈ T (x), there exist uy ∈ T (y) such that

(2.4) G(ux, uy, uy) ≤ αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy),

where α, β, γ ≥ 0 and α+ β + γ < 1, then T has a fixed point.

2.5. Example. Let X = {0, 1} and a nonsymmetric G− metric from X to R+ be define
as

G(0, 0, 0) = G(1, 1, 1) = 0,

G(0, 0, 1) = G(0, 1, 0) = G(1, 0, 0) = 0.5,

G(0, 1, 1) = G(1, 0, 1) = G(1, 1, 0) = 1.

Define T : X → Pcl(X) as

T (0) = T (1) = {0, 1}.

Now if x = 0, y = 0, ux ∈ T (0). Then two cases arise.
When ux = 0, take uy = 0 ∈ T (y), then

G(ux, uy, uy) = G(0, 0, 0) = 0

=
1

8
(0) +

3

8
(0) +

3

8
(0)

= αG(0, 0, 0) + βG(0, 0, 0) + γG(0, 0, 0)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

When ux = 1, take uy = 1 ∈ T (y), then

G(ux, uy, uy) = G(1, 1, 1) = 0

<
1

8
(0) +

3

8
(1) +

3

8
(1)

= αG(0, 0, 0) + βG(0, 1, 1) + γG(0, 1, 1)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

Thus (2.4) is satisfied with α+ β + γ =
7

8
.
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For case x = 0, y = 1, ux ∈ T (0). Then for ux = 0, take uy = 0 ∈ T (y), then

G(ux, uy, uy) = 0

<
1

8
(1) +

3

8
(0) +

3

8
(0.5)

= αG(0, 1, 1) + βG(0, 0, 0) + γG(1, 0, 0)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

And when ux = 1, take uy = 0 ∈ T (y), then

G(ux, uy, uy) = G(1, 0, 0) = 0.5

<
1

8
(1) +

3

8
(1) +

3

8
(0.5)

= αG(0, 1, 1) + βG(0, 1, 1) + γG(1, 0, 0)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

Thus (2.4) is satisfied with α+ β + γ =
7

8
.

For case x = 1, y = 0, ux ∈ T (1). Then for ux = 0, take uy = 0, we have

G(ux, uy, uy) = 0

<
1

8
(0.5) +

3

8
(0.5) +

3

8
(0)

= αG(1, 0, 0) + βG(1, 0, 0) + γG(0, 0, 0)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

and when ux = 1, again by taking uy = 1, we have

G(ux, uy, uy) = G(1, 1, 1) = 0

<
1

8
(0.5) +

3

8
(0) +

3

8
(1)

= αG(1, 0, 0) + βG(1, 1, 1) + γG(0, 1, 1)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

Thus (2.4) is satisfied with α+ β + γ =
7

8
.

Finally for x = 1, y = 1, ux ∈ T (1), then for the case ux = 0, take uy = 0 ∈ T (1), we
have

G(ux, uy, uy) = 0

<
1

8
(0) +

3

8
(0.5) +

3

8
(0.5)

= αG(1, 1, 1) + βG(1, 0, 0) + γG(1, 0, 0)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

And if ux = 1, take uy = 1 ∈ T (1), implies

G(ux, uy, uy) = G(1, 1, 1) = 0

=
1

8
(0) +

3

8
(0) +

3

8
(0)

= αG(1, 1, 1) + βG(1, 1, 1) + γG(1, 1, 1)

= αG(x, y, y) + βG(x, ux, ux) + γG(y, uy, uy).

Thus (2.4) is satisfied with α+ β + γ =
7

8
. Hence all the conditions of Corollary 2.4 are

satisfied and Fix(T ) 6= 0.

The following corollary generalizes Theorem 4.1 of Latif and Beg [5] to G− metric Spaces.
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2.6. Corollary. Let X be a complete G− metric space and T : X → Pcl(X). If for each
x, y ∈ X, ux ∈ T (x), there exist uy ∈ T (y) such that

G(ux, uy, uy) ≤ h[G(x, ux, ux) +G(y, uy, uy)],

where 0 ≤ h < 1, then T has a fixed point.

2.7. Corollary. Let X be a complete G− metric space and T : X → Pcl(X). If for each
x, y ∈ X, ux ∈ T (x), there exist uy ∈ T (y) such that

G(ux, uy, uy) ≤ λG(x, y, y),

where 0 ≤ λ < 1, then T has a fixed point.
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