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Abstract

In this work, we show that category of totally free 2–crossed complexes
and that of totally free 3–crossed complexes are cofibration categories
in the sense of Baues ([4]). We also explore homotopies for 3–crossed
modules and 3–crossed complex morphisms.

1. Introduction

Crossed modules were first defined by Whitehead in [15]. They model homotopy
connected 2–types. Conduche ([9]), in 1984, described the notion of 2–crossed modules
as a model for homotopy connected 4–types. Eventually, Arvasi, Uslu and Kuzpinari ([2])
introduced 3–crossed modules as a model for homotopy connected 4–types. The definition
of a homotopy of morphisms of crossed complexes is well known due to Whitehead and
this was put in the general context of crossed complexes (of groupoids) by Brown and
Higgins in [6]. Also homotopies for 2–crossed complexes can be found in Martin’s work
[11]. By following Martin’s method we give homotopies for 3–crossed complexes.

T.Porter explains cofibration category as follows: The notion of cofibration category
was introduced by Hans–Joachim Baues as a variant of the category of cofibrant objects,
(for which, see category of fibrant objects and dualise). The axioms are substantially
weaker than those of Quillen’s model category [13], but add one axiom to those of K. S.
Brown. In the first chapter of his book, Algebraic Homotopy, Baues suggests two criteria
for an axiom system:

1. The axioms should be sufficiently strong to permit the basic constructions of ho-
motopy theory. 2. The axioms should be as weak (and as simple) as possible, so that the
constructions of homotopy theory are available in as many contexts as possible.

Baues in [3] has shown that category of totally free crossed complexes and category
of totally free quadratic complexes are cofibration category.

In this article, we obtain similar results. We show that the category of totally free
2–crossed complexes is a cofibration category and we define homotopies for morphisms of
2–crossed complexes. Then we get the following result: Homotopy classes of category of
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totally free 2–crossed complexes is equivalent to the localization of 2–crossed complexes
with respect to weak equivalences.

2. Preliminaries

2.1. Definition. A Baues “cofibration category” is a category (C, cof, we) consisting
of a category C and two distinguished classes of maps cof and we, called “cofibrations”
and “weak equivalences” respectively. A map in C is a trivial cofibration if it is both a
weak equivalence and a cofibration. Maps in C are subject to the axioms below:

BCF1: All isomorphisms of C are trivial cofibrations. Cofibrations are stable under
composition.

BCF2: (Two out of three axiom) If f, g are maps of C such that gf is defined, if any
two of f, g, gf are weak equivalences, then so is the third.

BCF3: (Push out axiom) Given a solid diagram

A
f // A ∪B Y

B

i

OO

f
// Y

i

OO

in C, with i being a cofibration, then the pushout exists in C and i is a cofibration.
Moreover:

(a) if f is a weak equivalence, so is f,
(b) if i is a weak equivalence, so is i.

BCF4: (Factorization axiom) Any map of C admits a factorization as a cofibration
followed by a weak equivalence.

BCF5: (Axiom on fibrant models) For each object X in C there is a trivial cofibration
X → RX where RX is fibrant in C. An object R in a cofibration category is fibrant if
each trivial cofibration i : R → Q admits a retraction r : Q → R such that ri = 1. We
call X → RX a fibrant model of X; if X is fibrant we take RX = X.

2.2. Definition. We call (C, cof, we) a“cofibration structure” if all axioms of cofibration
category are satisfied except the axiom BCF3(a).

Hence a cofibration structure which satisfies BCF3(a) is a cofibration category. For
example, let (C, cof, fib, we) be a model category in the sense of Quillen, then (C, cof, we)
is a cofibration structure. An object X in a category C is cofibrant if ∗ → X is a
cofibration where ∗ is the initial object. A full subcategory of a category C consisting of
cofibrant objects is denoted by Cc.

3. Cofibrations in the Category of 2–crossed Complexes

The following definition of 2–crossed module is equivalent to that given by Conduché.
A 2–crossed module of groups consists of a complex of groups

L
∂2 // M

∂1 // N

together with (a) actions of N on M and L so that ∂2, ∂1 are morphisms of N–groups,
and (b) an N–equivariant function

{ , } : M ×M −→ L,
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called a Peiffer lifting. This data must satisfy the following axioms:

2CM1) ∂2{m,m′} = mm′m−1
(
∂1mm′−1

)
2CM2) {∂2l, ∂2l′} = [l′, l]

2CM3) (i) {mm′,m′′} = ∂1m{m′,m′′}{m,m′m′′m′−1}
(ii) {m,m′m′′} = {m,m′}mm

′m−1

{m,m′′}
2CM4) {m, ∂2l}{∂2l,m} = ∂1mll−1

2CM5) n{m,m′} = {nm,nm′}

for all l, l′ ∈ L, m,m′,m′′ ∈M and n ∈ N .

3.1. Definition. [12] A 2–crossed complex C = {Cn, dn, { , }} is a diagram

· · ·
d5 // C4

d4 // C3
d3 // C2

d2 // C1
d1 // C0

of homomorphisms between groups such that dn−1dn = 1 for n ≥ 2 and such that the
following properties are satisfied. The ({ , }, d2, d1) is a 2–crossed module. Moreover
Cn is a right π–module.

A map f : C → C′ between 2–crossed complexes is a family of homomorphisms
between groups for n ≥ 1

fn : Cn → C′n with fn−1dn = dnfn

such that (f3, f2, f1) is a map between 2–crossed modules.

Let X2Comp be the category of 2–crossed complexes and maps, we define the homo-
topy groups

π1(C) = π = coker(d1)

πn(C) =
ker dn

imdn+1
, n ≥ 1.

A map fn is a weak equivalence if πn(fn) is an isomorphism for n ≥ 1. We call a
2–crossed complex C totally free if C0 is a free group, d1 : C1 → C0 is a free pre–crossed
module, and d2 : C2 → C1 is given by a free 2–crossed module. Totally free objects
form a full subcategory of 2–crossed complexes. We denote it by FreeX2. Clearly,
FreeX2 ⊂ X2Comp.

3.2. Definition. A map f : A→ B in 2–crossed complexes is a cofibration if f is a free
extension in each degree n for n ≥ 1.

Here we say that f is a free extension in degree n with basis ∂n : Xn → Bn−1

where Xn is a set and a map j : Xn → Bn with dnj = ∂n which satisfy the following
universal property. Let B′ be any 2–crossed complex, An, Bn, B′n be n–skeleton of

A,B,B′ and let b : A → B′, an−1 : Bn−1 → B′
n−1

be 2–crossed complex maps with

an−1fn−1 = bn−1 : An−1 → B′
n−1

and assume a function c : Xn → B′n is chosen such
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that the following diagram of unbroken arrows commutes.

An

dn

��

fn

//

bn

))
Bn

an //

dn

��

B′n

dn

��

Xn

j

bbEEEEEEEE

∂n

||yy
yy
yy
yy
y

c

<<yyyyyyyy

An−1

fn−1 //

bn−1

55Bn−1 an−1

// B′n−1

Then there is a unique 2–crossed complex map a : Bn → B′
n

for which an extends the
diagram commutatively. It is clear that cofibrant objects in 2–crossed complexes are
exactly the totally free 2–crossed complexes. Then

FreeX2 = X2Compc

where X2Compc denotes full subcategory of category of 2–crossed complexes consisting
of cofibrant objects. The next lemma shows that free extension in each degree exists.

3.3. Lemma. Let An be an n–skeleton and assume fn−1 : An−1 → Bn−1 and a function
∂n : Xn → Bn−1are given. Then a free extension f : An → Bn with basis ∂n exists
provided that dn−1∂n = 1.

Proof is analogue to the case of free extensions in the quadratic complexes in [3].

3.4. Theorem. The category of 2–crossed complexes with cofibrations and weak equiva-
lences is a cofibration structure for which all objects are fibrant.

Proof. We first check (BCF4). We obtain a factorization

f : A
i // B

q // C

of f : A→ C such that i is a cofibration and q is a weak equivalence.

For n = 1, B1 is free product of A1 and F (X1) where X1 is a set and F (X1) is the free
group generated by X1. We choose X1 and q1 such that B1 → C1 → π1(C1) is surjective.

For n = 2, B′2 is free product of A′2 and F (X2) where A′2 is the B1–pre–crossed module
induced from the A1–pre–crossed module by the morphism of 2–crossed module A1 → B1

and F (X2) is the free pre–crossed B1–module on the set X2. Here we choose a basis X2

and ∂2 : B′2 → B1 such that ∂2(B2) is the kernel of B1 → C1 → π1(C1). Then we should
find q′2 such that the diagram

B′2

∂2

��

q′2 // C2

d2

��
B1 q1

// C1

commutes. The map q′2 is not surjective. Therefore choose a set X ′2 such that B2 is free
product of B′2 and F (X ′2). Then take q2 as carrying kernel of ∂2 surjectively to kernel of
d2.

For n ≥ 3, Bn is chosen in a similar way. This completes the construction of factor-
ization.
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We next check that all objects are fibrant. Let a map i : A→ B be given as a trivial
cofibration. We construct inductively a retraction r : B → A with ri = 1 and a homotopy
α : ir ' 1relA This shows that i is actually a strong deformation retract morphism. Let

(#) i : A // Bn

rn

��
gn
// B

be given by the subcomplex Bn of B with (Bn)k = Bk for k ≤ n and (Bn)k = Ak
for k > n. The map gn is the inclusion. We choose inductively a retraction rn and a
homotopy αn : irn ' gn relative to A. Assume rn and αn are defined by

(*) (irn)−1gn = (dαn)(αnd).

When we compose each side by d, we get

irnd = (gnd)(dαnd)−1 = d(gn(αnd)−1).

Since i is a weak equivalence we can choose a map x : Xn+1 → An+1 with dx = rnd.
Moreover (ix)−1gn+1(αnd)−1 carries Xn+1 to the cycles of B by (∗). Again since i is a
weak equivalence we can choose maps z : Xn+1 → An+1, y : Xn+1 → Bn+2 such that

(iz)(dy) = (ix)−1gn+1(αnd)−1.

We now define the extension rn+1 of rn by rn+1 = xz on Xn+1 and we define the extension
αn+1 of αn by αn+1 = y on Xn+1. This completes the induction.

Moreover, we construct push outs in 2–crossed complexes

B
f // B′

A

i

OO

// A′

i

OO

as follows. Let Bn be a free extension of A Then we set B′n as free extension of A′. The
basis of B′ is given in degree n by the composition

fn−1d|Xn : Xn → An−1 → Bn−1, n ≥ 2.

The map f is the identity on Xn.
Finally we prove (BCF3b). If i is a weak equivalence, then i is a strong deformation

retract by (#). This implies also that i is a strong deformation retract. In fact we define

the retraction r of i by fr in (#). And we define the homotopy α : ir ' 1relA′ by fα on
generators. This shows that i is a weak equivalence and (BCF3b) is satisfied. �

The next lemma is given in [4].

3.5. Lemma. Let C be a cofibration structure. Then Cc with cofibrations and weak
equivalences as in C is a cofibration category.

As a result of above theorem and lemmas we give the following result.

3.6. Corollary. The category of totally free 2–crossed complexes is a cofibration category

4. Homotopy of 2–crossed Modules

Recall the notion of homotopy between crossed complexes in [7]. Now similarly we
define homotopy for 2–crossed complexes. Let

A = L
∂2 // M

∂1 // N , A′ = L′
∂2 // M ′

∂1 // N ′
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be two 2–crossed modules and f = (f0, f1, f2) be a 2–crossed module morphism. A
homotopy on f is a pair h = (h1, h2) of maps where h1 : N → M ′ and h2 : M → L′

satisfying equations below.

h1(nn′) = f0(n
′)−1

h1(n)h1(n′)

h2(mm′) = ((f1m
′)(h1∂1m

′))−1

({f1m′, f0∂1m
′−1

(h1∂1m
−1)}h2(m))h2(m′)

∂2h2(nm) = h1(n)f0(n)h1∂1(m−1)f0∂1(m
−1)h1(n)f1(m−1)∂1h1(n)f1(n)h1∂1(m)

∂2h2(m)∂1h1(n−1)f0(n−1)

h2∂2(nl) = f0(n)f2(l−1)∂1h1(n)f2(l)∂3h2(l)∂1h1(n−1)f0(n−1)

Such a function h is called a quadratic f–derivation.

4.1. Proposition. Given a homotopy as above, the formulas
f ′0(n) = f0(n)∂1h1(n)
f ′1(m) = f1(m)h1∂1(m)∂2h2(m)
f ′2(l) = f2(l)h2∂2(l)
for all n ∈ N,m ∈M, l ∈ L define a morphism of 2–crossed modules.

We leave the proof as an exercise.

4.1. Homotopies of 2–crossed Complexes. Let A and A′ be two 2–crossed com-
plexes and let f be a 2–crossed complex map A → A′. A quadratic f–derivation is a
sequence of maps hi : Ai → A′i+1 such that (h2, h1) is a quadratic f–derivation of 2–
crossed modules and all the remaining maps are A1–equivariant for n = 3 and A1/∂A2–
equivariant for n ≥ 4. We say that two 2–crossed complex maps are homotopic if there
exists a quadratic f–derivation such that

f ′1(a) = f1(a)∂2h1(a) and f ′n(a) = fn(a)(hn−1∂(a))(∂hn(a)) for n ≥ 2.

In [6] Brown and Higgins extended the notion of homotopy to n–fold homotopies. In
this manner a 0–fold homotopy between two 2–crossed complexes B and C is simply
a morphism B → C. For n ≥ 1 an n–fold homotopy B → C is a pair (h, f), where
f : B → C is a morphism of crossed complexes and h is a map of degree n from B to C
i.e., h : Bk → Ck+n. 1–fold homotopy is the homotopy we have just defined above.

Moreover, we have equivalence of categories. In [4], a corollary (IV.5.7) for quadratic
complexes is given. Since we have homotopy relation for 2-crossed complexes and Corol-
lary 3.6 then we can give analogue lemma for 2–crossed complexes.

4.2. Lemma. Homotopy classes of the category of totally free 2–crossed complexes is
equivalent to the localization of 2–crossed complexes with respect to weak equivalences
which can be pictured as a functor M ,

M : Ho(X2Comp) −→ FreeX2/ '

For the proof, see [4]; for the localization of a category with respect to a class of
morphisms see [13].

5. Cofibrations in the Category of 3–crossed Complexes

We follow conventions of [2] for the definition of 3–crossed modules.

5.1. Definition. A 3–crossed module consists of a complex of groups

K
∂3 // L

∂2 // M
∂1 // N
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together with an action of N on K,L,M and an action of M on K,L and an action of
L on K so that ∂3, ∂2, ∂1 are morphisms of N,M–groups. And the M,N–equivariant
liftings

{ , }(1)(0) : L× L −→ K, { , }(0)(2) : L× L −→ K,
{ , }(2)(1) : L× L −→ K, { , }(1,0)(2) : M × L −→ K,
{ , }(2,0)(1) : M × L −→ K, { , }(0)(2,1) : L×M −→ K,
{ , } : M ×M −→ L

are called 3–dimensional Peiffer liftings. This data must satisfy the axioms (3CM1 −
3CM18) given in [2].

Here we give the definition of 3–crossed complex of groups.

5.2. Definition. A 3–crossed complex C = {Cn, dn, { , }(2)(1), { , }} is a diagram
of homomorphisms between groups

· · ·
d5 // C4

d4 // C3
d3 // C2

d2 // C1
d1 // C0

such that dn−1dn = 1 for n ≥ 2 and ({ , }(2)(1), { , }, d3, d2, d1) is a 3–crossed
module with π = cokerd1; hence ker d2 is a π–module. Moreover; Cn is a right π–
module. A map f : C → C′ between 3–crossed complexes is a family of homomorphisms
between groups for n ≥ 1

fn : Cn → C′n with fn−1dn = dnfn

such that (f4, f3, f2, f1) is a map between 3–crossed modules. Let X3Comp be the
category of 3–crossed complexes and maps, we define the homotopy groups

π1(C) = π = coker(d1)

πn(C) =
ker dn

imdn+1
, n ≥ 2.

We call a 3–crossed complex C totally free if C1 is a free group, d2 : C1 → C0 is
a free pre–crossed module, and d3, d2, d1 are given by a free 3–crossed module. Let
FreeX3 ⊂ X3Comp be the full subcategory consisting of totally free 3–crossed com-
plexes. In the second section, we introduced cofibrations in the category of 2–complexes
by use of the universal properties of free extensions. In the same way we now define
cofibrations in the category of 3–crossed complexes.

5.3. Definition. A map f : A→ B in 3–crossed complexes is a cofibration if f is a free
extension in each degree n, n ≥ 1.

Here we define a free extension in each degree n literally in the same way as in 2–
crossed complexes.

The cofibrant objects in 3–crossed complexes are exactly the totally free 3–crossed
complexes; hence we get the notation

FreeX3 = X3Compc

5.4. Lemma. Let An be an n–skeleton of a 3–crossed complex A, let fn−1 : An−1 →
Bn−1 be a morphism in 3–crossed complex and let ∂n : Xn → Bn−1 be a function. Then
a free extension f : An → Bn with basis ∂n exists provided that dn−1∂n = 1.

Proof. If X is a set, F (X) will denote the free group on X.
For n = 1 we set free product of groups;

B1 = A1 ∗ F (X1).
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For n = 2 we consider the free pre–crossed module

d2 : B2 = F ((A2 ∪X2)×B1)→ B1

with basis (f1d2, ∂2) : A2 ∪ X2 → B1 where A2 ∪ X2 is disjoint union. The inclusion

i : A2 → B2, however, is not a map between pre–crossed modules. Let U be the normal
subgroup of B2 generated by the relations

i(x)i(y)i(xy)−1 ' 1

i(xα)(f1αi(x))−1 ' 1

for x, y ∈ A2, α ∈ A1. Then d2 induces the pre–crossed module d2 : B2 = B2/U → B1.
One readily checks that d2 has the universal property of free extensions.
For n = 3, we consider the free pre–crossed module

d3 : B3 = F ((A3 ∪X3)×B2)→ B2

with basis (f2d3, ∂3) : A3 ∪X3 → B2 where A3 ∪X3 is disjoint union. The map j : A3 →
B3, is not a map between pre–crossed modules. Let V be the normal subgroup of B3

generated by the relations

j(x)j(y)j(xy)−1 ' 1

j(xα)(f1αj(x))−1 ' 1

j{ , }(v)({ , }f2(v)× f2(v))−1 ' 1

where x, y ∈ A3, α ∈ A1, v ∈ A2×A2, and { , } : B2×B2 → B3. Then d3 induces the

pre–crossed module d3 : B3 = B3/V → B2.

For n = 4, the 3–crossed module B4 is as follows. Let

B4 → B3 → B2 → B1

be the free 3–crossed module with Peiffer map { , }(2)(1) : B3 × B3 → B4 with basis

(f3d4, ∂4) : A4 ∪X4 → B3. The inclusion k : A4 → B4, however, is not a map between

3–crossed modules. Let Y be the normal subgroup of B4 generated by the relations

k(x)k(y)k(xy)−1 ' 1

k(xα)(f1αk(x))−1 ' 1

k{ , }(2)(1)(p)({ , }(2)(1)f3(p)× f3(p))−1 ' 1

where x, y ∈ A4, α ∈ A1, p ∈ A3×A3. Then above diagram induces the commutative
diagram

B3 ×B3

{,}(2)(1) //

{ , }(2)(1)
��

B4

��{{vv
vv
vv
vv
v

B2 ×B2

{,} //

{{vv
vv
vv
vv
v

B3

{{vv
vv
vv
vv
v

uukkkk
kkkk

kkkk
kkkk

kkk

B4
// B3

// B2
// B1

where B4 = B4/Y is the quotient group with induced action of B1 and diagram is a
well defined 3–crossed module. The bottom row with { , }(2)(1) is a well defined
3–crossed module and one readily checks the universal property of free extensions is
satisfied. Finally, for n ≥ 5, Bn is the direct sum of a free R–module generated by Xn
and K. Hence K is the tensor product of An and group ring of π1(A) �

5.5. Theorem. The category of 3–crossed complexes with cofibrations and weak equiva-
lences is a cofibration structure for which all objects are fibrant.
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We use the same arguments as in the proof of parallel theorem in 2–crossed complexes.
Moreover we prove that all objects are fibrant by showing that i : A → B is a strong
deformation retract morphism. A retraction r and a homotopy α : ir ' 1 is obtained by
the same formula. We construct push outs in X3Comp

B
f // B′

A

i

OO

// A′

i

OO

as follows. Let Bn be a free extension of A Then we set B′n as free extension of A′. The
basis of B′ is given in degree n by the composition

fn−1d|Xn : Xn → An−1 → Bn−1, n ≥ 2.

As a result of above theorem and lemmas we have the following corollary.

5.6. Corollary. The category of totally free 3–crossed complexes is a cofibration category.

6. Homotopy of 3–crossed Modules

Let A = K
∂3 // L

∂2 // M
∂1 // N , A′ = K′

∂3 // L′
∂2 // M ′

∂1 // N ′ be
two 3–crossed modules and f = (f0, f1, f2, f3) be a 3–crossed module morphism. A
homotopy on f is a pair h = (h1, h2, h3) of maps where h1 : N →M ′, h2 : M → L′, and
h3 : L→ K′satisfying equations below.

h1(nn′) = f0(n
′)−1

h1(n)h1(n′)

h2(mm′) = ((f1m
′)(h1∂1m

′))−1

({f1m′, f0∂1m
′−1

(h1∂1m
−1)}h2(m))h2(m′)

∂2h2(nm) = h1(n)f0(n)h1∂1(m−1)f0∂1(m
−1)h1(n)f1(m−1)∂1h1(n)f1(n)h1∂1(m)

∂2h2(m)∂1h1(n−1)f0(n−1)

∂3h3(ll′) = h2∂2(ll′)−1f2(l′−1)h2∂2(l)∂3h3(l)f2(l′)h2∂2(l′)∂3h3(l′)

h3∂3(kk′) = f3(k′)−1h3∂3(k)f3(k′)h3∂3(k′)

∂3h3(nl) = h2∂2(nl)−1f0(n)f2(l−1)∂1h1(n)f2(l)h2∂2(l)∂3h3(l)∂1h1(n−1)f0(n−1)

h3∂3(nk) = f0(n)f3(k−1)∂1h1(n)f3(k)∂3h3(k)∂1h1(n−1)f0(n−1)

Such a function h is called a 2–quadratic f–derivation.

6.1. Proposition. Given a homotopy as above, the formulas
f ′0(n) = f0(n)∂1h1(n)
f ′1(m) = f1(m)h1∂1(m)∂2h2(m)
f ′2(l) = f2(l)h2∂2(l)∂3h3(l)
f ′3(k) = f3(k)h3∂3(k)

for all n ∈ N,m ∈M, l ∈ L define a morphism of 3–crossed modules.

Proof.

f ′0(nn′) = f0(nn′)∂1h1(nn′)

= f0(n)f0(n′)∂1(f0(n
′)−1

h1(n)h1(n′))

= f0(n)f0(n′)f0(n′)−1∂1h1(n)f0(n′)∂1h1(n′))

= f0(n)∂1h1(n)f0(n′)∂1h1(n′))

= f ′0(n)f ′0(n′)
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then f ′0 is a group homomorphism.

f ′1(mm′) = f1(mm′)h1∂1(mm′)∂2h2(mm′)

= f1(m)f1(m′)h1∂1(mm′)∂2h2(mm′)

= f1(m)f1(m′)f0∂1(m
′)h1∂1(m)h1∂1(m′)∂2h2(mm′)

= f ′1(m)∂2h2(m−1)h1∂1(m−1)f1(m′)f0∂1(m
′)h1∂1(m)h1∂1(m′)∂2h2(mm′).(1)

On the other hand

∂2h2(mm′) = h1∂1(m′)−1f1(m′)−1∂2({f1m′, f0∂1m
′−1

(h1∂1m
−1)}h2(m))f1(m′)h1∂1(m′)∂2h2(m′)

= h1∂1(m′)−1f1(m′)−1〈f1m′, f0∂1m
′−1

(h1∂1m
−1)〉∂2h2(m)f1(m′)h1∂1(m′)∂2h2(m′)

= h1∂1(m′)−1f1(m′)−1f1m
′f0∂1m′−1

(h1∂1m
−1)f1(m′)−1h1∂1(m)∂2h2(m)f ′1(m′)

= h1∂1(m′)−1f0∂1m
′−1

(h1∂1m
−1)f1(m′)−1h1∂1(m)∂2h2(m)f ′1(m′).(2)

From (1) and (2) we get

f ′1(mm′) = f ′1(m)f ′1(m′)

f ′2(ll′) = f2(ll′)h2∂2(ll′)∂3h3(ll′)

= f2(l)f2(l′)h2∂2(ll′)∂3h3(ll′)

= f ′2(l)∂3h3(l−1)h2∂2(l−1)f2(l′)h2∂2(ll′)∂3h3(ll′)

= f ′2(l)f ′2(l′)

f ′3(kk′) = f3(kk′)h3∂3(kk′)

= f3(k)f3(k′)h3∂3(kk′)

= f ′3(k)h3∂3(k−1)f3(k′)h3∂3(kk′)

= f ′3(k)f ′3(k′)

Then f = (f0, f1, f2, f3) is a homomorphism. Now we show that f is a morphism of
3–crossed modules.

f ′1(nm) = f1(nm)h1∂1(nm)∂2h2(nm)

= f0(n)f1(m)h1(n∂1mn
−1)∂2h2(nm)

= f0(n)f1(m)f0(n)−1f0(n)(f0∂1(m)−1

(h1(n))h1∂1(m))h1(n)−1∂2h2(nm)

= f0(n)f1(m)f0(n)−1f0(n)f0∂1(m)−1

(h1(n))h1∂1(m)f0(n)−1h1(n)−1∂2h2(nm)

= f ′0(n)f ′1(m)

f ′2(nl) = f2(nl)h2∂2(nl)∂3h3(nl)

= f0(n)f2(l)h2∂2(nl)∂3h3(nl)

= f0(n)f2(l)f0(n)−1h2∂2(nl)∂3h3(nl)

= f ′0(n)f ′2(l)
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f ′3(nk) = f3(nk)h3∂3(nk)

= f0(n)f3(k)h3∂3(nk)

= f0(n)f3(k)f0(n)−1h3∂3(nk)

= f ′0(n)f ′3(k)

�

6.1. Homotopies of 3–crossed Complexes. Let A and A′ be two 3–crossed com-
plexes and let f be a 3–crossed complex map A → A′. A 2–quadratic f–derivation is
a sequence of maps hi : Ai → A′i+1 such that (h3, h2, h1) is a 2–quadratic f–derivation
of 3–crossed modules and all the remaining maps are A1–equivariant for n = 4 and
A1/∂A2–equivariant for n ≥ 5. We say that two 3–crossed complex maps are homotopic
if there exists a 2–quadratic f–derivation such that

f ′1(a) = f1(a)∂2h1(a) and f ′n(a) = fn(a)(hn−1∂(a))(∂hn(a)) for n ≥ 2.

Here we can write a lemma by the light of the Lemma 3.6.

6.2. Lemma. Homotopy classes of category of totally free 3–crossed complexes is equiv-
alent to the localization of 3–crossed complexes with respect to weak equivalences.
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[9] Conduché, D. Modules croisés gé néralisés de longueur 2, Journal of Pure and Applied

Algebra, 34, 155–178, 1984.

[10] Kamps, K. H. Kan–Bedingungen und abstrakte Homotopie theorie, Math. Z., 124, 215–236,

1972.
[11] Martin, Joao Faria Homotopies of 2–crossed complexes and the homotopy category of pointed

3–types, http://arxiv.org/pdf/math/0605364v1.pdf, 2011.
[12] Mutlu, A. and Porter, T. Freeness conditions for 2–crossed modules and complexes, Theory

and Applications of Categories, 4 No. 8, 174–194, 1998.

[13] Quillen D. Lecture Notes in Math., Homotopical Algebra, 11, 185–206, 1967.
[14] Radulescu–Banu, Andrei Cofibrations in Homotopy Theory, http://arxiv.org/abs/math/

0610009v4, 2009.

[15] Whitehead, J. H. C. Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, 453–496, 1949.


