WEAKLY Φ -CONTINUOUS FUNCTIONS IN GRILL TOPOLOGICAL SPACES

Ahmad Al-Omari^{*†} and Takashi Noiri[‡]

Received 28:06:2010 : Accepted 26:12:2011

Abstract

In this paper, we introduce and investigate the notion of a weakly Φ continuous function in grill topological spaces and using this function we obtain a decomposition of continuity. Also, we investigate its relationship with other related functions.

Keywords: Grill topological space, Weak Φ -continuity, Decomposition of continuity 2000 AMS Classification: 54 A 05, 54 C 10

1. Introduction

The idea of grills on a topological space was first introduced by Choquet [4]. The concept of grills has proved to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces, and the theory of compactifications and extension problems of different kinds (see [2], [3], [15] for details). In [14], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [6] defined new classes of sets and give a new decomposition of continuity in terms of grills. In this paper, we introduce and investigate the notion of a weakly Φ -continuous function of a topological space into a grill topological space. By using weak Φ -continuity, we obtain a decomposition of continuity which is analogous to the decomposition of continuity due to Levine [9].

^{*}Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan. E-mail: omarimutahl@yahoo.com

[†]Corresponding Author.

[‡]2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan. E-mail: t.noiri@nifty.com

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The power set of X will be denoted by $\mathcal{P}(X)$. A subcollection \mathcal{G} of $\mathcal{P}(X)$ is called a grill [4] on X if \mathcal{G} satisfies the following conditions:

- (1) $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$,
- (2) $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For any point x of a topological space (X, τ) , $\tau(x)$ denotes the collection of all open neighborhoods of x.

2.1. Definition. [14] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\}$ for each $A \in \mathcal{P}(X)$. The mapping Φ is called the *operator associated with the grill* \mathcal{G} and the topology τ .

2.2. Proposition. [14] Let (X, τ) be a topological space and \mathfrak{G} a grill on X. Then for all $A, B \subseteq X$:

- (1) $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,
- (2) $\Phi(A \cup B) = \Phi(A) \cup \Phi(B),$
- (3) $\Phi(\Phi(A)) \subseteq \Phi(A) = \operatorname{Cl}(\Phi(A)) \subseteq \operatorname{Cl}(A).$

Let G be a grill on a space X. Then we define a map $\Psi : \mathcal{P}(X) \to \mathcal{P}(X)$ by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$. The map Ψ is a Kuratowski closure operator. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X-U) = X-U\}$, where for any $A \subseteq X, \Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}}$ -Cl(A). For any grill \mathcal{G} on a topological space $(X, \tau), \tau \subseteq \tau_{\mathcal{G}}$. If (X, τ) is a topological space with a grill, \mathcal{G} on X, then we call it a *grill topological space* and denote it by (X, τ, \mathcal{G}) .

The concept of ideals in topological spaces is treated in the classic text of Kuratowski [8] and Vaidyanathaswamy [16]. Janković and Hamlett [7] investigated further properties of ideal spaces. An ideal \mathfrak{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties: (1) $A \in \mathfrak{I}$ and $B \subseteq A$ implies $B \in \mathfrak{I}$; (2) $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$ implies $A \cup B \in \mathfrak{I}$. An ideal topological space or simply an ideal space is a topological space (X, τ) with an ideal \mathfrak{I} on X and is denoted by (X, τ, \mathfrak{I}) . For a subset $A \subseteq X$, $A^*(\mathfrak{I}, \tau) = \{x \in X : A \cap U \notin \mathfrak{I} \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the *local function of A with respect to* \mathfrak{I} and τ [8]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $\mathrm{Cl}^*(\cdot)$ for a topology $\tau^*(\mathfrak{I}, \tau)$, called the *-topology finer than τ , is defined by $\mathrm{Cl}^*(A) = A \cup A^*$ [7].

The following lemma will be useful in the sequel.

2.3. Lemma. [12] Let (X, τ) be a topological space. Then the following hold.

- (1) \mathcal{G} is a grill on X if and only if $\mathcal{I} = \mathcal{P}(X) \mathcal{G}$ is an ideal on X,
- (2) The operators Cl^* on (X, τ, J) , where $J = \mathcal{P}(X) \mathcal{G}$ and Ψ on (X, τ, \mathcal{G}) are equal.

3. Φ -continuous functions

3.1. Definition. [6] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A subset A in X is said to be Φ -open if $A \subseteq \text{Int}(\Phi(A))$. The complement of a Φ -open set is said to be Φ -closed.

3.2. Lemma. If a subset A of a grill topological space (X, τ, \mathcal{G}) is Φ -closed, then $\Phi(\text{Int}(A)) \subseteq A$.

786

Proof. Suppose that A is Φ -closed. Then, we have $X - A \subseteq \text{Int}(\Phi(X - A)) \subseteq \text{Int}(\text{Cl}(X - A)) = X - \text{Cl}(\text{Int}(A))$. Therefore $\Phi(\text{Int}(A)) \subseteq \text{Cl}(\text{Int}(A)) \subseteq A$.

We denote by $\Phi O(X, \tau) = \{A \subseteq X : A \subseteq \text{Int}(\Phi(A))\}$ or simply write $\Phi O(X)$ for $\Phi O(X, \tau)$ when there is no chance for confusion.

3.3. Definition. A subset A of a grill topological space (X, τ, \mathcal{G}) is said to be

(1) \mathcal{G} -dense-in-itself (rep. \mathcal{G} -perfect) if $A \subseteq \Phi(A)$ (resp. $A = \Phi(A)$),

(2) \mathfrak{G} -preopen [6] if $A \subseteq \operatorname{Int}(\Psi(A))$,

(3) preopen [11] if $A \subseteq Int(Cl(A))$.

3.4. Theorem. [6] Let (X, τ, \mathfrak{G}) be a grill topological space. Then

- (1) Every Φ -open set A is \mathfrak{G} -preopen.
- (2) Every *G*-preopen set A is preopen.

3.5. Theorem. For a subset A of a grill topological space (X, τ, \mathfrak{G}) , the following conditions are equivalent:

- (1) A is Φ -open;
- (2) A is *G*-preopen and *G*-dense-in-itself.

Proof. (1) \Longrightarrow (2) By Theorem 3.4 every Φ -open set is \mathcal{G} -preopen. On the other hand $A \subseteq \operatorname{Int}(\Phi(A)) \subseteq \Phi(A)$, which show that A is \mathcal{G} -dense-in-itself.

(2) \Longrightarrow (1) By assumption, $A \subseteq Int(\Psi(A)) = Int(\Phi(A) \cup A) = Int(\Phi(A))$ and hence A is Φ -open. \Box

The following examples show that \mathcal{G} -preopen and \mathcal{G} -dense-in-itself are independent concepts.

3.6. Example. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and the grill $\mathcal{G} = \{\{c\}, \{a, c\}, \{b, c\}, X\}$. Then $A = \{a, c\}$ is a \mathcal{G} -preopen set which is not \mathcal{G} -dense-in-itself.

3.7. Example. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and the grill $\mathcal{G} = \{\{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{b, c\}, \{b, c\}, X\}$. Then $B = \{a, b\}$ is a \mathcal{G} -dense-in-itself set which is not preopen and hence it is not \mathcal{G} -preopen.

3.8. Remark. It should be noted that:

(1) It is shown in Example 2.1 of [6] that Φ -openness and openness are independent of each other.

(2) In [6], it is shown that Φ -openness \implies \mathcal{G} -openness \implies preopenness and the converses are not true in general.

3.9. Definition. [6] A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is said to be Φ -continuous if for each open set V in Y, $f^{-1}(V)$ is Φ -open in (X, τ, \mathfrak{G}) .

3.10. Theorem. For a function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is Φ -continuous;
- (2) The inverse image of each closed set of Y is Φ -closed;
- (3) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $W \in \Phi O(X)$ containing x such that $f(W) \subseteq V$;
- (4) For each $x \in X$ and each $V \in \sigma$ containing f(x), $\Phi(f^{-1}(V))$ is a neighborhood of x.

Proof. (1) \iff (2) Obvious.

(1) \implies (3) Since $V \in \sigma$ contains f(x), by (1), $f^{-1}(V) \in \Phi O(X)$. By putting $W = f^{-1}(V)$, we have $x \in W$ and $f(W) \subseteq V$.

(3) \Longrightarrow (4) Since $V \in \sigma$ contains f(x), by (3), there exists $W \in \Phi O(X)$ containing x such that $f(W) \subseteq V$. Thus, $x \in W \subseteq \operatorname{Int}(\Phi(W)) \subseteq \operatorname{Int}(\Phi(f^{-1}(V))) \subseteq \Phi(f^{-1}(V))$. Hence $\Phi(f^{-1}(V))$ is a neighborhood of x.

(4) \implies (1) Let V be any open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V \in \sigma$. By (4), there exists an open set of X such that $x \in U \subset \Phi(f^{-1}(V))$. Therefore, $x \in V$ $U \subseteq \operatorname{Int}(\Phi(f^{-1}(V)))$. This shows that $f^{-1}(V) \subseteq \operatorname{Int}(\Phi(f^{-1}(V)))$. Therefore, f is Φ continuous.

A function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be \mathcal{G} -dense-continuous (resp. \mathcal{G} -precontinuous [6], precontinuous [11]) if the inverse image of every open set is 9-dense-in-itself (resp. G-preopen, preopen).

Thus we have the following decomposition of Φ -continuity.

3.11. Theorem. For a function $f: (X, \tau, \mathfrak{G}) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is Φ -continuous;
- (2) f is G-precontinuous and G-dense-continuous.

The following two examples show that G-precontinuity and G-dense-continuity are independent of each other.

3.12. Example. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Let $\mathcal{G} = \{\{c\}, \{a, c\}, \{b, c\}, X\}$ be a grill on X. The identity function $f: (X, \tau, \mathcal{G}) \to \mathcal{G}$ (X, σ) is 9-precontinuous but it is not 9-dense-continuous.

- (i) Let $V = X \in \sigma$, then $f^{-1}(V)$ is \mathcal{G} -preopen.
- (ii) Let $V = \{a\} \in \sigma$, then $f^{-1}(V)$ is 9-preopen.
- (iii) Let $V = \{c\} \in \sigma$, $f^{-1}(V)$ is \mathcal{G} -preopen.

(iv) Let $V = \{a, c\} \in \sigma$, then $f^{-1}(V)$ is 9-preopen set which is not 9-dense-in-itself. By (i), (ii, (iii) and (iv), f is a \mathcal{G} -precontinuous function which is not \mathcal{G} -dense-continuous.

3.13. Example. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and $\mathcal{G} = \{\{a\}, \{b\}, \{a, c\}, \{a, c\}\}$ $\{a, b\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{c, b, d\}, \{a, c, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, X\}$ be a grill on X. Define a function $f: (X, \tau, \mathfrak{G}) \to (X, \tau)$ as follows: f(a) = c, f(b) = a, f(c) = b and f(d) = b. Then f is G-dense-continuous but it is not G-precontinuous.

- (i) Let $V = X \in \sigma$, then $f^{-1}(V) = X$ is 9-dense-in-itself. (ii) Let $V = \{a\} \in \sigma$, then $f^{-1}(V) = \{b\}$ is 9-dense-in-itself. (iii) Let $V = \{c\} \in \sigma$, $f^{-1}(V) = \{a\}$ is 9-dense-in-itself.
- (iv) Let $V = \{a, c\} \in \sigma$, then $f^{-1}(V) = \{a, b\}$ is G-dense-in-itself set which is not G-preopen.

By (i), (ii, (iii) and (iv), f is a \mathcal{G} -dense-continuous function which is not \mathcal{G} -precontinuous.

4. Weakly Φ -continuous functions

Let (X, τ) be a topological space and $(Y, \sigma, \mathfrak{G})$ a grill topological space. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be *weakly continuous* [9] if for each $x\in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U) \subset Cl(V)$.

4.1. Definition. A function $f:(X,\tau) \to (Y,\sigma,\mathcal{G})$ is said to be *weakly* Φ -continuous if for each $x \in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U) \subseteq \Psi(V)$.

Every weakly Φ -continuous function is weakly continuous but the converse is not true (see Example 5.1).

4.2. Definition. [1] A function $f : (X, \tau) \to (Y, \sigma, \mathfrak{I})$ is said to be *weakly* \mathfrak{I} -continuous if for each $x \in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U) \subseteq \operatorname{Cl}^*(V)$.

4.3. Remark. Let (X, τ) , (Y, σ) be two topological spaces and \mathcal{G} a grill on Y. If $\mathcal{I} = \mathcal{P}(Y) - \mathcal{G}$, then by Lemma 2.3, a weakly Φ -continuous function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ coincides with the weakly \mathcal{I} -continuous function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$.

4.4. Definition. A grill topological space (X, τ, \mathcal{G}) is called an $A\mathcal{G}$ -space if $Cl(A) \subseteq \Phi(A)$ for every open set $A \subseteq X$.

4.5. Remark. An ideal topological space (X, τ, \mathfrak{I}) is called an FI^* -space [1] if $Cl(A) \subseteq A^*$ for every $A \in \tau$. Let (X, τ, \mathfrak{G}) be a grill topological space and $\mathfrak{I} = \mathfrak{P}(X) - \mathfrak{G}$ the ideal on X. If (X, τ, \mathfrak{G}) is an A \mathfrak{G} -space, then (X, τ, \mathfrak{I}) is the FI^* -space.

4.6. Theorem. For a grill topological space $(Y, \sigma, \mathfrak{G})$, the following properties are equivalent:

(1) $(Y, \sigma, \mathfrak{G})$ is an A \mathfrak{G} -space; (2) $\sigma \setminus \{\phi\} \subseteq \mathfrak{G}$; (3) $\Phi(V) = \operatorname{Cl}(V) = \Psi(V)$ for every $V \in \sigma$.

Proof. (1) \Longrightarrow (2) Let $(Y, \sigma, \mathfrak{G})$ be an $A\mathfrak{G}$ -space. Suppose that there exists $U \in \sigma \setminus \{\phi\}$ such that $U \notin \mathfrak{G}$. Then, there exist $x \in U$ such that $U \cap U = U \notin \mathfrak{G}$. Therefore, $x \notin \Phi(U)$ and $x \in \operatorname{Cl}(U) \setminus \Phi(U)$. This shows that $\operatorname{Cl}(U) \notin \Phi(U)$. This is contrary that $(Y, \sigma, \mathfrak{G})$ is an $A\mathfrak{G}$ -space.

(2) \Longrightarrow (3) For any $V \in \sigma$, in case $V = \phi$ (3) is obvious. In case $V \neq \phi$, $V \in \mathcal{G}$. Let $x \in \operatorname{Cl}(V)$. Then $\phi \neq U \cap V \in \sigma$ for every $U \in \sigma(x)$. By (2), $U \cap V \in \mathcal{G}$ and hence $x \in \Phi(V)$. Therefore, $\operatorname{Cl}(V) \subseteq \Phi(V)$ for any $V \in \sigma$. Moreover, we have $\operatorname{Cl}(V) \subseteq \Phi(V) \subseteq \Psi(V)$. Since $\sigma \subseteq \sigma_{\mathcal{G}}$, $\operatorname{Cl}(V) \supseteq \Psi(V)$ and $\Phi(V) = \operatorname{Cl}(V) = \Psi(V)$.

 $(3) \Longrightarrow (1)$ This is obvious.

4.7. Theorem. A function $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$ is weakly Φ -continuous if and only if for each open set $V \subseteq Y$, $f^{-1}(V) \subseteq \text{Int}(f^{-1}(\Psi(V)))$.

Proof. Necessity. Let V be any open set of Y and $x \in f^{-1}(V)$. Since f is weakly Φ continuous, there exists an open set U such that $x \in U$ and $f(U) \subseteq \Psi(V)$. Hence $x \in U \subseteq$ $f^{-1}(\Psi(V))$ and $x \in \text{Int}(f^{-1}(\Psi(V)))$. Therefore, we obtain $f^{-1}(V) \subseteq \text{Int}(f^{-1}(\Psi(V)))$.

Sufficiency. Let $x \in X$ and V be an open set of Y containing f(x). Then $x \in f^{-1}(V) \subseteq \operatorname{Int}(f^{-1}(\Psi(V)))$. Let $U = \operatorname{Int}(f^{-1}(\Psi(V)))$. Then $x \in U$ and $f(U) = f(\operatorname{Int}(f^{-1}(\Psi(V)))) \subseteq f(f^{-1}(\Psi(V))) \subseteq \Psi(V)$. This shows that f is weakly Φ -continuous.

4.8. Definition. A subset A of a topological space X is said to be *semi-open* [10] if $A \subseteq Cl(Int(A))$.

The following theorem gives characterizations of weakly Φ -continuous functions.

4.9. Theorem. Let $(Y, \sigma, \mathfrak{G})$ be an AG-space. Then for a function $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$, the following properties are equivalent:

- (1) f is weakly Φ -continuous;
- (2) For every semi-open set V in Y, there exists an open set U in Y such that $U \subseteq V$ and $f^{-1}(U) \subseteq \text{Int}(f^{-1}(\Phi(V)));$

(3) $f^{-1}(U) \subset \operatorname{Int}(f^{-1}(\Phi(U)))$ for every open set U in Y.

Proof. (1) \Longrightarrow (2) Suppose f is weakly Φ -continuous and V is semi-open in (Y, σ) . Since V is semi-open in (Y, σ) , there exists an open set U in (Y, σ) such that $U \subseteq V \subseteq \operatorname{Cl}(U)$. By Theorem 4.6, $\Phi(U) = \operatorname{Cl}(U) = \Psi(U)$. Therefore $U \subseteq V \subseteq \Phi(U)$ so that $\Phi(U) = \Phi(V) = \Psi(U)$. By Theorem 4.7, $f^{-1}(U) \subseteq \operatorname{Int}(f^{-1}(\Psi(U))) = \operatorname{Int}(f^{-1}(\Phi(V)))$, which proves (2).

 $(2) \Longrightarrow (3)$ Clear since every open set is semi-open.

(3) \Longrightarrow (1) Since $\Phi(U) \subseteq \Psi(U)$, the proof follows from Theorem 4.7.

4.10. Theorem. Let $(Y, \sigma, \mathfrak{G})$ be an A \mathfrak{G} -space. Then for a function $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$, the following properties are equivalent:

- (1) f is weakly Φ -continuous;
- (2) $\operatorname{Cl}(f^{-1}(U)) \subseteq f^{-1}(\Psi(U))$ for each open set $U \subseteq Y$;
- (3) f is weakly continuous.

Proof. (1) \Longrightarrow (2) Suppose $x \in \operatorname{Cl}(f^{-1}(U)) - f^{-1}(\Psi(U))$ for some open set U of Y. Then $x \in \operatorname{Cl}(f^{-1}(U))$ and $x \notin f^{-1}(\Psi(U))$. Now $x \notin f^{-1}(\Psi(U))$ implies that $f(x) \notin \Psi(U) = \operatorname{Cl}(U)$, by Theorem 4.6. Therefore, there exists an open set W containing f(x) such that $W \cap U = \phi$; hence $\operatorname{Cl}(W) \cap U = \phi$ and so $\Psi(W) \cap U = \phi$. Since f is weakly Φ -continuous, there is an open set V containing x in X such that $f(V) \subseteq \Psi(W)$ and so $f(V) \cap U = \phi$. Now $x \in \operatorname{Cl}(f^{-1}(U))$ implies that $V \cap f^{-1}(U) \neq \phi$ and so $f(V) \cap U \neq \phi$ which is a contradiction. This completes the proof.

 $(2) \Longrightarrow (3)$ Since (Y, σ, \mathcal{G}) is an A \mathcal{G} -space, by Theorem 4.6 and (2) we have $\operatorname{Cl}(f^{-1}(U)) \subseteq f^{-1}(\operatorname{Cl}(U))$ for every $U \in \sigma$. It follows from [13, Theorem 7] that f is weakly continuous.

(3) \Longrightarrow (1) It is shown in [9, Theorem 1] that $f: (X, \tau) \to (Y, \sigma)$ is weakly continuous if and only if $f^{-1}(V) \subseteq \text{Int}(f^{-1}(\text{Cl}(V)))$ for every $V \in \sigma$. Since (Y, σ, \mathcal{G}) is an Ag-space, by Theorem 4.6 $\text{Cl}(V) = \Psi(V)$ for every $V \in \sigma$ and by Theorem 4.7, f is weakly Φ -continuous.

4.11. Definition. A grill topological space (X, τ, \mathcal{G}) is called an *RG-space* if for each $x \in X$ and each open neighbourhood *V* of *x*, there exists an open neighbourhood *U* of *x* such that $x \in U \subseteq \Psi(U) \subseteq V$.

4.12. Remark. Let (X, τ, \mathfrak{G}) be a grill topological space and $\mathfrak{I} = \mathfrak{P}(X) - \mathfrak{G}$ the ideal on X. If (X, τ, \mathfrak{G}) is an RG-space, then (X, τ, \mathfrak{I}) is the RI-space given in [1, Definition 2.2].

4.13. Theorem. Let $(Y, \sigma, \mathfrak{G})$ be an R \mathfrak{G} -space. Then $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$ is weakly Φ -continuous if and only if f is continuous.

Proof. The sufficiency is clear.

Necessity. Let $x \in X$ and V be an open set of Y containing f(x). Since Y is an RG-space, there exists an open set W of Y such that $f(x) \in W \subseteq \Psi(W) \subseteq V$. Since f is weakly Φ -continuous, there exists an open set U such that $x \in U$ and $f(U) \subseteq \Psi(W)$. Hence we obtain that $f(U) \subseteq \Psi(W) \subseteq V$. Thus, f is continuous. \Box

We now introduce a complementary form of weak Φ -continuity.

4.14. Definition. Let A be a subset of a grill topological space $(Y, \sigma, \mathfrak{G})$. The \mathfrak{G} -frontier of A is defined as $\Phi(A) - \operatorname{Int}(A)$ and is denoted by $fr_{\mathfrak{G}}(A)$.

4.15. Definition. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{G})$ is said to be *weakly*^{*} Φ -continuous if for each open V in Y, $f^{-1}(fr_G(V))$ is closed in X.

790

4.16. Definition. [1] A function $f: (X, \tau) \to (Y, \sigma, \mathfrak{I})$ is said to be *weakly*^{*} \mathfrak{I} -continuous if for each open V in Y, $f^{-1}(fr^*(V))$ is closed in X, where $fr^*(V)$ is the *-frontier of V defined by $V^* - int(V)$.

4.17. Remark. Let (X, τ) , (Y, σ) be two topological spaces and \mathcal{G} a grill on Y. If $\mathcal{I} = \mathcal{P}(Y) - \mathcal{G}$, then by Lemma 2.3, a weakly^{*} Φ -continuous function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ coincides with the weakly^{*} \mathcal{I} -continuous function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$.

4.18. Theorem. A function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ is continuous if and only if it is both weakly Φ -continuous and weakly^{*} Φ -continuous.

Proof. Necessity. The weak Φ -continuity is clear. By Proposition 3.7, $\Phi(A)$ is closed in $(Y, \sigma, \mathfrak{G})$ for every subset A of Y and $fr_{\mathfrak{G}}(A)$ is closed in Y. Therefore, f is weakly^{*} Φ -continuous.

Sufficiency. Let $x \in X$ and V be any open set of Y containing f(x). Since f is weakly Φ -continuous, there exists an open set U containing x such that $f(U) \subseteq \Psi(V)$. Now $fr_G(V) = \Phi(V) - \operatorname{Int}(V)$ and thus $f(x) \notin fr_G(V)$. Hence $x \notin f^{-1}(fr_G(V))$ and $U - f^{-1}(fr_G(V))$ is an open set containing x since f is weakly^{*} Φ -continuous. The proof will be complete when we show $f(U - f^{-1}(fr_G(V))) \subseteq V$. To this end let $z \in U - f^{-1}(fr_G(V))$. Then $z \in U$ and hence $f(z) \in \Psi(V)$. But $z \notin f^{-1}(fr_G(V))$ and thus $f(z) \notin fr_G(V) = \Phi(V) - V = \Psi(V) - V$. This implies that $f(z) \in V$.

The following two examples show that weak Φ -continuity and weak^{*} Φ -continuity are independent of each other.

4.19. Example. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, d\}\}$ and $\sigma = \{\phi, X, \{b\}, \{b, d\}\}$. Let $\mathcal{G} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ be a grill on X. The identity function $f : (X, \tau) \to (X, \sigma, \mathcal{G})$ is weakly^{*} Φ -continuous but it is not weakly Φ -continuous.

- (i) Let $V = X \in \sigma$, then $\Phi(V) = \{a, c\}$ and $fr_{\mathfrak{I}}(V) = \Phi(V) \operatorname{Int}(V) = \phi$ and hence $f^{-1}(fr_{\mathfrak{I}}(V))$ is closed.
- (ii) Let $V = \{b\} \in \sigma$, then $\Phi(V) = \phi$ and $fr_{\mathfrak{I}}(V) = \Phi(V) \operatorname{Int}(V) = \phi$ and hence $f^{-1}(fr_{\mathfrak{I}}(V))$ is closed.
- (iii) Let $V = \{b, d\} \in \sigma$, then $\Phi(V) = \phi$ and $fr_{\mathfrak{G}}(V) = \Phi(V) \operatorname{Int}(V) = \phi$ and hence $f^{-1}(fr_{\mathfrak{G}}(V))$ is closed.

By (i), (ii) and (iii), f is weakly^{*} Φ -continuous. On the other hand, for $V = \{b\} \in \sigma$, $\Phi(V) = \phi$ and $\Psi(V) = \{b\}$. Then, there exists only one open set $U = X \in \tau$ such that $b \in U$. Since $f(U) = X \notin \Psi(V)$, f is not weakly Φ -continuous.

4.20. Example. Let $X = \{a, b\}$ and $\tau = \{\phi, X, \{a\}\}$. Let $\mathcal{G} = \{\{a\}, X\}$ be a grill on X. Define a function $f : (X, \tau) \to (X, \tau, \mathcal{G})$ as f(a) = b and f(b) = a. Then f is weakly Φ -continuous but it is not weakly^{*} Φ -continuous.

- (i) Let $a \in X$ and $V \in \tau$ such that $f(a) = b \in V = X$, then there exists an open set $U = \{a\}$ such that $a \in U$ and $f(U) = \{b\} \subseteq \Psi(V) = X$.
- (ii) Let $b \in X$ and $V \in \tau$ such that $f(b) = a \in V$, then $V = \{a\}$ or $V = \{X\}$, then there exists an open set U = X such that $b \in U$ and $f(U) = X \subseteq \Psi(V) = X$.

By (i) and (ii), f is weakly Φ -continuous. On the other hand, for $V = \{a\} \in \tau$, then $\Phi(V) = \{a, b\}$ and $fr_{\mathfrak{G}}(V) = \Phi(V) - \operatorname{Int}(V) = \{b\}$, hence $f^{-1}(fr_{\mathfrak{G}}(V)) = \{a\}$ which is not closed. Hence f is not weakly^{*} Φ -continuous.

4.21. Proposition. If $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$ is precontinuous and $\operatorname{Cl}(f^{-1}(V)) \subseteq f^{-1}(\Psi(V))$ for each open set $V \subseteq Y$, then f is weakly Φ -continuous.

Proof. For any point $x \in X$ and any open set $V \subseteq Y$ containing f(x), by the hypothesis, we have $\operatorname{Cl}(f^{-1}(V)) \subseteq f^{-1}(\Psi(V))$. Since f is precontinuous, $x \in f^{-1}(V) \subseteq \operatorname{Int}(\operatorname{Cl}(f^{-1}(V)))$ and hence there exists an open set $U \subseteq X$ such that $x \in U \subseteq \operatorname{Cl}(f^{-1}(V)) \subseteq f^{-1}(\Psi(V))$. Thus $f(U) \subseteq \Psi(V)$. This implies that f is weakly Φ -continuous. \Box

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be θ -continuous at x_0 [5] if for each open set V of $f(x_0)$, there exists an open set U containing x_0 such that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. The function f is said to be θ -continuous if it is θ -continuous at each point in X.

4.22. Theorem. Let $(Y, \sigma, \mathfrak{G})$ be an A \mathfrak{G} -space. For a function $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$, the implications $(1) \Longrightarrow (2) \iff (3)$ hold. If (X, τ) is regular, they are all equivalent.

- (1) f is θ -continuous;
- (2) f is weakly Φ -continuous;
- (3) f is weakly continuous.

Proof. (1) \Longrightarrow (2) Let f be θ -continuous, $x \in X$ and V any open set of Y containing f(x). Since f is θ -continuous, there exists an open set U containing x such that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. Then since $(Y, \sigma, \mathfrak{G})$ is an $A\mathfrak{G}$ -space, by Theorem 4.6 $f(U) \subseteq f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V) = \Psi(V)$. Thus f is weakly Φ -continuous.

 $(2) \iff (3)$ This follows from Theorem 4.10.

(3) \Longrightarrow (1) Suppose that (X, τ) is regular. Let f be weakly continuous, $x \in X$ and V any open set of Y containing f(x). Then, there exists an open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}(V)$. Since (X, τ) is a regular space, there exists an open set H of x such that $x \in H \subseteq \operatorname{Cl}(H) \subseteq U$. Then $f(\operatorname{Cl}(H)) \subseteq \operatorname{Cl}(V)$. Thus f is θ -continuous. \Box

4.23. Theorem. Let $(Y, \sigma, \mathfrak{G})$ be a grill topological space such that $Y - V \subseteq \Phi(V)$ for every $V \in \sigma$. Then

- (1) Every function $f: (X, \tau) \to (Y, \sigma, \mathcal{G})$ is θ -continuous and weakly Φ -continuous.
- (2) A function $f : (X, \tau) \to (Y, \sigma, \mathfrak{G})$ is continuous if and only if it is weakly^{*} Φ continuous.

Proof. (1) By hypothesis $\Psi(V) = Y$ for every $V \in \sigma$ and every function f is weakly Φ -continuous. Furthermore $\operatorname{Cl}(V) = Y$ for every $V \in \sigma$ since $\Psi(V) \subseteq \operatorname{Cl}(V)$. Thus every function f is θ -continuous.

(2) By (1), every function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ is weakly Φ -continuous and by Theorem 4.18, f is continuous.

5. Examples

It is well known that continuity implies both θ -continuity and precontinuity and also θ -continuity implies weak continuity. Therefore, we have the following diagram.

5.1. Example. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, d\}\}$ and $\sigma = \{\phi, X, \{b\}, \{b, d\}\}$. Let $\mathcal{G} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ be a grill on X. The identity function $f : (X, \tau) \to (X, \sigma, \mathcal{G})$ is θ -continuous but it is not weakly Φ -continuous (for more details see [1, Example 2.1] and Example 4.19). **5.2. Example.** Let $X = \{a, b\}$ and $\tau = \{\phi, X, \{a\}\}$. Let $\mathcal{G} = \{\{a\}, X\}$ be a grill on X. Define a function $f : (X, \tau) \to (X, \tau, \mathcal{G})$ as follows: f(a) = b and f(b) = a. Then f is weakly Φ -continuous but it is not continuous (for more details see Example 4.20).

5.3. Example. Let $X = \{a, b\}$ and $\tau = \{\phi, X, \{a\}\}$. Let $\mathcal{G} = \{\{a\}, X\}$ be a grill on X. Define a function $f : (X, \tau) \to (X, \tau, \mathcal{G})$ as follows: f(a) = b and f(b) = a. Then f is weakly Φ -continuous but it is not Φ -continuous, since $f^{-1}(\{a\}) = \{b\}$ is not Φ -open (for more details see Example 4.20).

5.4. Example. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b, d\}, \{a, b, d\}\}$, $Y = \{a, b\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Let $\mathcal{G} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ be a grill on X. Define a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ as follows: f(a) = f(b) = f(d) = a and f(c) = b. Then f is precontinuous since $f^{-1}(\{a\}) = \{a, b, d\}$ is preopen. But it is not Φ -continuous, since $f^{-1}(\{a\}) = \{a, b, d\}$ is not Φ -open.

Acknowledgement

The authors wish to thank the referees for useful comments and suggestions.

References

- Açikgöz, A., Noiri, T. and Yüksel Ş. A decomposition of continuity in ideal topological spaces, Acta Math. Hungar. 105 (4), 285–289, 2004.
- [2] Chattopadhyay, K.C., Njåstad, K.C. and Thron W.J. Merotopic spaces and extensions of closure spaces, Can. J. Math. 35 (4), 613–629, 1983.
- [3] Chattopadhyay, K.C. and Thron, W.J. Extensions of closure spaces, Can. J. Math. 29 (6), 1277–1286, 1977.
- [4] Choqet, G. Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris 224, 171–173, 1947.
- [5] Fomin, S. Extensions of topological spaces, Ann. of Math. 44, 471-480, 1943.
- [6] Hatir, E. and Jafari, S, On some new calsses of sets and a new decomposition of continuity via grills, J. Ads. Math. Studies. 3 (1), 33–40, 2010.
- [7] Janković, D. and Hamlet, T. R. New topologies from old via ideals, Amer. Math. Monthly 97, 295–310, 1990.
- [8] Kuratowski, K. Topology I (Academic Press, New York, 1966).
- [9] Levine, N. A decomposition of continuity in topological spaces, Amer Math. Monthly 68, 36–41, 1961.
- [10] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 44–46, 1963.
- [11] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53, 47–53, 1982.
- [12] Renukadevi, V. Relation between ideals and grills, J. Adv. Res. Pure Math. 2 (4), 9–14, 2010.
- [13] Rose, D. A. Weak continuity and almost continuity, Internat. J. Math. Math. Sci. 7, 311– 318, 1984.
- [14] Roy, B. and Mukherjee, M. N. On a typical topology induced by a grill, Soochow J. Math. 33 (4), 771–786, 2007.
- [15] Thron, W. J. Proximity structure and grills, Math. Ann. 206, 35–62, 1973.
- [16] Vaidyanathaswamy, R. Set Topology (Chelsea Publishing Company, New York, 1960).