THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS

Nazmiye Alemdar∗† and Osman Mucuk[∗]

Received 18 : 11 : 2010 : Accepted 20 : 12 : 2011

Abstract

In this paper we prove that the group structure of a group object in the category of groupoids lifts to a covering groupoid. We also prove similar results for a R-module object in the category of groupoids.

Keywords: Group-groupoid, Covering groupoid, Topological R-module, R-module groupoid.

2000 AMS Classification: 13 J xx, 20 L 05, 22 A 05, 57 M 10.

1. Introduction

The theory of covering spaces is one of the most interesting theories in algebraic topology. Covering groupoids play an important role in the applications of groupoids (see for example [2] and [7]). The fundamental groupoid functor gives an equivalence of categories between the category of covering spaces of a reasonably nice space X and the category of covering groupoids of $\pi_1(X)$.

We know from [2, Proposition 10.4.3] that if G is a transitive groupoid, x is an object of G and C is a subgroup of the object group $G(x)$, then there is a covering morphism $p: (\widetilde{G}_C, \widetilde{x}) \to (G, x)$ of groupoids with characteristic group C.

In this paper using this existence of covering groupoids we prove that if G is a group object in the category of groupoids which is also called a group-groupoid, the underlying groupoid of G is transitive and $p: \widetilde{G} \to G$ is a covering morphism of groupoids, then \widetilde{G} also becomes a group-groupoid. This result gives an easy way of proving that the group structure of a topological group X lifts to its simply connected covering space, i.e., if X is an additive topological group, $p: \widetilde{X} \to X$ is a simply connected covering map, $0 \in X$ is the identity element and $\widetilde{0} \in \widetilde{X}$ is such that $p(\widetilde{0}) = 0$, then \widetilde{X} becomes a topological group with identity $\tilde{0}$ such that p is a morphism of topological groups.

We also prove similar results for R-module objects in the category of groupoids.

[∗]Erciyes University, Faculty of Science, Department of Mathematics, Kayseri 38039, Turkey. E-mail: (N. Alemdar) nakari@erciyes.edu.tr (O. Mucuk) mucuk@erciyes.edu.tr

[†]Corresponding Author.

The problem of universal covers of non-connected topological groups was first studied by Taylor in $[14]$. He proved that a topological group X determines an obstruction class k_X in $H^3(\pi_0(X), \pi_1(X, e))$, and that the vanishing of k_X is a necessary and sufficient condition for the lifting of the group structure to a universal cover. In [9] an analogous algebraic result is given in terms of crossed modules and group objects in the category of groupoids (see also [4] for a revised version, which generalizes these results and shows the relation with the theory of obstructions to extensions for groups).

2. Preliminaries on covering groupoids

We assume that all topological spaces X are locally path connected and semi-locally 1-connected, so that each path component of X admits a simply connected cover. Recall that a covering map $p: X \to X$ of connected spaces is called *universal* if it covers every cover of X in the sense that if $q: \widetilde{Y} \to X$ is another cover of X then there exists a map $r: \widetilde{X} \to \widetilde{Y}$ such that $p = qr$ (hence r becomes a cover). A covering map $p: \widetilde{X} \to X$ is called *simply connected* if \widetilde{X} is simply connected. So a simply connected cover is a universal cover.

A subset V of X is called *liftable* if it is open, path connected and V lifts to each cover of X, that is, if $p: \widetilde{X} \to X$ is a covering map, $i: V \to X$ is the inclusion map, and $\widetilde{x} \in \widetilde{X}$ satisfies $p(\tilde{x}) = x \in V$, then there exists a map (necessarily unique) $\hat{i}: V \to \tilde{X}$ such that $p\hat{i} = i$ and $i(x) = \tilde{x}$.

It is easy to see that V is liftable if and only if it is open, path connected and for each $x \in V$ the fundamental group $\pi_1(V, x)$ is mapped to the singleton by the morphism induced by the inclusion map $i: V \to X$.

Note that if X is a semi-locally simply connected topological space, then each point $x \in X$ has a liftable neighbourhood. So if X is a semi-locally simply connected topological space then each $x \in X$ has a liftable neighbourhood.

A groupoid is a small category in which each morphism is an isomorphism [2]. So a groupoid G has a set G of morphisms, which we call just *elements* of G , a set $Ob(G)$ of *objects* together with maps $s, t: G \to Ob(G)$ and $\epsilon: Ob(G) \to G$ such that $s\epsilon = t\epsilon =$ $1_{\text{Ob}(G)}$. The maps s, t are called *initial* and final point maps respectively and the map ϵ is called *object inclusion*. If $a, b \in G$ and $t(a) = s(b)$, then the *composite ab* exists such that $s(ab) = s(a)$ and $t(ab) = t(b)$. So there exists a partial composition defined by the map $G_t \times_s G \to G$, $(a, b) \mapsto ab$, where $G_t \times_s G$ is the pullback of t and s. Further, this partial composition is associative, for $x \in Ob(G)$ the element $\epsilon(x)$ denoted by 1_x acts as the identity and each element a has an inverse a^{-1} such that $s(a^{-1}) = t(a)$, $t(a^{-1}) = s(a)$, $aa^{-1} = (\epsilon s)(a), a^{-1}a = (\epsilon t)(a).$ The map $G \to G, a \mapsto a^{-1}$ is called the *inversion*.

In a groupoid G for $x, y \in Ob(G)$, we write $G(x, y)$ for $s^{-1}(x) \cap t^{-1}(y)$ and say that G is transitive if for all $x, y \in Ob(G)$, $G(x, y)$ is not empty. For $x \in Ob(G)$ we write G_x for $s^{-1}(x)$ and call G_x the *star* of G at x. The set $s^{-1}(x) \cap t^{-1}(x)$ is a group called the *object group* at x, and denoted by $G(x)$.

Let G and H be groupoids. A morphism from H to G is a pair of maps $f: H \to G$ and f_0 : $Ob(H) \rightarrow Ob(G)$ such that $s_G \circ f = f_0 \circ s_H$, $t_G \circ f = f_0 \circ t_H$ and $f(ab) = f(a)f(b)$ for all $(a, b) \in H_t \times_s H$. For such a morphism we simply write $f: H \to G$.

A morphism $p: \widetilde{G} \to G$ of groupoids is called a *covering morphism* and \widetilde{G} a *covering* groupoid of G if for each $\tilde{x} \in Ob(\tilde{G})$ the restriction $(\tilde{G})_{\tilde{x}} \to G_{p(\tilde{x})}$ of p is bijective. A covering morphism $p: \widetilde{G} \to G$ is called *transitive* if both groupoids \widetilde{G} and G are transitive.

A transitive covering morphism $p: \widetilde{G} \to G$ is called *universal* if \widetilde{G} covers every cover of G, i.e., if for every covering morphism $q: \tilde{H} \to G$ there is a unique morphism of groupoids \tilde{q} : $\tilde{G} \rightarrow \tilde{H}$ such that $q\tilde{q} = p$ (and hence \tilde{q} is also a covering morphism), this is equivalent to that for $\widetilde{x}, \widetilde{y} \in Ob(\widetilde{G})$ the set $\widetilde{G}(\widetilde{x}, \widetilde{y})$ has not more than one element.

A morphism $p: (\widetilde{G}, \widetilde{x}) \to (G, x)$ of pointed groupoids is called a *covering morphism* if the morphism $p: \widetilde{G} \to G$ is a covering morphism.

2.1. Theorem. [2, 10.6.1] Let X be a topological space whose underlying space has a simply connected cover. Then the slice category TCov/X of covering spaces of X is equivalent to the category $\mathsf{GpdCov}/\pi_1(X)$ of the covering groupoids of $\pi_1(X)$.

Let $p: (\tilde{G}, \tilde{x}) \to (G, x)$ be a covering morphism of groupoids. We say a morphism $f: (H, z) \to (G, x)$ lifts to p if there exists a unique morphism $\tilde{f}: (H, z) \to (\tilde{G}, \tilde{x})$ such that $f = p\tilde{f}$. For any groupoid morphism $p: \tilde{G} \to G$ and object \tilde{x} of \tilde{G} we call the subgroup $p(\widetilde{G}(\widetilde{x}))$ of $G(p\widetilde{x})$ the *characteristic group* of p at \widetilde{x} .

The following result gives a criterion on the lifting of morphisms [2, 10.3.3].

2.2. Theorem. Let $p: (\tilde{G}, \tilde{x}) \to (G, x)$ be a covering morphism of groupoids and $f: (H, z) \to (H, z)$ (G, x) a morphism of pointed groupoids such that H is transitive. Then the morphism $f: (H, z) \to (G, x)$ lifts to a morphism $\tilde{f}: (H, z) \to (\tilde{G}, \tilde{x})$ if and only if the characteristic group of f is contained in that of p; and if this lifting exists, then it is unique.

As a result of this Theorem we have the following corollary

2.3. Corollary. Let $p: (\widetilde{G}, \widetilde{x}) \to (G, x)$ and $q: (\widetilde{H}, \widetilde{z}) \to (G, x)$ be transitive covering morphisms with characteristic groups C and D respectively. If $C \subseteq D$, then there is a unique covering morphism $r: (\widetilde{G}, \widetilde{x}) \to (\widetilde{H}, \widetilde{z})$ such that $p = qr$. If $C = D$, then r is an $isomorphism.$

For the existence of the covering groupoid we need the idea of an action groupoid. Let G be a groupoid. An action of G on a set consists of a set X, a function $\omega: X \to Ob(G)$ and a partial function $X_\omega \times_s G \to X$, $(x, a) \mapsto xa$ defined on the pullback $X_\omega \times_s G$ of ω and p such that

i. $\omega(xa) = t(a)$ ii. $x(ab) = (xa)b$ iii. $x1_{\omega(x)} = x$.

As an example if $p: \widetilde{G} \to G$ is a covering morphism of groupoids, $X = Ob(\widetilde{G})$ and $\omega = O_p$, then we obtain an action of G on X via ω by assigning to $x \in X$ and $a \in G_{p(x)}$ the target of the unique lift of a with source x .

Given such an action, the *action groupoid* $G \ltimes X$ is defined to be the groupoid with object set X and elements of $(G \ltimes X)(x, y)$ the pairs (a, x) such that $a \in G(\omega(x), \omega(y))$ and $xa = y$. The groupoid composite is defined to be

$$
(a, x) \circ (b, y) = (ab, x).
$$

The following result is from [2, 10.4.3]. We need some details of the proof for later.

2.4. Theorem. Let x be an object of a transitive groupoid G , and let C be a subgroup of the object group $G(x)$. Then there exists a covering morphism q: $(\tilde{G}_C, \tilde{x}) \rightarrow (G, x)$ with characteristic group C.

Proof. Let X be the set of (left) cosets $Ca = \{Ca \mid c \in C\}$ for a in G_x and $\omega: X \to Ob(G)$ map Ca to the final point of a. Then G acts on X by $(Ca)g = Cag$. The required groupoid \widetilde{G}_C is taken to be the action groupoid $G \ltimes X$. Then the projection q: $\widetilde{G}_C \to G$ given

on objects by $\omega: X \to Ob(G)$ and on elements by $(g, Ca) \mapsto g$, is a covering morphism of groupoids with the characteristic group C. The required object $\tilde{x} \in \tilde{G}_C$ is the coset $C.$

3. Covering groupoids of group-groupoids

A group-groupoid, which is also known in the literature as a 2-group, is a group object in the category of groupoids. This is an internal category in the category of groups (Porter [12]). The category of group-groupoids is equivalent to the category of crossed modules (Brown and Spencer [5]). There are a large number of papers in the literature under the name of 2-groups. Recently the ring object in the category of groupoids and their coverings have been developed by Mucuk in [10].

The formal definition of a group-groupoid we use is given by Brown and Spencer in [5] under the name *G-groupoid* as follows:

3.1. Definition. A *group-groupoid* G is a groupoid endowed with a group structure such that the following maps which are called respectively addition, inverse and unit, are morphisms of groupoids:

i. $m: G \times G \rightarrow G$, $(a, b) \mapsto a + b$; ii. $u: G \to G$, $a \mapsto -a$;

iii. $0: {\{\star\}} \to G$, where ${\{\star\}}$ is singleton.

In a group-groupoid G, for $a, b \in G$ the groupoid composite is denoted by ab when $s(b) = t(a)$ and the group addition by $a + b$.

Note that the condition (i) is equivalent to the usual interchange law

$$
(ac+bd) = (a+b)(c+d)
$$

for $a, b, c, d \in G$ whenever ac and bd are defined, and the condition (iii) means that if 0 is the identity element of $Ob(G)$, then 1_0 is the identity of G.

From Definition 3.1, the following properties, which we need in some detail, follow.

3.2. Proposition. Let G be a group groupoid:

i. if $a \in G(x, y)$ and $b \in G(u, v)$, then $a + b \in G(x + u, y + v)$; ii. $(a + b)^{-1} = a^{-1} + b^{-1}$ for $a, b \in G$; iii. $-(ab) = (-a)(-b)$ for $a, b \in G$ such that ab is defined; iv. if $a \in G(x, y)$, then $-a \in G(-x, -y)$; v. $(-a)^{-1} = -a^{-1}$ for $a \in G$; vi. $1_x + 1_y = 1_{x+y}$ for $x, y \in Ob(G)$; vii. $s(a + b) = s(a) + s(b)$ for $a, b \in G$; viii. $t(a + b) = t(a) + t(b)$ for $a, b \in G$.

Proof. (i) Since in a group-groupoid G, the group addition $m: G \times G \to G$, $(a, b) \mapsto a+b$ is a morphism of groupoids, if $a \in G(x, y)$ and $b \in G(u, v)$, then we have that $a + b \in$ $G(x+u, y+v).$

(ii) By the interchange law for $a, b \in G$

$$
(a+b)(a^{-1}+b^{-1}) = (aa^{-1}) + (bb^{-1}) = 1_{s(a)} + 1_{s(b)} = 1_{s(a+b)}
$$

and

$$
(a^{-1} + b^{-1})(a+b) = (a^{-1}a) + (b^{-1}b) = 1_{t(a)} + 1_{t(b)} = 1_{t(a+b)}.
$$

Therefore it follows that $(a + b)^{-1} = a^{-1} + b^{-1}$ for $a, b \in G$.

(iii), (iv) and (v) follow from the fact that the map $G \to G$, $a \mapsto -a$ is a morphism of groupoids.

(vi), (vii) and (viii) follow from the fact that the addition +: $G \times G \rightarrow G$ is a morphism of groupoids. \Box

Let \tilde{G} and G be two group-groupoids. A morphism $f: \tilde{G} \to G$ of group-groupoids is a morphism of the underlying groupoids preserving also the group structure. A morphism $f: \widetilde{G} \to G$ of group-groupoids is called a *cover* (resp. *universal cover*) if it is a covering morphism (resp. a universal cover) on underlying groupoids.

The following example appears in [5]. Brown and Danesh-Naruie proved in [3] that if X is a semi-locally simply connected topological space, then $\pi_1(X)$ is a topological groupoid.

3.3. Example. If X is a topological group, then the fundamental groupoid $\pi_1(X)$ is a group-groupoid.

3.4. Example. [8, 4.3] Let X be an additive group. Then the groupoid $G = X \times X$ is also a group-groupoid with object set X: A pair (x, y) is a morphism from x to y and the groupoid composition is defined by $(x, y)(z, u) = (x, u)$ whenever $y = z$. Here, for an object $x \in X$ the identity morphism at x is $1_x = (x, x)$ and for a morphism $(x, y) \in G$ the groupoid inverse of (x, y) is (y, x) . The group addition on G is defined by $(x, y) + (u, v) = (x + u, y + v).$

If $a = (x, y), c = (y, z), b = (u, v)$ and $d = (v, w)$ are the morphisms in G so that the compositions ac and bd are defined, then we have $(ac) + (bd) = (x + u, z + w)$ and $(a + b)(c + d) = (x + u, z + w)$. Hence the interchange law

$$
(ac) + (bd) = (a+b)(c+d).
$$

is satisfied.

For the morphisms $a = (x, y)$ and $b = (y, z)$ in G we have $-(ab) = (-x, -z)$ and $(-a)(-b) = (-x, -z)$ and therefore $-(ab) = (-a)(-b)$. For $x \in X$, $-1_x = (-x, -x)$ 1_{-x} . In addition to these if $0 \in X$ is the identity element of the group X, then $1_0 = (0,0)$ is the identity element of G . From all this, we deduce that G is a group-groupoid.

The following result appears in [4, 9].

3.5. Theorem. If X is a topological group whose underlying space has a simply connected cover, then the category $TGCov/X$ of topological group covers of X is equivalent to the category $\mathsf{GpGdCov}/\pi_1(X)$ of group-groupoid covers of $\pi_1(X)$.

3.6. Definition. Suppose that G is a group-groupoid and 0 is the identity of $Ob(G)$. Let \tilde{G} be a groupoid, $p: \tilde{G} \to G$ a covering morphism of groupoids and $\tilde{0} \in Ob(\tilde{G})$ is such that $p(\tilde{0}) = 0$. We say the group structure of G lifts to \tilde{G} if there exists a group structure on \tilde{G} with the identity element $\tilde{0} \in Ob(\tilde{G})$ such that $p: \tilde{G} \to G$ is a morphism of group-groupoids.

We now use Theorem 2.4 to prove that the group structure of a group-groupoid lifts to a covering groupoid.

3.7. Theorem. Let \tilde{G} be a groupoid and G a group-groupoid whose underlying groupoid is transitive. Let $0 \in Ob(G)$ be the identity element of the additive group. Suppose that $p: (\tilde{G}, \tilde{0}) \to (G, 0)$ is a covering morphism of underlying groupoids such that the characteristic group C of p is a subgroup of the additive group of G . Then the group structure of G lifts to \tilde{G} with identity $\tilde{0}$.

Proof. Let C be the characteristic group of $p: (\widetilde{G}, \widetilde{0}) \to (G, 0)$. Then by Theorem 2.4 we have a covering morphism $q: (\tilde{G}_C, \tilde{x}) \to (G, 0)$ with characteristic group C. So by Corollary 2.3 the covering morphisms p and q are equivalent. Therefore it is sufficient to prove that the group structure of G lifts to \tilde{G}_C by the covering morphism $q: (\tilde{G}_C, \tilde{x}) \rightarrow$ $(G, 0).$

Let $m: G \times G \to G$, $(a, b) \mapsto a + b$ be the group addition of the group-groupoid G. Now define a group addition on $X = Ob(\widetilde{G}_C)$ by

$$
(Ca) + (Cb) = C(a+b)
$$

for $Ca, Cb \in X$. Here note that $a + b \in G_0$ when $a, b \in G_0$ and so $C(a + b) \in X$. We now prove that this addition is well defined, i.e., if $Ca = Ca'$ and $Cb = Cb'$, then $C(a + b) = C(a' + b')$. For if $Ca = Ca'$ and $Cb = Cb'$ then $a'a^{-1}, b'b^{-1} \in C$ and by the interchange law we have that

$$
(a'+b')(a+b)^{-1} = (a'+b')(a^{-1}+b^{-1}) = (a'a^{-1}) + (b'b^{-1}).
$$

Since C is a subgroup of the additive group of G, we have $(a'+b')(a+b)^{-1} \in C$ and therefore $C(a + b) = C(a' + b')$.

Define a group addition on the morphisms of \tilde{G}_C by

$$
(g, Ca) + (h, Cb) = (g + h, C(a + b)).
$$

It is straightforward to see that \tilde{G}_C is a group-groupoid. For the interchange law when the necessary groupoid compositions are possible we have

$$
(g, Ca)(k, Cc) + (h, Cb)(t, Cd) = (gk, Ca) + (ht, Cb)
$$

= $(gk + ht, C(a + b))$.

$$
((g, Ca) + (h, Cb))((k, Cc) + (t, Cd)) = (g + h, C(a + b))(k + t, C(c + d))
$$

= $((g + h)(k + t), C(a + b))$.

Since G is a group-groupoid $gk + ht = (g + h)(k + t)$, and therefore

$$
(g, Ca)(k, Cc) + (h, Cb)(t, Cd) = ((g, Ca) + (h, Cb))((k, Cc) + (t, Cd))
$$

i.e., the interchange law is satisfied.

Further the morphism q preserves the group structure as follows:

$$
q((g, Ca) + (h, Cb)) = q(g + h, C(a + b)) = g + h = q(g, Ca) + q(h, Cb).
$$

As a result of Theorem 3.7 we obtain a proof for a result in the theory of covering spaces [13, 6] (see also [11] for a similar result on topological rings).

3.8. Corollary. Let X be a path connected topological group with identity 0 and $p: (\widetilde{X}, \widetilde{0}) \to$ $(X, 0)$ a covering map such that \widetilde{X} is simply connected. Then the group structure of X lifts to \widetilde{X} , i.e., \widetilde{X} has a group structure with identity $\widetilde{0}$ such that \widetilde{X} is a topological group and p is a morphism of topological groups.

Proof. Since X is a topological group, by Example 3.3 the fundamental groupoid $\pi_1(X)$ is a group-groupoid and since $p: \tilde{X} \to X$ is a covering map, the induced morphism $\pi_1(p): \pi_1(X) \to \pi_1(X)$ becomes a covering morphism of groupoids with trivial characteristic group and by [2, 10.5.5] the topology on \tilde{X} is the lifted topology. Further since X is path connected the groupoid $\pi_1(X)$ is transitive. Therefore by Theorem 3.7 the group structure of $\pi_1(X)$ lifts to $\pi_1(\widetilde{X})$ and so we have a morphism of groupoids

$$
\widetilde{m} \colon \pi_1(\widetilde{X}) \times \pi_1(\widetilde{X}) \to \pi_1(\widetilde{X})
$$

such that $\pi_1(p) \circ \widetilde{m} = \pi_1(m) \circ (\pi_1(p) \times \pi_1(p))$, where m is the group addition on X and \tilde{m} is a group structure on $\pi_1(X)$. By [2, 10.5.5] \tilde{m} induces a continuous additive map on X. The fact that this is a group structure follows from the fact that \widetilde{m} is a group structure. \Box

4. Covering groupoids of R-module groupoids

We now apply these methods to topological R-modules.

4.1. Definition. Let R be a topological ring with identity 1_R . A topological (left) Rmodule is an additive abelian topological group M together with a continuous function $\delta: R \times M \to M$, $(r, a) \mapsto ra$ called an *action* of R on M such that for $r, s \in R$ and $a, b \in M$

i. $r(a + b) = ra + rb$;

ii. $(r + s)a = ra + sa;$

iii. $(rs)a = r(sa);$

iv. $1_{R}a = a$.

In [1, Theorem 3.1] the following theorem is proved.

4.2. Theorem. If R is a countable, Noetherian ring and M is any R-module, then the underlying abelian group M_G of M is isomorphic to the fundamental group $\pi_1(T(M))$ for some path connected topological R-module $T(M)$.

This result enables to one to find examples of topological R-modules which are not simply connected and so have non-trivial covering spaces.

As a result of Theorem 4.2, taking $R = \mathbb{Z}$ the following corollary is obtained.

4.3. Corollary. Every abelian group is isomorphic to the fundamental group of some topological group.

4.4. Definition. Let R be a topological ring with identity 1_R and M, N be topological left R-modules. A morphism of topological left R-modules is a group morphism $f: N \to$ M which is continuous and $f(re) = rf(a)$ for $a \in N$ and $r \in R$. A morphism $f: N \to M$ of topological left R -modules is called a *cover* if f is a covering map on the underlying topological spaces.

We now give the definition of an R-module object in the theory of categories as follows.

4.5. Definition. Let R be a ring with identity 1_R . An R-module groupoid, denoted by G_M , is a groupoid in which G and $Ob(G)$ are both R-modules and; the initial and final point maps $s, t: G_M \to Ob(G_M)$, object inclusion map $\epsilon: Ob(G_M) \to G_M$, partial composite map $(G_M)_t \times_s (G_M) \to G_M$, $(a, b) \mapsto ab$ and the inversion $G_M \to G_M$, $a \mapsto a^{-1}$ are all R-module morphisms.

So, an R-module groupoid G_M is a group-groupoid and; for $r \in R$, $x \in Ob(G_M)$ and $a, b \in G_M$ such that the composite ab is defined, we have $s(ra) = rs(a)$, $t(ra) = rt(a)$, $(ra)^{-1} = r(a^{-1}), \epsilon(rx) = r\epsilon(x) = r1_x$ and $(ra)(rb) = r(ab)$. Therefore G_M is an Rmodule groupoid.

Let R be a ring with identity 1_R . In an R-module groupoid G_M the groupoid composite is denoted by ab when $s(b) = t(a)$, the group addition by $a + b$ for $a, b \in G_M$.

Let G_M and G_M be two R-module groupoids. A morphism of R-module groupoids is a morphism $f: \widetilde{G}_M \to G_M$ of group-groupoids preserving the R-module structure. A morphism $f: G_M \to G_M$ of R-module groupoids is called a *cover* if it is a covering morphism on the underlying groupoids. We can give the following example which is similar to Example 3.3.

4.6. Example. If R is a topological ring with identity 1_R and M is a topological Rmodule, then the fundamental groupoid $\pi_1(M)$ of M is an R-module groupoid: If M is a topological R-module, with a continuous group addition

 $m: M \times M \rightarrow M, (a, b) \mapsto a + b,$

a continuous inverse map

 $u: M \to M, a \mapsto -a$

and a continuous action $\delta: R \times M \to M$, $(r, a) \mapsto ra$. Then we have the following induced maps

$$
\pi_1(m) \colon \pi_1(M) \times \pi_1(M) \to \pi_1(M), \ ([a], [b]) \mapsto [a+b],
$$

$$
\pi_1(u) \colon \pi_1(M) \to \pi_1(M), \ [a] \mapsto [-a] = -[a],
$$

 $R \times \pi_1(M) \to \pi_1(M), \ (r, [a]) \mapsto r[a] = [ra],$

where the path ra is defined by $(ra)(t) = ra(t)$ for $t \in [0, 1]$.

We know from Example 3.3 that $\pi_1(M)$ is a group-groupoid. Further $\pi_1(M)$ becomes an R-module groupoid with this action, as required.

4.7. Example. If M is an R-module, the groupoid $G_M = M \times M$ on M defined as in Example 3.4 is a group-groupoid. Further for $r \in R$, $x \in M$ and $a = (x, y)$, $b = (y, z)$ we have that $s(ra) = rs(a), t(ra) = rt(a), (ra)^{-1} = r(a^{-1}), 1_{rx} = r1_x$ and $(ra)(rb) = r(ab)$. Therefore G_M is an R-module groupoid.

Let M be a topological R-module. So $\pi_1(X)$ is an R-module groupoid. Then we have a slice category $\mathsf{TModCov}/M$ of topological R-module covers of M and a category $GdModCov/\pi_1(M)$ of covering R-module groupoids.

4.8. Theorem. Let R be a topological ring with identity 1_R and M a topological Rmodule. Suppose that the underlying topology of M has simply connected covers. Then the categories $\mathsf{TModCov}/M$ and $\mathsf{GdModCov}/\pi_1(M)$ are equivalent.

Proof. Define a functor

 π_1 : TModCov $/M \to \mathsf{GdModCov}/\pi_1(M)$

as follows: Suppose that $p: \widetilde{M} \to M$ is a covering morphism of topological R-modules. Then the induced morphism $\pi_1(p): \pi_1(M) \to \pi_1(M)$ is a morphism of group-groupoids and a covering morphism on the underlying groupoids. Further for $[\tilde{a}] \in \pi_1(M)$ and $r \in R$ we have that

$$
\pi_1(p)[r\widetilde{a}] = [p(r\widetilde{a})] = [r(p\widetilde{a})] = r[p\widetilde{a}] = r\pi_1(p)[\widetilde{a}].
$$

Therefore $\pi_1 p: \pi_1(\widetilde{M}) \to \pi_1(M)$ becomes a covering morphism of R-module groupoids. We now define another functor

 η : GdModCov $/\pi_1(M) \to \mathsf{TM}$ odCov $/M$

as follows: Suppose that $q: \widetilde{G}_M \to \pi_1(M)$ is a covering morphism of R-module groupoids. By [2, 10.5.5] there is a lifted topology on $\widetilde{M} = Ob(\widetilde{G}_M)$ and an isomorphism $\alpha: \widetilde{G}_M \to$ $\pi_1(M)$ such that $p = O_q$: $\overline{M} \to M$ is a covering map and $q = \pi_1(p)$ α . Hence the Rmodule structure on \widetilde{G}_M transports via α to $\pi_1(\widetilde{M})$. So we have a morphism of groupoids

$$
\widetilde{m} \colon \pi_1(\widetilde{M}) \times \pi_1(\widetilde{M}) \to \pi_1(\widetilde{M})
$$

such that $\pi_1(p) \circ \widetilde{m} = m \circ (\pi_1(p) \times \pi_1(p))$ and an action

$$
\widetilde{\delta} \colon R \times \pi_1(\widetilde{M}) \to \pi_1(\widetilde{M}), \ (r, [\widetilde{a}]) \mapsto r[\widetilde{a}]
$$

such that $\delta \circ (1 \times \pi_1(p)) = \pi_1(p) \circ \widetilde{\delta}$, where δ is the continuous action $R \times M \to M$. Therefore these maps induce a topological R -module structure on M .

Since by Theorem 3.5 the category of topological group covers is equivalent to the category of group-groupoid covers, by the following diagram the proof is completed

$$
\begin{array}{ccc}\n\text{TModCov}/M & \xrightarrow{\pi_1} \text{GdModCov}/\pi_1(M) \\
\downarrow & \downarrow & \downarrow \\
\text{TGCov}/M & \xrightarrow{\pi_1} \text{GpGdCov}/\pi_1(M).\n\end{array}
$$

4.9. Definition. Let R be a ring with identity 1_R , G_M a groupoid R-module and 0 the identity element of the group of $Ob(G_M)$. Suppose that \widetilde{G} is a groupoid, $p: \widetilde{G} \to G_M$ is a covering morphism of groupoids and $\widetilde{0} \in Ob(\widetilde{G})$ such that $p(\widetilde{0}) = 0$. Then we say that the R-module structure of G_M lifts to \tilde{G} if there exists an R-module groupoid structure on \tilde{G} such that $\tilde{0}$ is the identity element of the group structure of \tilde{G} and $p: \tilde{G} \to G_M$ is a morphism of groupoid R-modules.

4.10. Theorem. Let R be a ring with identity 1_R . Suppose that G_M is a R-module groupoid whose groupoid is transitive, 0 is the identity element of the additive group $Ob(G_M)$ and \tilde{G} is a groupoid. Let $p: (\tilde{G}, \tilde{0}) \rightarrow (G_M, 0)$ be a covering morphism of groupoids. Suppose that the characteristic group C of p at $\widetilde{0}$ is a submodule of the Rmodule G_M . Then the R-module structure of G_M lifts to \widetilde{G} .

Proof. Let C be the characteristic group of $p: \widetilde{G} \to G_M$ at $\widetilde{0}$ and let $q: \widetilde{G}_C \to G_M$ be the covering map corresponding to C as in Theorem 2.4. As in the proof of Theorem 3.7, it is sufficient to prove that the R- module structure lifts to \tilde{G}_C .

We know from Theorem 3.7 that \widetilde{G}_C is a group-groupoid. Let

$$
\delta\colon R \times G_M \to G_M, \ (r, g) \mapsto rg
$$

be the given R-module action on the groupoid R-module G_M . Now define an R-module action on G_C by

$$
\widetilde{\delta}\colon R\times \widetilde{G}_C\to \widetilde{G}_C,\ (r,(g,Ca))\mapsto (rg,C(ra))
$$

and an action on $X = Ob(\widetilde{G}_C)$ by $r(Ca) = C-ra)$. Since C is a submodule these actions are well defined. This action gives a groupoid R-module structure on \tilde{G}_C as required.

Further the morphism q preserves the R -module structure as follows:

$$
q(r(g,Ca)) = q(rg,C-ra)) = rg = rq(g,Ca).
$$

From Theorem 4.10 we obtain the following corollary.

4.11. Corollary. Let R be a connected topological ring with identity 1_R and M a topological R -module whose underlying space is connected. Suppose that M is a simply connected topological space and p: $\overline{M} \rightarrow \overline{M}$ is a covering map from \overline{M} to the underlying topology of M. Let 0 be the identity element of the additive group of M and $\widetilde{0} \in \widetilde{M}$ be such that $p(\widetilde{0}) = 0$. Then M becomes a topological R-module such that $\widetilde{0}$ is the identity element of the group structure of \overline{M} and p is a morphism of topological R-modules.

Proof. Since $p: \widetilde{M} \to M$ is a covering map of topological R-modules, the induced morphism $\pi_1(p): \pi_1(\widetilde{M}) \to \pi_1(M)$ becomes a covering morphism of groupoids with trivial characteristic group. Since M is a topological R-module, by Example 4.6 $\pi_1(M)$ is an R-module groupoid and since M is path connected, the groupoid $\pi_1(M)$ is transitive.

So by Theorem 4.10, the R-module structure of G_M lifts to $\pi_1(\widetilde{M})$. Hence \widetilde{M} has an R-module structure. Similar to the proof of Corollary 3.8, \widetilde{M} becomes a topological R -module as required.

5. Conclusion

Group-groupoids and R-module groupoids are internal categories respectively in the category of groups and the category of R-modules. So it would be interesting to develop these results in terms of groups with operations and internal categories rather than special categories.

Acknowledgements

We would like to thank to the referees for the useful comments.

References

- [1] Bateson, A. Fundamental groups of topological R-modules, Trans. Amer. Math. Soc. 270 (2), 525–536, 1982.
- [2] Brown, R. Topology and groupoids, (BookSurge LLC, North Carolina, 2006).
- [3] Brown, R. and Danesh-Naruie, G. The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2), 237–244, 1975.
- [4] Brown, R. and Mucuk, O. Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc. 115, 97–110, 1994.
- [5] Brown, R. and Spencer, C. B. G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79, 296–302, 1976.
- [6] Chevalley, C. Theory of Lie groups, (Princeton University Press, United States of America, 1946).
- [7] Higgins, P. J. Notes on categories and groupoids (Van Nostrand Reinhold Company, Durham, England, 1971).
- [8] Mucuk, O., Kılıçarslan, B., Şahan, T. and Alemdar, N. Group-groupoid and monodromy groupoid, Topology Appl. 158, 2034–2042, 2011.
- [9] Mucuk, O. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid (PhD Thesis, University of Wales, 1993).
- [10] Mucuk, O. Coverings and ring-groupoids, Geor. Math. J. 5, 475–482, 1998.
- $[11]$ Mucuk, O. and Özdemir, M, A monodromy principle for the universal covers of topological *rings*, Ind. J. Pure and Appl. Math. 31 (12), 1531–1535, 2000.
- [12] Porter, T. Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, 373–381, 1987.
- [13] Rotman, J. J. An Introduction to Algebraic Topology (Graduate Texts in Mathematics 119, Springer-Verlag, New York, 1988).
- [14] Taylor, R. L. Covering groups of non-connected topological groups, Proc. Amer. Math. Soc. 5, 753–768, 1954.