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Abstract

In this paper we prove that the group structure of a group object in
the category of groupoids lifts to a covering groupoid. We also prove
similar results for a R-module object in the category of groupoids.
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1. Introduction

The theory of covering spaces is one of the most interesting theories in algebraic
topology. Covering groupoids play an important role in the applications of groupoids
(see for example [2] and [7]). The fundamental groupoid functor gives an equivalence of
categories between the category of covering spaces of a reasonably nice space X and the
category of covering groupoids of π1(X).

We know from [2, Proposition 10.4.3] that if G is a transitive groupoid, x is an object
of G and C is a subgroup of the object group G(x), then there is a covering morphism

p : (G̃C , x̃) → (G, x) of groupoids with characteristic group C.

In this paper using this existence of covering groupoids we prove that if G is a group
object in the category of groupoids which is also called a group-groupoid, the underlying

groupoid of G is transitive and p : G̃ → G is a covering morphism of groupoids, then G̃
also becomes a group-groupoid. This result gives an easy way of proving that the group
structure of a topological group X lifts to its simply connected covering space, i.e., if X

is an additive topological group, p : X̃ → X is a simply connected covering map, 0 ∈ X

is the identity element and 0̃ ∈ X̃ is such that p(0̃) = 0, then X̃ becomes a topological

group with identity 0̃ such that p is a morphism of topological groups.

We also prove similar results for R-module objects in the category of groupoids.
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The problem of universal covers of non-connected topological groups was first studied
by Taylor in [14]. He proved that a topological group X determines an obstruction class
kX in H3(π0(X), π1(X, e)), and that the vanishing of kX is a necessary and sufficient
condition for the lifting of the group structure to a universal cover. In [9] an analogous
algebraic result is given in terms of crossed modules and group objects in the category
of groupoids (see also [4] for a revised version, which generalizes these results and shows
the relation with the theory of obstructions to extensions for groups).

2. Preliminaries on covering groupoids

We assume that all topological spaces X are locally path connected and semi-locally
1-connected, so that each path component of X admits a simply connected cover. Recall

that a covering map p : X̃ → X of connected spaces is called universal if it covers every

cover of X in the sense that if q : Ỹ → X is another cover of X then there exists a map

r : X̃ → Ỹ such that p = qr (hence r becomes a cover). A covering map p : X̃ → X

is called simply connected if X̃ is simply connected. So a simply connected cover is a
universal cover.

A subset V of X is called liftable if it is open, path connected and V lifts to each cover

of X, that is, if p : X̃ → X is a covering map, ı : V → X is the inclusion map, and x̃ ∈ X̃

satisfies p(x̃) = x ∈ V , then there exists a map (necessarily unique) ı̂ : V → X̃ such that
pı̂ = ı and ı(x) = x̃.

It is easy to see that V is liftable if and only if it is open, path connected and for
each x ∈ V the fundamental group π1(V, x) is mapped to the singleton by the morphism
induced by the inclusion map ı : V → X.

Note that if X is a semi-locally simply connected topological space, then each point
x ∈ X has a liftable neighbourhood. So ifX is a semi-locally simply connected topological
space then each x ∈ X has a liftable neighbourhood.

A groupoid is a small category in which each morphism is an isomorphism [2]. So a
groupoid G has a set G of morphisms, which we call just elements of G, a set Ob(G) of
objects together with maps s, t : G → Ob(G) and ǫ : Ob(G) → G such that sǫ = tǫ =
1Ob(G). The maps s, t are called initial and final point maps respectively and the map ǫ is
called object inclusion. If a, b ∈ G and t(a) = s(b), then the composite ab exists such that
s(ab) = s(a) and t(ab) = t(b). So there exists a partial composition defined by the map
Gt ×s G → G, (a, b) 7→ ab, where Gt ×s G is the pullback of t and s. Further, this partial
composition is associative, for x ∈ Ob(G) the element ǫ(x) denoted by 1x acts as the
identity and each element a has an inverse a−1 such that s(a−1) = t(a), t(a−1) = s(a),
aa−1 = (ǫs)(a), a−1a = (ǫt)(a). The map G → G, a 7→ a−1 is called the inversion.

In a groupoid G for x, y ∈ Ob(G), we write G(x, y) for s−1(x) ∩ t−1(y) and say that
G is transitive if for all x, y ∈ Ob(G), G(x, y) is not empty. For x ∈ Ob(G) we write Gx

for s−1(x) and call Gx the star of G at x. The set s−1(x) ∩ t−1(x) is a group called the
object group at x, and denoted by G(x).

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H → G and
f0 : Ob(H) → Ob(G) such that sG ◦ f = f0 ◦ sH , tG ◦ f = f0 ◦ tH and f(ab) = f(a)f(b)
for all (a, b) ∈ Ht ×s H . For such a morphism we simply write f : H → G.

A morphism p : G̃ → G of groupoids is called a covering morphism and G̃ a covering

groupoid of G if for each x̃ ∈ Ob(G̃) the restriction (G̃)x̃ → Gp(x̃) of p is bijective.

A covering morphism p : G̃ → G is called transitive if both groupoids G̃ and G are
transitive.
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A transitive covering morphism p : G̃ → G is called universal if G̃ covers every cover of

G, i.e., if for every covering morphism q : H̃ → G there is a unique morphism of groupoids

q̃ : G̃ → H̃ such that qq̃ = p (and hence q̃ is also a covering morphism), this is equivalent

to that for x̃, ỹ ∈ Ob(G̃) the set G̃(x̃, ỹ) has not more than one element.

A morphism p : (G̃, x̃) → (G, x) of pointed groupoids is called a covering morphism if

the morphism p : G̃ → G is a covering morphism.

2.1. Theorem. [2, 10.6.1] Let X be a topological space whose underlying space has a
simply connected cover. Then the slice category TCov/X of covering spaces of X is
equivalent to the category GpdCov/π1(X) of the covering groupoids of π1(X).

Let p : (G̃, x̃) → (G, x) be a covering morphism of groupoids. We say a morphism

f : (H,z) → (G, x) lifts to p if there exists a unique morphism f̃ : (H,z) → (G̃, x̃) such

that f = pf̃ . For any groupoid morphism p : G̃ → G and object x̃ of G̃ we call the

subgroup p(G̃(x̃)) of G(px̃) the characteristic group of p at x̃.

The following result gives a criterion on the lifting of morphisms [2, 10.3.3].

2.2. Theorem. Let p : (G̃, x̃) → (G, x) be a covering morphism of groupoids and f : (H,z) →
(G, x) a morphism of pointed groupoids such that H is transitive. Then the morphism

f : (H, z) → (G, x) lifts to a morphism f̃ : (H,z) → (G̃, x̃) if and only if the characteristic
group of f is contained in that of p; and if this lifting exists, then it is unique. �

As a result of this Theorem we have the following corollary

2.3. Corollary. Let p : (G̃, x̃) → (G, x) and q : (H̃, z̃) → (G, x) be transitive covering
morphisms with characteristic groups C and D respectively. If C ⊆ D, then there is a

unique covering morphism r : (G̃, x̃) → (H̃, z̃) such that p = qr. If C = D, then r is an
isomorphism. �

For the existence of the covering groupoid we need the idea of an action groupoid. Let
G be a groupoid. An action of G on a set consists of a set X, a function ω : X → Ob(G)
and a partial function Xω ×s G → X, (x, a) 7−→ xa defined on the pullback Xω ×s G of
ω and p such that

i. ω(xa) = t(a)
ii. x(ab) = (xa)b
iii. x1ω(x) = x.

As an example if p : G̃ → G is a covering morphism of groupoids, X = Ob(G̃) and
ω = Op, then we obtain an action of G on X via ω by assigning to x ∈ X and a ∈ Gp(x)

the target of the unique lift of a with source x.

Given such an action, the action groupoid G ⋉X is defined to be the groupoid with
object set X and elements of (G ⋉X)(x, y) the pairs (a, x) such that a ∈ G(ω(x), ω(y))
and xa = y. The groupoid composite is defined to be

(a, x) ◦ (b, y) = (ab, x).

The following result is from [2, 10.4.3]. We need some details of the proof for later.

2.4. Theorem. Let x be an object of a transitive groupoid G, and let C be a subgroup of

the object group G(x). Then there exists a covering morphism q : (G̃C , x̃) → (G, x) with
characteristic group C.

Proof. LetX be the set of (left) cosets Ca = {Ca | c ∈ C} for a in Gx and ω : X → Ob(G)
map Ca to the final point of a. ThenG acts onX by (Ca)g = Cag. The required groupoid

G̃C is taken to be the action groupoid G ⋉ X. Then the projection q : G̃C → G given
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on objects by ω : X → Ob(G) and on elements by (g,Ca) 7→ g, is a covering morphism

of groupoids with the characteristic group C. The required object x̃ ∈ G̃C is the coset
C. �

3. Covering groupoids of group-groupoids

A group-groupoid, which is also known in the literature as a 2-group, is a group object
in the category of groupoids. This is an internal category in the category of groups
(Porter [12]). The category of group-groupoids is equivalent to the category of crossed
modules (Brown and Spencer [5]). There are a large number of papers in the literature
under the name of 2-groups. Recently the ring object in the category of groupoids and
their coverings have been developed by Mucuk in [10].

The formal definition of a group-groupoid we use is given by Brown and Spencer in
[5] under the name G-groupoid as follows:

3.1. Definition. A group-groupoid G is a groupoid endowed with a group structure
such that the following maps which are called respectively addition, inverse and unit, are
morphisms of groupoids:

i. m : G ×G → G, (a, b) 7→ a+ b;
ii. u : G → G, a 7→ −a;
iii. 0 : {⋆} → G, where {⋆} is singleton.

In a group-groupoid G, for a, b ∈ G the groupoid composite is denoted by ab when
s(b) = t(a) and the group addition by a+ b.

Note that the condition (i) is equivalent to the usual interchange law

(ac+ bd) = (a+ b)(c+ d)

for a, b, c, d ∈ G whenever ac and bd are defined, and the condition (iii) means that if 0
is the identity element of Ob(G), then 10 is the identity of G.

From Definition 3.1, the following properties, which we need in some detail, follow.

3.2. Proposition. Let G be a group groupoid:

i. if a ∈ G(x, y) and b ∈ G(u, v), then a+ b ∈ G(x+ u, y + v);

ii. (a+ b)−1 = a−1 + b−1 for a, b ∈ G;
iii. −(ab) = (−a)(−b) for a, b ∈ G such that ab is defined ;
iv. if a ∈ G(x, y), then −a ∈ G(−x,−y);
v. (−a)−1 = −a−1 for a ∈ G;
vi. 1x + 1y = 1x+y for x, y ∈ Ob(G);
vii. s(a+ b) = s(a) + s(b) for a, b ∈ G;
viii. t(a+ b) = t(a) + t(b) for a, b ∈ G.

Proof. (i) Since in a group-groupoid G, the group addition m : G×G → G, (a, b) 7→ a+b
is a morphism of groupoids, if a ∈ G(x, y) and b ∈ G(u, v), then we have that a + b ∈
G(x+ u, y + v).

(ii) By the interchange law for a, b ∈ G

(a+ b)(a−1 + b−1) = (aa−1) + (bb−1) = 1s(a) + 1s(b) = 1s(a+b)

and

(a−1 + b−1)(a+ b) = (a−1a) + (b−1b) = 1t(a) + 1t(b) = 1t(a+b).

Therefore it follows that (a+ b)−1 = a−1 + b−1 for a, b ∈ G.
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(iii), (iv) and (v) follow from the fact that the map G → G, a 7→ −a is a morphism of
groupoids.

(vi), (vii) and (viii) follow from the fact that the addition +: G×G → G is a morphism
of groupoids. �

Let G̃ and G be two group-groupoids. A morphism f : G̃ → G of group-groupoids is a
morphism of the underlying groupoids preserving also the group structure. A morphism

f : G̃ → G of group-groupoids is called a cover (resp. universal cover) if it is a covering
morphism (resp. a universal cover) on underlying groupoids.

The following example appears in [5]. Brown and Danesh-Naruie proved in [3] that
if X is a semi-locally simply connected topological space, then π1(X) is a topological
groupoid.

3.3. Example. If X is a topological group, then the fundamental groupoid π1(X) is a
group-groupoid.

3.4. Example. [8, 4.3] Let X be an additive group. Then the groupoid G = X × X
is also a group-groupoid with object set X: A pair (x, y) is a morphism from x to y
and the groupoid composition is defined by (x, y)(z, u) = (x, u) whenever y = z. Here,
for an object x ∈ X the identity morphism at x is 1x = (x, x) and for a morphism
(x, y) ∈ G the groupoid inverse of (x, y) is (y, x). The group addition on G is defined by
(x, y) + (u, v) = (x+ u, y + v).

If a = (x, y), c = (y, z), b = (u, v) and d = (v, w) are the morphisms in G so that
the compositions ac and bd are defined, then we have (ac) + (bd) = (x + u, z + w) and
(a+ b)(c+ d) = (x+ u, z + w). Hence the interchange law

(ac) + (bd) = (a+ b)(c+ d).

is satisfied.

For the morphisms a = (x, y) and b = (y, z) in G we have −(ab) = (−x,−z) and
(−a)(−b) = (−x,−z) and therefore −(ab) = (−a)(−b). For x ∈ X, −1x = (−x,−x) =
1−x. In addition to these if 0 ∈ X is the identity element of the group X, then 10 = (0, 0)
is the identity element of G. From all this, we deduce that G is a group-groupoid.

The following result appears in [4, 9].

3.5. Theorem. If X is a topological group whose underlying space has a simply connected
cover, then the category TGCov/X of topological group covers of X is equivalent to the
category GpGdCov/π1(X) of group-groupoid covers of π1(X). �

3.6. Definition. Suppose that G is a group-groupoid and 0 is the identity of Ob(G).

Let G̃ be a groupoid, p : G̃ → G a covering morphism of groupoids and 0̃ ∈ Ob(G̃) is

such that p(0̃) = 0. We say the group structure of G lifts to G̃ if there exists a group

structure on G̃ with the identity element 0̃ ∈ Ob(G̃) such that p : G̃ → G is a morphism
of group-groupoids.

We now use Theorem 2.4 to prove that the group structure of a group-groupoid lifts
to a covering groupoid.

3.7. Theorem. Let G̃ be a groupoid and G a group-groupoid whose underlying groupoid
is transitive. Let 0 ∈ Ob(G) be the identity element of the additive group. Suppose

that p : (G̃, 0̃) → (G, 0) is a covering morphism of underlying groupoids such that the
characteristic group C of p is a subgroup of the additive group of G. Then the group

structure of G lifts to G̃ with identity 0̃.
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Proof. Let C be the characteristic group of p : (G̃, 0̃) → (G, 0). Then by Theorem 2.4

we have a covering morphism q : (G̃C , x̃) → (G, 0) with characteristic group C. So by
Corollary 2.3 the covering morphisms p and q are equivalent. Therefore it is sufficient to

prove that the group structure of G lifts to G̃C by the covering morphism q : (G̃C , x̃) →
(G, 0).

Let m : G × G → G, (a, b) 7→ a + b be the group addition of the group-groupoid G.

Now define a group addition on X = Ob(G̃C) by

(Ca) + (Cb) = C(a+ b)

for Ca,Cb ∈ X. Here note that a + b ∈ G0 when a, b ∈ G0 and so C(a + b) ∈ X.
We now prove that this addition is well defined, i.e., if Ca = Ca′ and Cb = Cb′, then
C(a+ b) = C(a′ + b′). For if Ca = Ca′ and Cb = Cb′ then a′a−1, b′b−1 ∈ C and by the
interchange law we have that

(a′ + b′)(a+ b)−1 = (a′ + b′)(a−1 + b−1) = (a′a−1) + (b′b−1).

Since C is a subgroup of the additive group of G, we have (a′ + b′)(a + b)−1 ∈ C and
therefore C(a+ b) = C(a′ + b′).

Define a group addition on the morphisms of G̃C by

(g, Ca) + (h,Cb) = (g + h,C(a+ b)).

It is straightforward to see that G̃C is a group-groupoid. For the interchange law when
the necessary groupoid compositions are possible we have

(g,Ca)(k,Cc) + (h,Cb)(t, Cd) = (gk,Ca) + (ht, Cb)

= (gk + ht, C(a+ b)).

((g,Ca) + (h,Cb))((k,Cc) + (t, Cd)) = (g + h,C(a+ b))(k + t, C(c+ d))

= ((g + h)(k + t), C(a+ b)).

Since G is a group-groupoid gk + ht = (g + h)(k + t), and therefore

(g, Ca)(k,Cc) + (h,Cb)(t,Cd) = ((g,Ca) + (h, Cb))((k,Cc) + (t, Cd))

i.e., the interchange law is satisfied.

Further the morphism q preserves the group structure as follows:

q((g,Ca) + (h,Cb)) = q(g + h, C(a+ b)) = g + h = q(g,Ca) + q(h,Cb). �

As a result of Theorem 3.7 we obtain a proof for a result in the theory of covering
spaces [13, 6] (see also [11] for a similar result on topological rings).

3.8. Corollary. Let X be a path connected topological group with identity 0 and p : (X̃, 0̃) →

(X, 0) a covering map such that X̃ is simply connected. Then the group structure of X

lifts to X̃, i.e., X̃ has a group structure with identity 0̃ such that X̃ is a topological group
and p is a morphism of topological groups.

Proof. Since X is a topological group, by Example 3.3 the fundamental groupoid π1(X)

is a group-groupoid and since p : X̃ → X is a covering map, the induced morphism

π1(p) : π1(X̃) → π1(X) becomes a covering morphism of groupoids with trivial charac-

teristic group and by [2, 10.5.5] the topology on X̃ is the lifted topology. Further since X
is path connected the groupoid π1(X) is transitive. Therefore by Theorem 3.7 the group

structure of π1(X) lifts to π1(X̃) and so we have a morphism of groupoids

m̃ : π1(X̃)× π1(X̃) → π1(X̃)
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such that π1(p) ◦ m̃ = π1(m) ◦ (π1(p)× π1(p)), where m is the group addition on X and

m̃ is a group structure on π1(X̃). By [2, 10.5.5] m̃ induces a continuous additive map

on X̃. The fact that this is a group structure follows from the fact that m̃ is a group
structure. �

4. Covering groupoids of R-module groupoids

We now apply these methods to topological R-modules.

4.1. Definition. Let R be a topological ring with identity 1R. A topological (left) R-
module is an additive abelian topological group M together with a continuous function
δ : R × M → M, (r, a) 7→ ra called an action of R on M such that for r, s ∈ R and
a, b ∈ M

i. r(a+ b) = ra+ rb ;
ii. (r + s)a = ra+ sa;
iii. (rs)a = r(sa);
iv. 1Ra = a.

In [1, Theorem 3.1] the following theorem is proved.

4.2. Theorem. If R is a countable, Noetherian ring and M is any R-module, then the
underlying abelian group MG of M is isomorphic to the fundamental group π1(T (M)) for
some path connected topological R-module T (M). �

This result enables to one to find examples of topological R-modules which are not
simply connected and so have non-trivial covering spaces.

As a result of Theorem 4.2, taking R = Z the following corollary is obtained.

4.3. Corollary. Every abelian group is isomorphic to the fundamental group of some
topological group. �

4.4. Definition. Let R be a topological ring with identity 1R and M , N be topological
left R-modules. A morphism of topological left R-modules is a group morphism f : N →
M which is continuous and f(ra) = rf(a) for a ∈ N and r ∈ R. A morphism f : N → M
of topological left R-modules is called a cover if f is a covering map on the underlying
topological spaces.

We now give the definition of an R-module object in the theory of categories as follows.

4.5. Definition. Let R be a ring with identity 1R. An R-module groupoid, denoted
by GM , is a groupoid in which G and Ob(G) are both R-modules and; the initial and
final point maps s, t : GM → Ob(GM ), object inclusion map ǫ : Ob(GM ) → GM , partial
composite map (GM )t×s(GM ) → GM , (a, b) 7→ ab and the inversion GM → GM , a 7→ a−1

are all R-module morphisms.

So, an R-module groupoid GM is a group-groupoid and; for r ∈ R, x ∈ Ob(GM ) and
a, b ∈ GM such that the composite ab is defined, we have s(ra) = rs(a), t(ra) = rt(a),
(ra)−1 = r(a−1), ǫ(rx) = rǫ(x) = r1x and (ra)(rb) = r(ab). Therefore GM is an R-
module groupoid.

LetR be a ring with identity 1R. In anR-module groupoid GM the groupoid composite
is denoted by ab when s(b) = t(a), the group addition by a+ b for a, b ∈ GM .

Let G̃M and GM be two R-module groupoids. A morphism of R-module groupoids

is a morphism f : G̃M → GM of group-groupoids preserving the R-module structure.

A morphism f : G̃M → GM of R-module groupoids is called a cover if it is a covering
morphism on the underlying groupoids. We can give the following example which is
similar to Example 3.3.
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4.6. Example. If R is a topological ring with identity 1R and M is a topological R-
module, then the fundamental groupoid π1(M) of M is an R-module groupoid: If M is
a topological R-module, with a continuous group addition

m : M ×M → M, (a, b) 7→ a+ b,

a continuous inverse map

u : M → M,a 7→ −a

and a continuous action δ : R×M → M, (r, a) 7→ ra. Then we have the following induced
maps

π1(m) : π1(M)× π1(M) → π1(M), ([a], [b]) 7→ [a+ b],

π1(u) : π1(M) → π1(M), [a] 7→ [−a] = −[a],

R × π1(M) → π1(M), (r, [a]) 7→ r[a] = [ra],

where the path ra is defined by (ra)(t) = ra(t) for t ∈ [0, 1].

We know from Example 3.3 that π1(M) is a group-groupoid. Further π1(M) becomes
an R-module groupoid with this action, as required.

4.7. Example. If M is an R-module, the groupoid GM = M ×M on M defined as in
Example 3.4 is a group-groupoid. Further for r ∈ R, x ∈ M and a = (x, y), b = (y, z) we
have that s(ra) = rs(a), t(ra) = rt(a), (ra)−1 = r(a−1), 1rx = r1x and (ra)(rb) = r(ab).
Therefore GM is an R-module groupoid.

Let M be a topological R-module. So π1(X) is an R-module groupoid. Then we
have a slice category TModCov/M of topological R-module covers of M and a category
GdModCov/π1(M) of covering R-module groupoids.

4.8. Theorem. Let R be a topological ring with identity 1R and M a topological R-
module. Suppose that the underlying topology of M has simply connected covers. Then
the categories TModCov/M and GdModCov/π1(M) are equivalent.

Proof. Define a functor

π1 : TModCov/M → GdModCov/π1(M)

as follows: Suppose that p : M̃ → M is a covering morphism of topological R-modules.

Then the induced morphism π1(p) : π1(M̃) → π1(M) is a morphism of group-groupoids

and a covering morphism on the underlying groupoids. Further for [ã] ∈ π1(M̃) and
r ∈ R we have that

π1(p)[rã] = [p(rã)] = [r(pã)] = r[pã] = rπ1(p)[ã].

Therefore π1p : π1(M̃) → π1(M) becomes a covering morphism of R-module groupoids.

We now define another functor

η : GdModCov/π1(M) → TModCov/M

as follows: Suppose that q : G̃M → π1(M) is a covering morphism of R-module groupoids.

By [2, 10.5.5] there is a lifted topology on M̃ = Ob(G̃M ) and an isomorphism α : G̃M →

π1(M̃) such that p = Oq : M̃ → M is a covering map and q = π1(p) α. Hence the R-

module structure on G̃M transports via α to π1(M̃). So we have a morphism of groupoids

m̃ : π1(M̃)× π1(M̃) → π1(M̃)

such that π1(p) ◦ m̃ = m ◦ (π1(p)× π1(p)) and an action

δ̃ : R× π1(M̃) → π1(M̃), (r, [ã]) 7→ r[ã]
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such that δ ◦ (1 × π1(p)) = π1(p) ◦ δ̃, where δ is the continuous action R × M → M .

Therefore these maps induce a topological R-module structure on M̃ .

Since by Theorem 3.5 the category of topological group covers is equivalent to the
category of group-groupoid covers, by the following diagram the proof is completed

TModCov/M

��

π1
// GdModCov/π1(M)

��

TGCov/M
π1

// GpGdCov/π1(M).

�

4.9. Definition. Let R be a ring with identity 1R, GM a groupoid R-module and 0 the

identity element of the group of Ob(GM ). Suppose that G̃ is a groupoid, p : G̃ → GM is

a covering morphism of groupoids and 0̃ ∈ Ob(G̃) such that p(0̃) = 0. Then we say that

the R-module structure of GM lifts to G̃ if there exists an R-module groupoid structure

on G̃ such that 0̃ is the identity element of the group structure of G̃ and p : G̃ → GM is
a morphism of groupoid R-modules.

4.10. Theorem. Let R be a ring with identity 1R. Suppose that GM is a R-module
groupoid whose groupoid is transitive, 0 is the identity element of the additive group

Ob(GM ) and G̃ is a groupoid. Let p : (G̃, 0̃) → (GM , 0) be a covering morphism of

groupoids. Suppose that the characteristic group C of p at 0̃ is a submodule of the R-

module GM . Then the R-module structure of GM lifts to G̃.

Proof. Let C be the characteristic group of p : G̃ → GM at 0̃ and let q : G̃C → GM be
the covering map corresponding to C as in Theorem 2.4. As in the proof of Theorem 3.7,

it is sufficient to prove that the R- module structure lifts to G̃C .

We know from Theorem 3.7 that G̃C is a group-groupoid. Let

δ : R×GM → GM , (r, g) 7→ rg

be the given R-module action on the groupoid R-module GM . Now define an R-module

action on G̃C by

δ̃ : R× G̃C → G̃C , (r, (g, Ca)) 7→ (rg,C(ra))

and an action on X = Ob(G̃C) by r(Ca) = C(ra). Since C is a submodule these actions

are well defined. This action gives a groupoid R-module structure on G̃C as required.

Further the morphism q preserves the R-module structure as follows:

q(r(g,Ca)) = q(rg,C(ra)) = rg = rq(g,Ca). �

From Theorem 4.10 we obtain the following corollary.

4.11. Corollary. Let R be a connected topological ring with identity 1R and M a topolog-

ical R-module whose underlying space is connected. Suppose that M̃ is a simply connected

topological space and p : M̃ → M is a covering map from M̃ to the underlying topology

of M . Let 0 be the identity element of the additive group of M and 0̃ ∈ M̃ be such that

p(0̃) = 0. Then M̃ becomes a topological R-module such that 0̃ is the identity element of

the group structure of M̃ and p is a morphism of topological R-modules.

Proof. Since p : M̃ → M is a covering map of topological R-modules, the induced mor-

phism π1(p) : π1(M̃) → π1(M) becomes a covering morphism of groupoids with trivial
characteristic group. Since M is a topological R-module, by Example 4.6 π1(M) is an
R-module groupoid and since M is path connected, the groupoid π1(M) is transitive.
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So by Theorem 4.10, the R-module structure of GM lifts to π1(M̃). Hence M̃ has an

R-module structure. Similar to the proof of Corollary 3.8, M̃ becomes a topological
R-module as required. �

5. Conclusion

Group-groupoids and R-module groupoids are internal categories respectively in the
category of groups and the category of R-modules. So it would be interesting to develop
these results in terms of groups with operations and internal categories rather than special
categories.
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