ON WEAKLY COMMUTING MAPS AND COMMON FIXED POINT RESULTS FOR FOUR MAPS IN *G*-METRIC SPACES

W. Shatanawi^{*†} and M. Abbas[‡]

Received 28:11:2010 : Accepted 31:12:2011

Abstract

In this paper, we introduce the concept of weakly commuting maps in G-metric spaces and prove a common fixed point theorem for four self maps in the setting of generalized metric spaces. We also present an example to support our result.

Keywords: Common fixed Point, Weakly Commuting Maps, Generalized Metric Spaces.

2000 AMS Classification: 54 H 25, 47 H 10, 54 E 50.

1. Introduction

The notion of G-metric space was introduced by Z. Mustafa and B. Sims [10] as a generalization of the notion of metric spaces. Mustafa *et al.* studied many fixed point results in G- metric spaces (see [8, 9, 10, 11, 12]). The study of common fixed point theorems in generalized metric spaces was initiated by Abbas and Rhoades [2], while, Saddati *et al.* [13] studied some fixed points in generalized partially ordered Gmetric spaces. Shatanawi [15] obtained fixed points of Φ -maps in G-metric spaces. Also, Shatanawi [16] obtained a coupled coincidence fixed point theorem in the setting of a generalized metric spaces for two mapping F and g under certain conditions with an assumption of G-continuity of one of the mapping involved therein, see also [3, 17, 1, 4, 18, 5], while Chugh *et al.* [6] obtained some fixed point results for maps satisfying property p in a G-metric space. In the present paper, we introduce the concept of weakly commuting maps in G-metric spaces and prove a common fixed point theorem for four self maps in the setting of generalized metric spaces.

^{*}Dept. of Mathematics, Hashemite University, P.O. Box 150459 Zarqa 13115, Jordan. E-mail: swasfi@maktoob.com swasfi@hu.edu.jo

[†]Corresponding Author.

[‡]Department of Mathematics, LUMS School of Science and Engineering, Lahore Cantt 54792 Pakistan. E-mail: mujahid@lums.edu.pk

2. Preliminaries.

The following definition was introduced by Mustafa and Sims [10].

2.1. Definition. [10] Let X be a nonempty set and $G: X \times X \times X \to \mathbf{R}^+$ a function satisfying the following properties:

 (G_1) G(x, y, z) = 0 if x = y = z,

 (G_2) 0 < G(x, x, y), for all $x, y \in X$ with $x \neq y$,

 $(G_3) \ G(x,x,y) \leq G(x,y,z) \text{ for all } x,y,z \in X \text{ with } z \neq y,$

 (G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$, symmetry in all three variables,

 $(G_5) \ G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then the function G is called a *generalized metric*, or, more specifically, a G-metric on X, and the pair (X, G) is called a G-metric space.

2.2. Definition. [10] Let (X,G) be a *G*-metric space, and let $\{x_n\}$ be a sequence of points of X. A point $x \in X$ is said to be the *limit of the sequence* $\{x_n\}$, if

 $\lim_{n,m\to+\infty} G(x,x_n,x_m) = 0,$

and we say that the sequence $\{x_n\}$ is G-convergent to x or $\{x_n\}$ G-converges to x.

Thus, $x_n \to x$ in a *G*-metric space (X, G) if for any $\varepsilon > 0$, there exists $k \in \mathbf{N}$ such that $G(x, x_n, x_m) < \varepsilon$ for all $m, n \ge k$.

2.3. Proposition. [10] Let (X, G) be a G-metric space. Then the following are equivalent:

(1) $\{x_n\}$ is G-convergent to x.

(2) $G(x_n, x_n, x) \to 0 \text{ as } n \to +\infty.$

(3) $G(x_n, x, x) \to 0 \text{ as } n \to +\infty.$

(4) $G(x_n, x_m, x) \to 0 \text{ as } n, m \to +\infty.$

2.4. Definition. [10] Let (X, G) be a *G*-metric space. A sequence $\{x_n\}$ is called *G*-*Cauchy* if for every $\varepsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \varepsilon$, for all $n, m, l \ge k$; that is $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

2.5. Proposition. [10] Let (X, G) be a G- metric space. Then the following are equivalent:

(1) The sequence $\{x_n\}$ is G-Cauchy.

(2) For every $\epsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \ge k$

2.6. Definition. [10] Let (X, G) and (X', G') be *G*-metric spaces, and let $f : (X, G) \to (X', G')$ be a function. Then f is said to be *G*-continuous at a point $a \in X$ if and only if for every $\varepsilon > 0$, there is $\delta > 0$ such that $x, y \in X$ and $G(a, x, y) < \delta$ implies $G'(f(a), f(x), f(y)) < \varepsilon$. A function f is *G*-continuous on X if and only if it is *G*-continuous at all $a \in X$.

2.7. Proposition. [10] Let (X, G) be a *G*-metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Every G-metric on X defines a metric d_G on X by

 $d_G(x,y) = G(x,y,y) + G(y,x,x), \text{ for all } x, y \in X.$

For a symmetric G-metric space

 $d_G(x,y) = 2G(x,y,y)$, for all $x, y \in X$.

However, if G is not symmetric, then the following inequality holds:

 $\frac{3}{2}G(x,y,y) \le d_G(x,y) \le 3G(x,y,y), \text{ for all } x, y \in X.$

The following are examples of G-metric spaces.

2.8. Example. [10] Let (\mathbb{R}, d) be the usual metric space. Define G_s by

$$G_s(x, y, z) = d(x, y) + d(y, z) + d(x, z)$$

for all $x, y, z \in \mathbb{R}$. Then it is clear that (\mathbb{R}, G_s) is a *G*-metric space.

2.9. Example. [10] Let $X = \{a, b\}$. Define G on $X \times X \times X$ by

G(a, a, a) = G(b, b, b) = 0,G(a, a, b) = 1, G(a, b, b) = 2

and extend G to $X \times X \times X$ by using the symmetry in the variables. Then it is clear that (X, G) is a G-metric space.

2.10. Definition ([10]). A *G*-metric space (X, G) is called *G*-complete if every *G*-Cauchy sequence in (X, G) is *G*-convergent in (X, G).

3. Main Results.

In 1982, Sessa [14] introduced the concept of weakly commuting maps in metric spaces as follows

3.1. Definition. Let (X, d) be a metric space and f, g be two self mappings of X. Then f and g are called *weakly commuting* if

 $d(fgx, gfx) \le d(fx, gx)$

holds for all $x \in X$.

Following Sessa [14], the concept of weakly commuting maps in G-metric space is defined as:

3.2. Definition. Let (X, G) be a G-metric space and f, g two self mappings of X. Then the pair $\{f, g\}$ is called *weakly commuting* if

 $G(fgx, gfx, gfx) \le G(fx, gx, gx)$

holds for all $x \in X$.

Now, we study a common fixed point for four maps satisfying a set of conditions in a G-metric space; in addition we introduce an example of our main result.

3.3. Theorem. Let X be a complete G-metric space, and let $A, B, S, T : X \to X$ be mappings satisfying:

$$(3.1) \qquad G(Sx, Ty, Ty) \le pG(Ax, By, By) + qG(Sx, Sx, Ax) + rG(Ty, Ty, By)$$

and

 $(3.2) \qquad G(Sx, Sx, Ty) \le pG(Ax, Ax, By) + qG(Sx, Sx, Ax) + rG(Ty, Ty, By).$

Assume the maps A, B, S and T satisfy the following conditions:

- (1) $TX \subseteq AX$ and $SX \subseteq BX$,
- (2) The mappings A and B are sequentially continuous, and
- (3) The pairs $\{A, S\}$ and $\{B, T\}$ are weakly commuting.

If $p, q, r \ge 0$ with $p+q+r \in [0, 1)$, then A, B, S and T have a unique common fixed point.

Proof. If X is a symmetric G-metric space, then by adding the above two inequalities we obtain

$$\begin{split} G(Sx,Ty,Ty) + G(Sx,Sx,Ty) &\leq p[G(Ax,By,By) + G(Ax,Ax,By)] \\ &\quad + 2q[G(Sx,Sx,Ax)] + 2r[G(Ty,Ty,By)], \end{split}$$

which further implies that

$$d_G(Sx, Ty) \le pd_G(Ax, By) + qd_G(Sx, Ax) + rd_G(Ty, By),$$

for all $x, y \in X$ with $0 \le p + q + r < 1$ and the fixed point of A, B, S and T follows from the result for metric spaces, see [14].

Now if X is not a symmetric G-metric space then by the definition of the metric (X, d_G) and Inequalities (3.1) and (3.2), we obtain

$$d_G(Sx, Ty) = G(Sx, Ty, Ty) + G(Sx, Sx, Ty) \leq p[G(Ax, By, By) + G(Ax, Ax, By)] + q[G(Sx, Sx, Ax) + G(Sx, Sx, Ax)] + r[G(Ty, Ty, By) + G(Ty, Ty, By)] \leq pd_G(Ax, By) + \frac{4}{3}qd_G(Sx, Ax) + \frac{4}{3}rd_G(Ty, By).$$

for all $x \in X$. Here, the contractivity factor $p + \frac{4}{3}(q+r)$ may not be less than 1. Therefore the metric gives no information. In this case, for given $x_0 \in X$, choose $x_1 \in X$ such that $Ax_1 = Tx_0$, choose $x_2 \in X$ such that $Sx_1 = Bx_2$, choose $x_3 \in X$ such that $Ax_3 = Tx_2$. Continuing the above process, we can construct a sequence $\{x_n\}$ in X such that $Ax_{2n+1} = Tx_{2n}, n \in \mathbb{N} \cup \{0\}$ and $Bx_{2n+2} = Sx_{2n+1}, n \in \mathbb{N} \cup \{0\}$. Let

$$y_{2n} = Ax_{2n+1} = Tx_{2n}, \ n \in \mathbb{N} \cup \{0\}$$

and

$$y_{2n+1} = Bx_{2n+2} = Sx_{2n+1}, \ n \in \mathbb{N} \cup \{0\}.$$

Take $n \in \mathbb{N}$. If n is even, then n = 2k for some $k \in \mathbb{N}$. Then from (3.2), we have

$$\begin{split} G(y_n, y_{n+1}, y_{n+1}) &= G(y_{2k}, y_{2k+1}, y_{2k+1}) \\ &= G(Tx_{2k}, Sx_{2k+1}, Sx_{2k+1}) \\ &= G(Sx_{2k+1}, Sx_{2k+1}, Tx_{2k}) \\ &\leq pG(Ax_{2k+1}, Ax_{2k+1}, Bx_{2k}) + qG(Sx_{2k+1}, Sx_{2k+1}, Ax_{2k+1}) \\ &\quad + rG(Tx_{2k}, Tx_{2k}, Bx_{2k}) \\ &= pG(y_{2k}, y_{2k}, y_{2k-1}) + qG(y_{2k+1}, y_{2k+1}, y_{2k}) \\ &\quad + rG(y_{2k}, y_{2k}, y_{2k-1}) \\ &= pG(y_n, y_n, y_{n-1}) + qG(y_{n+1}, y_{n+1}, y_n) + rG(y_n, y_n, y_{n-1}), \end{split}$$

which further implies that

$$(1-q)G(y_n, y_{n+1}, y_{n+1}) \le (p+r)G(y_{n-1}, y_n, y_n).$$

Hence

$$G(y_n, y_{n+1}, y_{n+1}) \le \frac{p+r}{1-q} G(y_{n-1}, y_n, y_n),$$

or $G(y_n, y_{n+1}, y_{n+1}) \le \lambda_1 G(y_{n-1}, y_n, y_n)$, where $\lambda_1 = \frac{p+r}{1-q} < 1$.

If n is odd, then n = 2k + 1 for some $k \in \mathbb{N}$. Again, from (3.1),

$$\begin{split} G(y_n, y_{n+1}, y_{n+1}) &= G(y_{2k+1}, y_{2k+2}, y_{2k+2}) = G(Sx_{2k+1}, Tx_{2k+2}, Tx_{2k+2}) \\ &\leq pG(Ax_{2k+1}, Bx_{2k+2}, Bx_{2k+2}) \\ &\quad + qG(Sx_{2k+1}, Sx_{2k+1}, Ax_{2k+1}) \\ &\quad + rG(Tx_{2k+2}, Tx_{2k+2}, Bx_{2k+2}) \\ &= pG(y_{2k}, y_{2k+1}, y_{2k+1}) + qG(y_{2k+1}, y_{2k+1}, y_{2k}) \\ &\quad + rG(y_{2k+2}, y_{2k+2}, y_{2k+1}) \\ &= pG(y_{n-1}, y_n, y_n) + qG(y_n, y_n, y_{n-1}) + rG(y_{n+1}, y_{n+1}, y_n), \end{split}$$

that is

$$G(y_n, y_{n+1}, y_{n+1}) \le \frac{(p+q)}{1-r} G(y_{n-1}, y_n, y_n)$$

or $G(y_n, y_{n+1}, y_{n+1}) \leq \lambda_2 G(y_{n-1}, y_n, y_n)$, where $\lambda_2 = \frac{p+q}{1-r} < 1$. Choose $\lambda = \max\{\lambda_1, \lambda_2\}$. Thus, for each $n \in \mathbb{N}$, we have

(3.3) $G(y_n, y_{n+1}, y_{n+1}) \le \lambda^n G(y_0, y_1, y_1).$

Thus, if $y_0 = y_1$, we get $G(y_n, y_{n+1}, y_{n+1}) = 0$ for each $n \in \mathbb{N}$. Hence $y_n = y_0$ for each $n \in \mathbb{N}$. Therefore $\{y_n\}$ is G-Cauchy. So we may assume that $y_0 \neq y_1$. Let $n, m \in \mathbb{N}$ with m > n. By axiom (G_5) of the definition of a G-metric space, we have

$$G(y_n, y_m, y_m) \le G(y_n, y_{n+1}, y_{n+1}) + G(y_{n+1}, y_{n+2}, y_{n+2}) + \dots + G(y_{m-1}, y_m, y_m)$$

By Equation (3.3), we get

$$G(y_n, y_m, y_m) \le \lambda^n G(y_0, y_1, y_1) + \lambda^{n+1} G(y_0, y_1, y_1) + \ldots + \lambda^{m-1} G(y_0, y_1, y_1)$$

= $\lambda^n \sum_{i=0}^{m-1-n} q^i G(y_0, y_1, y_1) \le \frac{\lambda^n}{1-\lambda} G(y_0, y_1, y_1).$

On taking limit $m, n \to \infty$, we have

 $\lim_{m,n\to\infty} G(y_n, y_m, y_m) = 0.$

So we conclude that $\{y_n\}$ is a *G*-Cauchy sequence in *X*. Since *X* is *G*-complete, then it yields that $\{y_n\}$ and hence any subsequence of $\{y_n\}$ converges to some $z \in X$. So that, the subsequences $\{Ax_{2n+1}\}, \{Bx_{2n+2}\}, \{Sx_{2n+1}\}$ and $\{Tx_{2n}\}$ converge to *z*. First suppose that *A* is sequentially continuous, so that

 $\lim_{n \to \infty} A^2 x_{2n+1} = Az \text{ and } \lim_{n \to \infty} AS x_{2n+1} = Az.$

Since $\{A, S\}$ is weakly commuting, we have

 $G(SAx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}) \le G(Sx_{2n+1}, Ax_{2n+1}, Ax_{2n+1}).$

On taking the limit as $n \to \infty$, we get that $G(SAx_{2n+1}, Az, Az) \to 0$. Thus, we have

 $\lim_{n \to \infty} SAx_{2n+1} = Az.$

Assume $Az \neq z$, we get

$$G(SAx_{2n+1}, Tx_{2n}, Tx_{2n})$$

$$\leq pG(AAx_{2n+1}, Bx_{2n}, Bx_{2n}) + qG(SAx_{2n+1}, SAx_{2n+1}, AAx_{2n+1})$$

$$+ rG(Tx_{2n}, Tx_{2n}, Bx_{2n}).$$

On letting $n \to \infty$, we have

 $G(Az, z, z) \le pG(Az, z, z) + qG(Az, Az, Az) + rG(z, z, z).$

Since p < 1, we conclude that

G(Az, z, z) < G(Az, z, z),

which is a contradiction. So Az = z. Also,

$$G(Sz, Sz, Tx_{2n}) \le pG(Az, Az, Bx_{2n}) + qG(Sz, Sz, Az) + rG(Tx_{2n}, Tx_{2n}, Bx_{2n})$$

By taking the limit as $n \to \infty$, we have

 $G(Sz, Sz, z) \le pG(Az, Az, z) + qG(Sz, Sz, Az) + rG(z, z, z) \le qG(Sz, Sz, z).$

Since q < 1, we get G(Sz, Sz, z) = 0. So Sz = z. Suppose B is sequentially continuous, then

 $\lim_{n \to \infty} B(Bx_{2n}) = Bz \text{ and } \lim_{n \to \infty} B(Tx_{2n}) = Bz.$

Since the pair $\{B, T\}$ is weakly commuting, we have

 $G(TBx_{2n}, BTx_{2n}, BTx_{2n}) \le G(Tx_{2n}, Bx_{2n}, Bx_{2n}).$

Taking the limit as $n \to +\infty$, we get $G(TBx_{2n}, Bz, Bz) \to 0$. Thus

$$\lim_{n \to \infty} T(Bx_{2n}) = Bz$$

Assume $Bz \neq z$. Since

$$G(Sx_{2n+1}, TBx_{2n}, TBx_{2n})$$

$$\leq pG(Ax_{2n+1}, BBx_{2n}, BBx_{2n}) + qG(Sx_{2n+1}, Sx_{2n+1}, Ax_{2n+1})$$

$$+ rG(TBx_{2n}, TBx_{2n}, BBx_{2n}),$$

Again taking the limit as $n \to \infty$, implies

$$G(z, Bz, Bz) \le pG(z, Bz, Bz) + qG(z, z, z) + rG(Bz, Bz, Bz) < G(z, Bz, Bz),$$

which is a contradiction. Hence Bz = z. Since

$$G(Sx_{2n+1}, Tz, Tz)$$

$$\leq pG(Ax_{2n+1}, Bz, Bz) + qG(Sx_{2n+1}, Sx_{2n+1}, Ax_{2n+1}) + rG(Tz, Tz, Bz)$$

on taking the limit as $n \to \infty$, we get

$$G(z, Tz, Tz) \le pG(z, Bz, Bz) + qG(z, z, z) + rG(Tz, Tz, Bz)$$
$$\le rG(z, Tz, Tz).$$

Since r < 1, we get G(z, Tz, Tz) = 0. Hence Tz = z. So z is a common fixed point for A, B, S and T. To prove that z is the unique common fixed point let w be a common fixed point for A, B, S and T with $w \neq z$. Then

$$\begin{split} G(z,w,w) &= G(Sz,Tw,Tw) \\ &\leq pG(Az,Bw,Bw) + qG(Sz,Sz,Az) + rG(Tw,Tw,Bw) \\ &= pG(z,w,w) + qG(z,z,z) + rG(w,w,w) = pG(z,w,w) \\ &< G(z,w,w), \end{split}$$

which is a contradiction. So z = w.

3.4. Corollary. Let X be a complete G-metric space, and let $A, B, S, T : X \to X$ be mappings satisfying:

$$G(Sx, Ty, Ty) \le hG(Ax, By, By)$$

and

$$G(Sx, Sx, Ty) \le hG(Ax, Ax, By).$$

Assume the maps A, B, S and T satisfy the following conditions:

(1) $TX \subseteq AX$ and $SX \subseteq BX$,

- (2) The mappings A and B are sequentially continuous, and
- (3) The pairs $\{A, S\}$ and $\{B, T\}$ are weakly commuting.

If $h \in [0, 1)$, then A, B, S and T have a unique common fixed point.

3.5. Corollary. Let X be a complete G-metric space and let $A, S : X \to X$ be mappings satisfying:

 $G(Sx, Sy, Sy) \le kG(Ax, Ay, Ay)$

for all $x, y \in X$. Assume the maps A and S satisfy the following conditions:

(1) $SX \subseteq AX$,

- (2) The map A is sequentially continuous, and
- (3) The pair $\{A, S\}$ is weakly commuting.

If $k \in [0, 1)$, then A and S have a unique common fixed point.

Proof. Define $B: X \to X$ by Bx = Ax and define $T: X \to X$ by Tx = Sx. Then the four maps A, B, S and T satisfy all the hypothesis of Corollary 3.4. So, the result follows from Corollary 3.4.

3.6. Corollary. Let X be a complete G-metric space and let $S : X \to X$ be a mapping satisfying:

$$G(Sx, Sy, Sy) \le qG(x, y, y)$$

for all $x, y \in X$. If $q \in [0, 1)$, then S has a unique fixed point.

Proof. Follows from Corollary 3.5 by taking A = B = I and S = T.

Now, we introduce an example of Theorem 3.3.

3.7. Example. Let X = [0, 1], Define $A, B, S, T : X \to X$ by $Ax = \frac{1}{2}x$, $Bx = \frac{1}{4}x$, $Sx = \frac{1}{8}x$, and $Tx = \frac{1}{16}x$. Then $TX \subseteq AX$, $SX \subseteq BX$. Note that the pairs $\{A, S\}$ and $\{B, T\}$ are weakly compatible. Define $G : X \times X \times X \to \mathbb{R}^+$ by

G(x, y, z) = |x - y| + |x - z| + |y - z|.

Then (X, G) is a complete *G*-metric. Also

$$G(Sx, Ty, Ty) = 2|Sx - Ty| = \frac{1}{8}|2x - y|,$$

$$G(Ax, By, By) = 2|Ax - by| = \frac{1}{2}|2x - y|,$$

$$G(Sx, SX, Ty) = 2|Sx - Ty| = \frac{1}{8}|2x - y|,$$

and

$$G(Ax, Ax, By) = 2|Ax - By| = \frac{1}{2}|2x - y|$$

So

$$G(Sx, Ty, Ty)) \le \frac{1}{2}G(Ax, By, By)$$

and

$$G(Sx, Sx, Ty)) \le \frac{1}{2}G(Ax, Ax, By).$$

Since AS = SA and BT = TB, we conclude that the pairs $\{A, S\}$ and $\{B, T\}$ are weakly commuting. Note that A, B, S and T satisfy the hypothesis of Theorem 3.3. Here, 0 is the unique common fixed point of A, B, S and T.

Acknowledgement

The authors thank the referees for their useful comments and suggestions.

References

- Abbas, M., Nazir, T., Shatanawi W., and Mustafa, Z. Fixed and Related Fixed Point Theorems for Three Maps in G-Metric Spaces, Hacettepe Journal of Mathematics and Statistics 41, 291-306, 2012.
- [2] Abbas, M. and Rhoades, B.E. Common fixed point results for noncommuting mapping without continuity in generalized metric spaces, Appl. Math. and Computation, 215, 262– 269, 2009.
- [3] Aydi, H., Damjanovic, B., Sametc, B. and Shatanawi, W. Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. and Comp. Modelling 54, 2443–2450, 2011.
- [4] Aydi, H., Karapinar, E., and Shatanawi, W. Tripled fixed point results in generalized metric spaces, Journal of Applied Mathematics 2012, Article ID 314279, 10 pages, 2012.
- [5] Aydi, H., Postolache, M., Shatanawi, W. Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces, Computers and Mathematics with Applications 63, 298–309, 2012.
- [6] Chugh, R., Kadian, T., Rani, A. and Rhoades, B. E. Property p in G-metric spaces, Fixed Point Theory Appl. 2010, Article ID 401684, 2010.
- [7] Gholizadeh, L., Saadati, R., Shatanawi, W., and Vaezpour, S. M., Contractive mapping in generalized, ordered metric spaces with application in integral equations, Mathematical Problems in Engineering, Article ID 380784, doi:10.1155/2011/380784, 14 pages, 2011.
- [8] Mustafa, Z. A new structure for generalized metric spaces with application to fixed point theory (Ph.D. Thesis, The University of Newcastle, Australia, 2005).
- [9] Mustafa, Z. and Sims, B. Some remarks concerning D-metric spaces, Proc. Int. Conf. on Fixed Point Theory and Applications, Valencia (Spain), 189–198, 2003.
- [10] Mustafa, Z. and Sims, B. A new approach to generalized metric spaces, J. of Nonlinear and Convex Analysis 7 (2), 289–297, 2006.
- [11] Mustafa, Z., Shatanawi, W. and Bataineh, M. Existence of fixed point results in G-metric spaces, Intl. J. of Math. and Math. Sci. 2009, Article ID 283028, 2009.
- [12] Mustafa, Z., Obiedat, H. and Awawdehand, F. Some fixed point theorem for mapping on complete G- metric spaces, Fixed Point Theory Appl. 2008, Article ID 189870, 2008.
- [13] Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B.E. Fixed point theorems in generalized partially ordered G-metric spaces, Math. and Comp. Modelling 52 (5-6), 797–801, 2010.
- [14] Sessa, S. On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Soc. 32, 149–153, 1982.
- [15] Shatanawi, W. Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. 2010, Article ID 181650, 2010.
- [16] Shatanawi, W. Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat. 40 (3), 441–447, 2011.
- [17] Shatanawi, W. Some fixed point theorems in ordered G-metric spaces and applications, Abstr. Appl. Analysis 2011, Article ID 126205, 2011.
- [18] Shatanawi, W. and Postolache, M. Some fixed point results for a G-weak contraction in G-metric spaces, Accepted in Abstract and Applied Analysis.