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Abstract

In this paper, we introduce the concept of weakly commuting maps in
G-metric spaces and prove a common fixed point theorem for four self
maps in the setting of generalized metric spaces. We also present an
example to support our result.

Keywords: Common fixed Point, Weakly Commuting Maps, Generalized Metric
Spaces.

2000 AMS Classification: 54 H25, 47H 10, 54 E 50.

1. Introduction

The notion of G-metric space was introduced by Z. Mustafa and B. Sims [10] as
a generalization of the notion of metric spaces. Mustafa et al. studied many fixed
point results in G- metric spaces (see [8, 9, 10, 11, 12]). The study of common fixed
point theorems in generalized metric spaces was initiated by Abbas and Rhoades [2],
while, Saddati et al. [13] studied some fixed points in generalized partially ordered G-
metric spaces. Shatanawi [15] obtained fixed points of ®-maps in G-metric spaces. Also,
Shatanawi [16] obtained a coupled coincidence fixed point theorem in the setting of a
generalized metric spaces for two mapping F' and g under certain conditions with an
assumption of G-continuity of one of the mapping involved therein, see also [3, 17, 1,
4, 18, 5], while Chugh et al. [6] obtained some fixed point results for maps satisfying
property p in a G-metric space. In the present paper, we introduce the concept of weakly
commuting maps in G-metric spaces and prove a common fixed point theorem for four
self maps in the setting of generalized metric spaces.
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2. Preliminaries.

The following definition was introduced by Mustafa and Sims [10].
2.1. Definition. [10] Let X be a nonempty set and G : X x X x X — R™ a function
satisfying the following properties:

(G1) G(z,y,2) =0ifz =y =z,

(G2) 0 < G(z,z,y), for all z,y € X with z # y,

(Gs) G(z,z,y) < G(z,y,z) for all x,y,z € X with z # vy,

(G4) G(z,y,2) = G(z,2,y) = G(y,z,z) = ..., symmetry in all three variables,

(Gs) G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X.
Then the function G is called a generalized metric, or, more specifically, a G-metric on
X, and the pair (X, G) is called a G-metric space.

2.2. Definition. [10] Let (X,G) be a G-metric space, and let {z,} be a sequence of
points of X. A point x € X is said to be the limit of the sequence {z,}, if
limn,7n~>+ooG(x7 Tn, fcm) =0,

and we say that the sequence {z,} is G-convergent to z or {z,} G-converges to x.
Thus, £, — z in a G-metric space (X, G) if for any € > 0, there exists £ € N such

that G(z, Tn,zm) < € for all m,n > k.

2.3. Proposition. [10] Let (X, G) be a G-metric space. Then the following are equiva-

lent:

(1) {zn} is G-convergent to x.

(2) G(zn,xn,xz) =0 as n — +oo.

3) G(zn,z,z) = 0 as n — +o0.

(4) G(zn,xm,z) = 0 as n,m — +oo. O

2.4. Definition. [10] Let (X, @) be a G-metric space. A sequence {z,} is called G-
Cauchy if for every € > 0, there is k € N such that G(zn, Tm,z1) < g, for all n,m,l > k;
that is G(zn, Tm,x;) — 0 as n,m,l — 4oo.

2.5. Proposition. [10] Let (X,G) be a G- metric space. Then the following are equiv-
alent:

(1) The sequence {zn} is G-Cauchy.

(2) For every e > 0, there is k € N such that G(Zn, Tm,Tm) <€, foralln,m >k O
2.6. Definition. [10] Let (X,G) and (X', G’) be G-metric spaces, and let f: (X,G) —
(X',G") be a function. Then f is said to be G-continuous at a point a € X if and
only if for every € > 0, there is § > 0 such that z,y € X and G(a,z,y) < ¢ implies
G'(f(a), f(z), f(y)) < e. A function f is G-continuous on X if and only if it is G-
continuous at all a € X.

2.7. Proposition. [10] Let (X, G) be a G-metric space. Then the function G(z,y, z) is
jointly continuous in all three of its variables. O

Every G-metric on X defines a metric dg on X by
da(z,y) = G(z,y,y) + G(y,z,x), for all z,y € X.
For a symmetric G-metric space
da(z,y) = 2G(z,y,y), for all z,y € X.
However, if G is not symmetric, then the following inequality holds:
%G(x,y,y) <dg(z,y) <3G(z,y,y), for all z,y € X.

The following are examples of G-metric spaces.
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2.8. Example. [10] Let (R, d) be the usual metric space. Define G by
Gs(z,y,2) = d(z,y) + d(y, 2) + d(z, 2)

for all z,y,z € R. Then it is clear that (R, Gs) is a G-metric space.

2.9. Example. [10] Let X = {a,b}. Define G on X x X x X by
G(a,a,a) = G(b,b,b) =0,
G(a,a,b) =1, G(a,b,b) =2

and extend G to X x X x X by using the symmetry in the variables. Then it is clear
that (X, G) is a G-metric space.

2.10. Definition ([10]). A G-metric space (X, G) is called G-complete if every G-Cauchy
sequence in (X, G) is G-convergent in (X, G).

3. Main Results.

In 1982, Sessa [14] introduced the concept of weakly commuting maps in metric spaces
as follows

3.1. Definition. Let (X,d) be a metric space and f, g be two self mappings of X. Then
f and g are called weakly commuting if

d(fgz,gfz) < d(fz,gz)
holds for all z € X.

Following Sessa [14], the concept of weakly commuting maps in G-metric space is
defined as:

3.2. Definition. Let (X, G) be a G-metric space and f, g two self mappings of X. Then
the pair {f, g} is called weakly commuting if

G(fgz,9fz,9fz) < G(fz, gz, gx)
holds for all z € X.

Now, we study a common fixed point for four maps satisfying a set of conditions in a
G-metric space; in addition we introduce an example of our main result.

3.3. Theorem. Let X be a complete G-metric space, and let A,B,S,T : X — X be
mappings satisfying:

(3.1) G(Sz,Ty,Ty) < pG(Az, By, By) + qG(Sz, Sz, Az) + rG(Ty, Ty, By)
and

(3.2)  G(Sz,Sz,Ty) < pG(Az, Az, By) + qG(Sz, Sz, Az) + rG(Ty, Ty, By).

Assume the maps A, B, S and T satisfy the following conditions:

(1) TX C AX and SX C BX,
(2) The mappings A and B are sequentially continuous, and
(3) The pairs {A, S} and {B,T} are weakly commuting.

Ifp,q,r > 0 withp+q+r €[0,1), then A, B, S and T have a unique common fized point.
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Proof. If X is a symmetric G-metric space, then by adding the above two inequalities
we obtain

G(Sz,Ty,Ty) + G(Sz, Sz, Ty) < p|G(Az, By, By) + G(Az, Az, By)]
+2¢|G(Sz, Sz, Ax)] + 2r[G(Ty, Ty, By)],

which further implies that
da(Sz,Ty) < pda(Az, By) + qda(Sz, Az) + rda(Ty, By),
for all z,y € X with 0 <p+ g+ r <1 and the fixed point of A, B, S and T follows from

the result for metric spaces, see [14].
Now if X is not a symmetric G-metric space then by the definition of the metric
(X,da) and Inequalities (3.1) and (3.2), we obtain
da(Sz, Ty) = G(Sz, Ty, Ty) + G(Sz, Sz, Ty)
< p[G(Az, By, By) + G(Ax, Az, By)|
+ q|G(Sz, Sz, Az) + G(Sz, Sz, Azx)]
+r[G(Ty, Ty, By) + G(Ty, Ty, By)]
< pdc(Az, By) + %ng(S:mAx) + %rdG(Ty7 By).
for all z € X. Here, the contractivity factor p + %(q + r) may not be less than 1.
Therefore the metric gives no information. In this case, for given z¢o € X, choose z1 € X
such that Azxzi1 = Txo, choose x2 € X such that Sz; = Bx2, choose x3 € X such that

Axs = Tz2. Continuing the above process, we can construct a sequence {z,} in X such
that Azont1 = Txon, n € NU{0} and Bxani2 = Sxany1, n € NU{0}. Let

Yon = Azont1 = Tx2n, n € NU{0}
and
Yont1 = BXonyo = Sxont1, n € NU{0}.
Take n € N. If n is even, then n = 2k for some k£ € N. Then from (3.2), we have
G(Yn, Yn+1, Yn+1) = G(Y2k, Y2r+1, Yak+1)
= G(Txok, Stoks1, STokt1)
= G(Swakt1, SToky1, Twor)
< pG(Azaks1, ATok41, Brar) + ¢G(STor+1, STakt1, ATor+1)
+ rG(Tx2k, Tk, Bxak)
= pG (Y2, Y2k» Y2k—1) + @G (Y241, Y2k+1, Y2k )
+ rG(Y2k, Y2k, Y2k—1)
= PG Yn, Yn,Yyn—1) + 4G (Ynt1,Yn+1,Yn) + rG(Yn, Yn, Yn-1),
which further implies that
(1= Q)G (Yn, Yn+1,Yn+1) < (P +7)G(Yn—1,Yn, Yn)-

Hence

+7r
G(ym yvl+17yn+1) < 11)_ q

G(Yn—1,Yn,Yn),

or G(Yn,Yn+1,Yn+1) < MG(Yn—1,Yn,yn), where Ay = 2L < 1.

q
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If n is odd, then n = 2k + 1 for some k € N. Again, from (3.1),
G(Yns Ynt1, Ynt1) = G(Y2rt1, Yarr2, Yart2) = G(STart1, Toorr2, TToky2)
< pG(Azoky1, Brokya2, Braks2)
+ qG(Szok+1, STakt1, ATok+1)
+ rG(Tx2kr2, TTory2, Broki2)
= pG(y2k, Y2k+1, Y2k+1) + 4G (Y2k+1, Y2k+1, Y2i)
+ G (Y2k+2, Y2k+2, Y2kt1)
= PG (Yn—1,Yn:Yn) + 4G(Yn: Yns Yn—1) + 7G(Yn+1, Ynt1,Yn),
that is

(r+q
1—7r

G(yn7yn+17yn+1) < G(yn—17yn7yn)7

or G(Yn, Yn+1, Yn+1) < A2G(Yn—1, Yn, Yn), where Ao = 7%2 < 1. Choose A = max{A1, A2}.
Thus, for each n € N, we have
(3.3)  G(YnsYn+1,Yn+1) < A"G(yo, y1,v1).
Thus, if yo = y1, we get G(Yn, Yn+1, Yn+1) = 0 for each n € N. Hence y, = yo for each
n € N. Therefore {y.} is G-Cauchy. So we may assume that yo # y1. Let n,m € N with
m > n. By axiom (Gs) of the definition of a G-metric space, we have

G(ym Ym, ym) < G(ym yn+17yn+1)+G(yn+17yn+27 yn+2)+' : ""G(ymfhyrm ym)'
By Equation (3.3), we get

G(y,“ Ym, ym) < )‘nG(y07 Y1, yl) + )‘n+1G(y07 Y1, yl) +...+ )‘7n71G(y07 Y1, yl)

m—1—n n

=AY @'Gyoyn ) < T Glyo, v ).
=0

On taking limit m,n — oo, we have

lim  G(yn, Ym,ym) = 0.

m,n— oo

So we conclude that {y,} is a G-Cauchy sequence in X. Since X is G-complete, then
it yields that {y,} and hence any subsequence of {y.} converges to some z € X. So
that, the subsequences {Azan+1}, {Bxant2}, {STon+1} and {Tx2,} converge to z. First
suppose that A is sequentially continuous, so that

lim A2x2n+1 = Az and lim ASz2ny1 = Az.
n— oo n— oo

Since {A, S} is weakly commuting, we have
G(SAzant1, ASTant1, ASxont1) < G(STont1, ATony1, ATony1).
On taking the limit as n — oo, we get that G(SAz2ny1, Az, Az) — 0. Thus, we have
lim SAzani1 = Az.
n—o0
Assume Az # z, we get
G(SAzony1, Txon, Txon)
< pG(AAxant1, Bron, Bron) + qG(SAz2n+1, SAT2nt1, AAZT2041)
+ rG(Tx2n, Txon, Bxay).
On letting n — oo, we have

G(Az,z,2) <pG(Az,z,2) + qG(Az, Az, Az) + rG(z, 2, z).
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Since p < 1, we conclude that

G(Az,2,2) < G(Az, z,2),
which is a contradiction. So Az = z. Also,

G(Sz,5%,Tren) < pG(Az, Az, Bxon)+qG(Sz, Sz, Az) + rG(Tx2n, TTon, Bran).
By taking the limit as n — oo, we have

G(Sz,5%,2) < pG(Az, Az, z) + qG(Sz,Sz, Az) + rG(z,z,2) < qG(Sz, Sz, z).

Since ¢ < 1, we get G(Sz,S5z,2) = 0. So Sz = z. Suppose B is sequentially continuous,
then

nlllr;o B(Bz2,) = Bz and nlllr;o B(T'z2n) = Bz.
Since the pair {B, T} is weakly commuting, we have
G(TBzan, BT x2n, BTx2n) < G(T'x2n, Bxon, Bran).
Taking the limit as n — 400, we get G(T'Bz2n, Bz, Bz) — 0. Thus
lim T(Bz2n) = Bz.
n—o0
Assume Bz # z. Since
G(Szan+1, TBxon, T Bxay)
< pG(Azany1, BBxon, BBxan) + qG(ST2n+1, STant1, ATon+1)
+ rG(T Bxon, T Braon, BBxany),
Again taking the limit as n — oo, implies
G(z,Bz,Bz) < pG(z, Bz, Bz) + qG(z, 2, z) + rG(Bz, Bz, Bz) < G(z, Bz, Bz),
which is a contradiction. Hence Bz = 2. Since
G(Szont1,T2,Tz)
< pG(Az2n41, Bz, Bz) + qG(Sx2n+1, Stont1, Azony1) + 1G(T2, Tz, Bz),
on taking the limit as n — co, we get
G(2,Tz,Tz) < pG(z,Bz,Bz) + qG(z,2,2) + rG(Tz,Tz, Bz)
<rG(z,TzTz).

Since r < 1, we get G(z2,T2,Tz) = 0. Hence Tz = z. So z is a common fixed point for
A,B,S and T. To prove that z is the unique common fixed point let w be a common
fixed point for A, B, S and T with w # z. Then

G(z,w,w) = G(Sz,Tw,Tw)
< pG(Az, Bw, Bw) + ¢qG(Sz, 5z, Az) + rG(Tw, Tw, Bw)
=pG(z,w,w) + ¢G(z, 2z, z) + rG(w, w,w) = pG(z,w, w)
< G(z,w,w),

which is a contradiction. So z = w. O

3.4. Corollary. Let X be a complete G-metric space, and let A,B,S,T : X — X be
mappings satisfying:

G(Sz,Ty,Ty) < hG(Az, By, By)
and

G(Sz,Sz,Ty) < hG(Az, Az, By).
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Assume the maps A, B, S and T satisfy the following conditions:

(1) TX C AX and SX C BX,

(2) The mappings A and B are sequentially continuous, and

(3) The pairs {A, S} and {B,T} are weakly commuting.
If h €[0,1), then A, B,S and T have a unique common fized point. a
3.5. Corollary. Let X be a complete G-metric space and let A, S : X — X be mappings
satisfying:

G(Sz, Sy, Sy) < kG(Azx, Ay, Ay)

for all z,y € X. Assume the maps A and S satisfy the following conditions:

(1) SX C AX,
(2) The map A is sequentially continuous, and
(3) The pair {A, S} is weakly commuting.
If k €10,1), then A and S have a unique common fized point.
Proof. Define B : X — X by Bx = Ax and define T': X — X by Tx = Sx. Then the

four maps A, B, S and T satisfy all the hypothesis of Corollary 3.4. So, the result follows
from Corollary 3.4. |

3.6. Corollary. Let X be a complete G-metric space and let S : X — X be a mapping
satisfying:
G(Sz, Sy, Sy) < qG(z,y,y)
forallz,y € X. If ¢ €]0,1), then S has a unique fized point.
Proof. Follows from Corollary 3.5 by taking A=B=1and S=T1T. ]
Now, we introduce an example of Theorem 3.3.

3.7. Example. Let X = [0,1], Define 4,B,5,T : X — X by Az = iz, Bx = iz,

Sz = iz, and To = L. Then TX C AX, SX C BX. Note that the pairs {4, S} and

{B, T} are weakly compatible. Define G : X x X x X — R" by
Gz,y,2) = |z —yl+ |z — 2|+ |y — 2.

Then (X, G) is a complete G-metric. Also
G(Sz, Ty, Ty) =2|Sz — Ty| = %|2x -1,
G(Az, By, By) = 2|Az — by| = 3|22 — y],
G(Sz,SX,Ty) = 2|Sz — Ty| = ]2z — y|,

and

G(Az, Az, By) = 2|Az — By| = 3|2z — y|.
So

G(Sz,Ty,Ty)) < %G(A:C7By7By)
and

G(Sz,Sz,Ty)) < %G(A:m Az, By).

Since AS = SA and BT = T B, we conclude that the pairs {A, S} and {B, T} are weakly
commuting. Note that A, B, S and T satisfy the hypothesis of Theorem 3.3. Here, 0 is
the unique common fixed point of A, B, S and T
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