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Abstract

In this paper, weak convergence theorems of a finite family of asymp-
totically k-strict pseudo-contractions are established in the framework
of 2-uniformly smooth and uniformly convex Banach spaces.
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1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and Jq (q > 1) denotes the generalized duality

mapping from E into 2E
∗

give by

Jq(x) = {f∗ ∈ E
∗ : 〈x, f∗〉 = ‖x‖q , ‖f∗‖ = ‖x‖q−1}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing.
In particular, J2 is called the normalized duality mapping which is usually denoted by
J . In this paper, we use j to denote the single-valued normalized duality mapping. It is
well known (see, for example, [14]) that Jq(x) = ‖x‖q−2J(x) if x 6= 0. If E is a Hilbert
space, then J = I , where I denotes the identity mapping.

Let UE = {x ∈ E : ‖x‖ = 1}. E is said to uniformly convex if, for any ǫ ∈ (0, 2], there
exists δ > 0 such that

‖x− y‖ ≥ ǫ implies
∥

∥

∥

x+ y

2

∥

∥

∥
≤ 1− δ, ∀x, y ∈ UE .

A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

∗School of Business and Administration, Henan University, Kaifeng 475000, China
E-mail: kyls2003@yahoo.com.cn



832 C. Wu

exists for all x, y ∈ UE . It is also said to be uniformly smooth if the limit is attained
uniformly for all x, y ∈ UE . The norm of E is said to be Fréchet differentiable if, for all
x ∈ UE , the above limit is attained uniformly for all y ∈ UE . The modulus of smoothness
of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ ) = sup
{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ

}

, ∀ τ ≥ 0.

The Banach space E is uniformly smooth if and only if limτ→∞
ρE(τ)

τ
= 0. Let q > 1.

The Banach space E is said to be q-uniformly smooth if there exists a constant c > 0
such that ρE(τ ) ≤ cτ q. It is shown in [14] that there is no Banach space which is q-
uniformly smooth with q > 2. Hilbert spaces, Lp (or lp) spaces and Sobolev space W p

m,
where p ≥ 2 are 2-uniformly smooth. Typical examples of both uniformly convex and
uniformly smooth Banach spaces are Lp, where p > 1. More precisely, Lp is min{p, 2}-
uniformly smooth for every p > 1.

It is known that if E is 2-uniformly smooth with the best smooth constant K, then
the following inequality holds:

(1.1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ 2‖Ky‖2, ∀x, y ∈ E.

Let C be a nonempty, closed and convex subset of E. Let T : C → C be a mapping.
In this paper, we use F (T ) to denote the fixed point set of T . Recall that the mapping
T is said to be a κ-strict pseudo-contraction if there exist a constant κ ∈ (0, 1

2
] and

j(x− y) ∈ J(x− y) such that

(1.2) 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − κ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C.

The class of strict pseudo-contractions was first introduced by Browder and Petryshyn
in Hilbert spaces, see [2] for more details. If I denotes the identity mapping, then (1.2)
can be rewritten as follows

(1.3) 〈(I − T )x− (I − T )y, j(x− y)〉 ≥ κ‖(I − T )x− (I − T )y)‖2, ∀ x, y ∈ C.

If E is a Hilbert space, then (1.2) is reduced to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − κ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

which is equivalent to

(1.4) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + (1− 2κ)‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

If κ = 1
2
, then (1.4) is reduced to

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

That is, T is non-expansive. Recall that the mapping T is said to be an asymptotically
κ-strict pseudo-contraction if there exist a constant κ ∈ (0, 1

2
], a sequence {kn} ⊂ [1,∞)

with limn→∞ kn = 1 and j(x − y) ∈ J(x− y) such that

(1.5)
〈Tn

x− T
n
y, j(x− y)〉 ≤ kn‖x− y‖2 − κ‖(I − T

n)x− (I − T
n)y‖2,

∀ x, y ∈ C, ∀n ≥ 1.

The class of asymptotically κ-strict pseudo-contraction was first introduced by Qihou in
Hilbert spaces, see [11] for more details. If I denotes the identity mapping, then (1.5)
can be rewritten as follows

(1.6)
〈(I − T

n)x− (I − T
n)y, j(x− y)〉

≥ κ‖(I − T
n)x− (I − T

n)y)‖2 − (kn − 1)‖x− y‖2, ∀ x, y ∈ C, ∀n ≥ 1.
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If E is a Hilbert space, then (1.5) is reduced to

(1.7)
〈Tn

x− T
n
y, x− y〉 ≤ kn‖x− y‖2 − κ‖(I − T

n)x− (I − T
n)y‖2,

∀ x, y ∈ C, ∀n ≥ 1,

which is equivalent to

(1.8)
‖Tn

x− T
n
y‖2 ≤ (2kn − 1)‖x − y‖2 + (1− 2κ)‖(I − T

n)x− (I − T
n)y‖2,

∀x, y ∈ C, ∀n ≥ 1.

If κ = 1
2
, then (1.8) is reduced to

(1.9) ‖Tn
x− T

n
y‖2 ≤ (2kn − 1)‖x− y‖2, ∀x, y ∈ C, ∀n ≥ 1.

That is, T is an asymptotically non-expansive mapping which was introduced by Goebel
and Kirk [3] as a generalization of the class of non-expansive mappings. It is clear that if
kn = 1 for each n ≥ 1, then the class of asymptotically non-expansive mappings is reduced
to the class of non-expansive mappings. If C is a nonempty bounded closed convex subset
of a uniformly convex Banach space, then every asymptotically non-expansive mapping
has a unique fixed point in C.

The normal Mann iterative process [5] generates a sequence {xn} in the following
manner

(1.10) x1 ∈ C, xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 1,

where x1 ia an initial value and {αn} is a sequence in the interval (0, 1).

In 1979, Reich [12] obtained the following celebrated weak convergence theorem.

1.1. Theorem. Let C be a closed convex subset of a uniformly convex Banach space E

with a Fréchet differential norm, T : C → C a non-expansive mapping with a fixed point,

and {αn} a real sequence such that 0 ≤ αn ≤ 1 and
∑∞

n=1 αn(1− αn) = ∞. Let {xn} be

a sequence generated in (1.10). Then the sequence {xn} converges weakly to a fixed point

of T .

Marino and Xu [6] extended the results of Reich [12] from the class of non-expansive
mappings to the class of strict pseudo-contractions and obtained a weak convergence
theorem based on the normal Mann iterative process in Hilbert spaces. More precisely,
they proved the following results.

1.2. Theorem. Let C be a closed convex subset of a Hilbert space H. Let T : C → C

be a κ-strictly pseudo-contractive mapping defined in (1.4) and assume that T admits a

fixed point in C. Let {xn} be the sequence generated in the normal Mann iterative process

algorithm (1.10). Assume that the control sequence {αn} is chosen so that 1−2κ < αn < 1
for all n ≥ 1 and

∑∞
n=1(αn − 1 + 2κ)(1 − αn) = ∞. Then {xn} converges weakly to a

fixed point of T .

Recently, Acedo and Xu [1], still in the framework of Hilbert spaces, introduced the
following cyclic iterative algorithm.

Let C be a closed convex subset of a Hilbert space H and let {Ti}N−1
i=0 be κi-strict

pseudo-contractions on C such that
⋂N−1

i=0 F (Ti) 6= ∅. Let x0 ∈ C and {αn} be a sequence
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in (0, 1). The cyclic algorithm generates a sequence {xn} in the following manner:






































x1 = α0x0 + (1− α0)T0x0,

x2 = α1x1 + (1− α1)T1x1,

· · ·
xN = αN−1xN−1 + (1− αN−1)TN−1xN−1,

xN+1 = αNxN + (1− αN )T0xN ,

· · ·
In a compact form, xn+1 can be rewritten as

(1.11) xn+1 = αnxn + (1− αn)T[n]xn,

where T[n] = Ti with i = n (mod N) for 0 ≤ i ≤ N − 1.

They also established a weak convergence theorem based on the cyclic iterative algo-
rithm (1.11) in the framework of Hilbert spaces. To be more precise, they proved the
following results.

1.3. Theorem. Let C be a closed convex subset of a Hilbert space H. Let N ≥ 1 be

an integer. Let, for each 0 ≤ i ≤ N − 1, Ti : C → C be a κi-strict pseudo-contraction

as defined in (1.4). Let κ = min{κi : 1 ≤ i ≤ N}. Assume that the common fixed

point set of {Ti}N−1
i=0 is nonempty. For any x0 ∈ C, let {xn} be the sequence generated

in the cyclic algorithm (1.11). Assume that the control sequence {αn} is chosen so that

1− 2κ + ǫ ≤ αn ≤ 1− ǫ for all n ≥ 0 and some ǫ ∈ (0, 1). Then {xn} converges weakly

to a common fixed point of {Ti}N−1
i=0 .

In this paper, we introduce the following iterative process for a family of asymptotically
strict pseudo-contractions. Let x0 ∈ C and {αn} be a sequence in (0, 1). The sequence
{xn} generated in the following manner:







































































x1 = α0x0 + (1− α0)T1x0,

x2 = α1x1 + (1− α1)T2x1,

· · ·
xN = αN−1xN−1 + (1− αN−1)TNxN−1,

xN+1 = αNxN + (1− αN )T 2
1 xN ,

· · ·
x2N = α2N−1x2N−1 + (1− α2N−1)T

2
Nx2N−1

x2N+1 = α2Nx2N + (1− α2N )T 3
1 x2N

· · ·
is called the explicit iterative sequence of a finite family of asymptotically strict pseudo-
contractions {T1, T2, . . . , TN}.

Since, for each n ≥ 1, it can be written as n = (h − 1)N + i, where i = i(n) ∈
{1, 2, · · · , N}, h = h(n) ≥ 1 is a positive integer and h(n) → ∞ as n → ∞. Hence we
can rewrite the above table in the following compact form:

(1.12) xn = αn−1xn−1 + (1− αn−1)T
h(n)
i(n) xn−1, ∀n ≥ 1.

In this paper, motivated by the research announced in [1,7-10], we consider the weak
convergence of the iteration process (1.12) for a finite family of asymptotically strict
pseudo-contraction in a 2-uniformly smooth and uniformly convex Banach space. The
results presented in this paper improve and extend the corresponding results in Acedo
and Xu [1] and Marino and Xu [6].

In order to prove our main results, we need the following lemmas.
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1.4. Lemma (Krüppel [4]). Let C be a nonempty closed convex bounded subset of a

uniformly convex Banach space E and T : C → E a non-expansive mapping. Let {xn}
be a sequence in C such that {xn} converges weakly to some point x. Then there exists

an increasing continuous function h : [0,∞) → [0,∞) with h(0) = 0 depending on the

diameter of C such that h(‖x− Tx‖) ≤ lim infn→∞ ‖xn − Txn‖.
1.5. Lemma. Let C be a nonempty subset of a Banach space E and T : C → C an

asymptotically κ-strict pseudo-contraction. Then T is uniformly L-Lipschitz.

Proof. Note that (1.5) is equivalent to

(1.13)
‖Tn

x− T
n
y‖2 ≤ (2kn − 1)‖x − y‖2 + (1− 2κ)‖x− y − (Tn

x− T
n
y)‖2,

∀ x, y ∈ C, ∀n ≥ 1.

It follows that

‖Tn
x− T

n
y‖2 ≤ (2kn − 1)‖x− y‖2 + (1− 2κ)

(

‖x− y‖2

− 2〈Tn
x− T

n
y, j(x− y)〉+ ‖Tn

x− T
n
y‖2

)

≤ 2(kn − κ)‖x− y‖2 + 2(1− 2κ)‖Tn
x− T

n
y‖‖x− y‖

+ (1− 2κ)‖Tn
x− T

n
y‖2, ∀ x, y ∈ C, ∀n ≥ 1.

This implies that

(1.14)
2κ‖Tn

x− T
n
y‖2 − 2(1− 2κ)‖x − y‖‖Tn

x− T
n
y‖ − 2(kn − κ)‖x− y‖2 ≤ 0,

∀x, y ∈ C,∀n ≥ 1.

Solving the quadratic inequality, we see that

(1.15)
‖Tn

x− T
n
y‖ ≤ 1− 2κ+

√

1 + 4κ(kn − 1)

2κ
‖x− y‖,

∀x, y ∈ C, ∀n ≥ 1.

Putting L = supn≥{
1−2κ+

√
1+4κ(kn−1)

2κ
}, we arrive at

‖Tn
x− T

n
y‖ ≤ L‖x − y‖, ∀x, y ∈ C, ∀n ≥ 1.

This shows that T is uniformly Lipschitz continuous. �

1.6. Lemma (Tan and Xu [13]). Let {rn}, {sn} and {tn} be three nonnegative sequences

satisfying the following condition:

rn+1 ≤ (1 + sn)rn + tn, ∀n ≥ 0.

If
∑∞

n=1 sn < ∞ and
∑∞

n=1 tn < ∞, then limn→∞ rn exists. �

2. Main Results

Now we are ready to give our main results in this paper.

2.1. Theorem. Let E be a uniformly convex and 2-uniformly smooth Banach space with

the best smooth constant K which also satisfies Opial’s condition and C a nonempty

closed convex subset of E. Let N ≥ 1 be an integer and, for each 1 ≤ i ≤ N , Ti :
C → C an asymptotically κi-strict pseudo-contraction defined in (1.5) with the sequence

kn,i in [1,∞) such that
∑∞

n=1(kn,i − 1) < ∞. Let κ = min{κi : 1 ≤ i ≤ N} and

kn = max{kn,i : 1 ≤ i ≤ N}. Assume that the set
⋂N

i=1 F (Ti) of common fixed points of

{Ti}Ni=1 is nonempty. For any x0 ∈ C, let {xn} be the sequence generated in the cyclic

iterative algorithm (1.12). Assume that the control sequence {αn} is chosen such that
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1− κ

K2 < a ≤ αn ≤ b < 1 for all n ≥ 1 and for some a, b ∈ (0, 1). Then {xn} converges

weakly to some common fixed point of {Ti}Ni=1.

Proof. Let p ∈ ⋂N

i=1 F (Ti). It follows from (1.1) and (1.6) that

(2.1)

‖xn − p‖2 = ‖αn−1xn−1 + (1− αn−1)T
h(n)
i(n) xn−1 − p‖2

= ‖xn−1 − p− (1− αn−1)(xn−1 − T
h(n)

i(n) xn−1)‖2

≤ ‖xn−1 − p‖2 − 2(1− αn−1)〈xn−1 − T
h(n)
i(n) xn−1, j(xn−1 − p)〉

+ 2K2(1− αn−1)
2‖xn−1 − T

h(n)

i(n)
xn−1‖2

≤ ‖xn−1 − p‖2 − 2(1− αn−1)
(

κ‖xn−1 − T
h(n)

i(n) xn−1‖2

− (kh(n) − 1)‖xn−1 − p‖2
)

+ 2K2(1− αn−1)
2‖xn−1 − T

h(n)
i(n) xn−1‖2

=
(

1 + 2(1− αn−1)(kh(n) − 1)
)

‖xn−1 − p‖2

− 2(1− αn−1)
(

κ−K
2(1− αn−1)

)

‖xn−1 − T
h(n)
i(n) xn−1‖2

≤
(

1 + 2(1− αn−1)(kh(n) − 1)
)

‖xn−1 − p‖2.
Since

∑∞
n=1(kn,i − 1) < ∞ and kn = max{kn,i : 1 ≤ i ≤ N}, we have

∑∞
n=1(kh(n) − 1) < ∞. It follows from Lemma 1.6 that limn→∞ ‖xn − p‖2 exists. It

follows from (2.1) that

(2.2)
‖xn − p‖2 ≤ ‖xn−1 − p‖2 + 2(1− αn−1)(kh(n) − 1)M1

− 2(1− αn−1)
(

κ−K
2(1− αn−1)

)

‖xn−1 − T
h(n)

i(n)
xn−1‖2,

where M1 is an constant such that M1 ≥ supn≥0{‖xn − p‖2}. It follows from (2.2) and
the assumptions that

(2.3) 2(1− b)
(

κ−K
2(1− a)

)

‖xn−1 − T
h(n)
i(n) xn−1‖2

≤ ‖xn−1 − p‖2 − ‖xn − p‖2 + 2(1 − αn−1)(kh(n) − 1)M1.

Since limn→∞ ‖xn − p‖2 exists, we obtain that

(2.4) lim
n→∞

‖xn−1 − T
h(n)
i(n) xn−1‖ = 0.

Notice that

‖xn − xn−1‖ = (1− αn−1)‖xn−1 − T
h(n)

i(n)
xn−1‖.

It follows that

(2.5) lim
n→∞

‖xn − xn−1‖ = 0.

On the other hand, we have

‖xn−1 − T
h(n)
i(n) xn‖ ≤ ‖xn−1 − T

h(n)
i(n) xn−1‖+ ‖T h(n)

i(n) xn−1 − T
h(n)
i(n) xn‖.

Note that Tl is uniformly Lipschitz for each l ∈ {1, 2, . . . , N}. Combining (2.4) with (2.5)
yields that

(2.6) lim
n→∞

‖xn−1 − T
h(n)
i(n) xn‖ = 0.

In view of (2.5), we see that

(2.7) lim
n→∞

‖xn − xn+j‖ = 0, ∀ j ∈ {1, 2, · · · , N}.
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Any positive integer n > N can be written as n = (k(n) − 1)N + i(n), where i(n) ∈
{1, 2, · · · , N}. Observe that

(2.8)

‖xn−1 − Tnxn−1‖
≤ ‖xn−1 − T

h(n)
i(n) xn−1‖+ ‖T h(n)

i(n) xn−1 − Tnxn−1‖
= ‖xn−1 − T

h(n)

i(n)
xn−1‖+ ‖T h(n)

i(n)
xn−1 − Ti(n)xn−1‖

≤ ‖xn−1 − T
h(n)
i(n) xn−1‖+ L‖T h(n)−1

i(n) xn−1 − xn−1‖
≤ ‖xn−1 − T

h(n)
i(n) xn−1‖+ L

(

‖T h(n)−1
i(n) xn−1 − T

h(n)−1
i(n−N)xn−N‖

+ ‖T h(n)−1

i(n−N)xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn−1‖
)

.

Since, for each n > N , n = (n − N) (mod N), we notice that n = (k(n) − 1)N + i(n).
Therefore, we have

n−N = (k(n) − 1)N + i(n)−N = (k(n−N)− 1)N + i(n−N),

that is,

h(n−N) = h(n) − 1, i(n−N) = i(n).

Observe that

(2.9)
‖T h(n)−1

i(n) xn−1 − T
h(n)−1
i(n−N)xn−N‖ = ‖T h(n)−1

i(n) xn−1 − T
h(n)−1
i(n) xn−N‖

≤ L‖xn−1 − xn−N‖
and

(2.10) ‖T h(n)−1
i(n−N)xn−N − x(n−N)−1‖ = ‖T h(n−N)

i(n−N) xn−N − x(n−N)−1‖.
Substituting (2.9) and (2.10) into (2.8), we arrive at

(2.11)
‖xn−1 − Tnxn−1‖ ≤ ‖xn−1 − T

h(n)
i(n) xn−1‖+ L

(

L‖xn − xn−N‖
+ ‖T h(n−N)

i(n−N)
xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn−1‖

)

.

It follows from (2.4), (2.6) and (2.7) that

(2.12) lim
n→∞

‖xn−1 − Tnxn−1‖ = 0.

Note that

(2.13)
‖xn − Tnxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tnxn−1‖+ ‖Tnxn−1 − Tnxn‖

≤ (1 + L)‖xn − xn−1‖+ ‖xn−1 − Tnxn−1‖.
From (2.5) and (2.12), we obtain that

(2.14) lim
n→∞

‖xn − Tnxn‖ = 0.

On the other hand, we have

(2.15)

‖xn − Tn+jxn‖ ≤ ‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖+ ‖Tn+jxn+j − Tn+jxn‖
≤ (1 + L)‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖,

∀ j ∈ {1, 2, . . . , N}.
In view of (2.7) and (2.14), we see that

lim
n→∞

‖xn − Tn+jxn‖ = 0, ∀ j ∈ {1, 2, . . . , N},

which gives that

(2.16) lim
n→∞

‖xn − Tlxn‖ = 0, ∀ l ∈ {1, 2, . . . , N}.
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Since E is a q-uniformly smooth Banach space and {xn} is bounded, we see that there
exists a subsequence {xni

} ⊂ {xn} such that {xni
} converges weakly to p1 ∈ C.

Next, we show that p1 ∈ ⋂N

l=1 F (Tl). It follows from (1.1) and (1.6) that

‖(aI + (1− a)Tn
l )x− (aI + (1− a)Tn

l )y‖2

= ‖x− y − (1− a)
(

(I − T
n
l )x− (I − T

n
l )y

)

‖2

≤ ‖x− y‖2 − 2(1− a)〈(I − T
n
l )x− (I − T

n
l )y), j(x− y)〉

+ 2K2(1− a)2‖(I − T
n
l )x− (I − T

n
l )y)‖2

≤ ‖x− y‖2 − 2(1− a)
(

κ‖(I − T
n
l )x− (I − T

n
l )y‖2

− (kn − 1)‖x− y‖2
)

+ 2K2(1− a)2‖(I − T
n
l )x− (I − T

n
l )y)‖2

=
(

1 + 2(1− a)(kn − 1)
)

‖x− y‖2

− 2(1− a)
(

κ−K
2(1− a)

)

‖(I − T
n
l )x− (I − T

n
l )y)‖2.

for all x, y ∈ C and for all l ∈ {1, 2, . . . , N}. In view of 1− k

K2
< a, we see that

‖(aI + (1− a)Tn
l )x− (αnI + (1− a)Tn

l )y‖2 ≤
(

1 + 2(1− a)(kn − 1)
)

‖x− y‖2,
that is,

‖(aI + (1− a)Tn
l )x− (aI + (1− a)Tn

l )y‖ ≤ γn‖x− y‖,
where γn = [1 + 2(1− a)(kn − 1)], for all x, y ∈ C and for all l ∈ {1, 2, . . . , N}. It follows
that the mapping 1

γn
(aI+(1−a)Tn

l ) is non-expansive for all n ≥ 1 and l ∈ {1, 2, . . . , N}.
Since {xn} is bounded, we know that there exists R > 0 such that ‖xn − p‖ ≤ R for all
n ≥ 1. Let

BR = {x ∈ E : ‖x− p‖ ≤ R}, K = C
⋂

BR.

Then K is nonempty closed convex and bounded and {xn} is a sequence in K. In view of
Lemma 1.4, we see that there exists an increasing continuous function h : [0,∞) → [0,∞)
with h(0) = 0 depending on the diameter of K such that

(2.17) h(‖p1 − 1

γm
(aI + (1− a)Tm

l )p1‖) ≤ lim inf
n→∞

‖xn − 1

γm
(aI + (1− a)Tm

l )xn‖

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. On the other hand, we have

(2.18)

‖xn − 1

γm
(aI + (1− a)Tm

l )xn‖

≤ ‖xn − (aI + (1− a)Tm
l )xn‖+ (1− 1

γm
)‖(aI + (1− a)Tm

l )xn − p+ p‖

≤ ‖xn − (aI + (1− a)Tm
l )xn‖+ (1− 1

γm
)
(

γm‖xn − p‖+ ‖p‖
)

≤ ‖xn − (aI + (1− a)Tm
l )xn‖+ (1− 1

γm
)
(

γmR+ ‖p‖
)

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. Note that

‖xn − (aI + (1− a)Tm
l )xn‖ ≤ ‖xn − T

m
l xn‖

≤
m
∑

j=1

‖T j−1
xn − T

j

l xn‖

≤ Lm‖xn − Tlxn‖
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for each m ≥ 1 and l ∈ {1, 2, . . . , N}. It follows from (2.16) that

(2.19) lim
n→∞

‖xn − (aI + (1− a)Tm
l )xn‖ = 0

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. It follows from (2.18) and (2.19) that

lim sup
n→∞

‖xn − 1

γm
(aI + (1− a)Tm

l )xn‖ ≤ (1− 1

γm
)(γmR + ‖p‖)

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. In view of (2.17), we see that

h(‖p1 − 1

γm
(aI + (1− a)Tm

l )p1‖) ≤ (1− 1

γm
)(γmR+ ‖p‖)

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. Notice that limm→∞ γm = 1. It follows that

(2.20) lim
m→∞

‖p1 − 1

γm
(aI + (1− a)Tm

l )p1‖ = 0

for each l ∈ {1, 2, . . . , N}. On the other hand, we have

‖p1 − (aI + (1− a)Tm
l )p1‖

≤ ‖p1 − 1

γm
(aI + (1− a)Tm

l )p1‖+ (1− 1

γm
)‖(aI + (1− a)Tm

l )p1‖

≤ ‖p1 − 1

γm
(aI + (1− a)Tm

l )p1‖+ (1− 1

γm
)M2,

where M2 is an appropriate constant, for each m ≥ 1 and l ∈ {1, 2, . . . , N}. It follows
from (2.20) and limm→∞ γm = 1 that

lim
m→∞

‖p1 − T
m
l p1‖ = 0

for each m ≥ 1 and l ∈ {1, 2, . . . , N}. In view of Lemma 1.5, we have p1 = Tlp1 for each

l ∈ {1, 2, . . . , N}. This shows that p1 ∈ ⋂N

l=1 F (Tl).

Next, we show {xn} converges weakly to p1. Suppose the contrary. If {xn} has
another subsequence {nj} which converges weakly to p2 such that p2 6= p1, then we also

have p2 ∈ ⋂N

l=1 F (Tl). Note that E satisfies Opial’s condition. It follows that

lim
n→∞

‖xn − p1‖ = lim
ni→∞

‖xni
− p1‖ < lim

ni→∞
‖xni

− p2‖

= lim
n→∞

‖xn − p2‖ = lim
nj→∞

‖xnj
− p2‖

< lim
nj→∞

‖xnj
− p1‖ = lim

n→∞
‖xn − p1‖.

This is a contradiction. This implies that p1 = p2. This shows that the sequence {xn}
converges weakly to p1 ∈ ⋂N

l=1 F (Tl). This completes the proof. �

In Hilbert spaces, we know that K =
√

2
2
. The following results are not hard to derive

from Theorem 2.1.

2.2. Corollary. Let H be a Hilbert space and C a nonempty closed convex subset of

H. Let N ≥ 1 be an integer and, for each 1 ≤ i ≤ N , Ti : C → C an asymptotically

κi-strict pseudo-contraction as defined in (1.7) with the sequence kn,i in [1,∞) such that
∑∞

n=1(kn,i − 1) < ∞. Let κ = min{κi : 1 ≤ i ≤ N} and kn = max{kn,i : 1 ≤ i ≤ N}.
Assume that the set

⋂N

i=1 F (Ti) of common fixed points of {Ti}Ni=1 is nonempty. For

any x0 ∈ C, let {xn} be the sequence generated in the cyclic iterative algorithm (1.12).
Assume that the control sequence {αn} is chosen such that 1− 2κ < a ≤ αn ≤ b < 1 for

all n ≥ 1 and for some a, b ∈ (0, 1). Then {xn} converges weakly to some common fixed

point of {Ti}Ni=1. �

As corollaries of Theorem 2.1, we also have the following.
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2.3. Corollary. Let E be a uniformly convex and 2-uniformly smooth Banach space

with the best smooth constant K which also satisfies Opial’s condition and C a nonempty

closed convex subset of E. Let T : C → C be an asymptotically κ-strict pseudo-contraction

defined in (1.5) with the sequence {kn} ⊂ [1,∞) such that
∑∞

n=1(kn − 1) < ∞. Assume

that F (T ) is nonempty. Let {xn} be a sequence generated in the following manner

x0 ∈ C, xn = αn−1xn−1 + (1− αn−1)T
n
xn−1, ∀n ≥ 1.

Assume that the control sequence {αn} is chosen so that 1− κ

K2 < a ≤ αn ≤ b < 1 for all

n ≥ 1 and some a, b ∈ (0, 1). Then {xn} converges weakly to some fixed point of T . �

2.4. Corollary. Let E be a uniformly convex and 2-uniformly smooth Banach space

with the best smooth constant K which also satisfies Opial’s condition and C a nonempty

closed convex subset of E. Let N ≥ 1 be an integer and, for each 1 ≤ i ≤ N , Ti : C → C

a κi-strict pseudo-contraction as defined in (1.2). Let κ = min{κi : 1 ≤ i ≤ N} and

assume that the set
⋂N

i=1 F (Ti) of common fixed points of {Ti}Ni=1 is nonempty. For any

x0 ∈ C, let {xn} be a sequence generated in the following manner:

x0 ∈ C, xn = αn−1xn−1 + (1− αn−1)Tnxn−1, ∀n ≥ 1,

where Tn = TnmodN . Assume that the control sequence {αn} is chosen such that 1 −
κ

K2 ) < a ≤ αn ≤ b < 1 for all n ≥ 1 and for some a, b ∈ (0, 1). Then {xn} converges

weakly to some fixed point of T . �

2.5. Remark. Corollary 2.4 is a version of Theorem 1.3 in the framework of Banach
spaces.
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