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Abstract

In this paper, weak convergence theorems of a finite family of asymp-
totically k-strict pseudo-contractions are established in the framework
of 2-uniformly smooth and uniformly convex Banach spaces.
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1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and J; (¢ > 1) denotes the generalized duality
mapping from FE into 2F ) give by
Ja(@) = {f" € E" : (a, f*) = |l=||”, If"] = ll=I*""}, Vz€E,

where E* denotes the dual space of F and (-,-) denotes the generalized duality pairing.
In particular, Js is called the normalized duality mapping which is usually denoted by
J. In this paper, we use j to denote the single-valued normalized duality mapping. It is
well known (see, for example, [14]) that Jy(z) = ||z||7 2J(z) if z # 0. If F is a Hilbert
space, then J = I, where I denotes the identity mapping.

Let Ug = {z € E : ||z|| = 1}. E is said to uniformly convex if, for any ¢ € (0, 2], there
exists 0 > 0 such that

lo =yl 2 e implies 22| <1-5, vayevs.
A Banach space E is said to be smooth if the limit

e+t~ ]
t—0 t
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exists for all z,y € Ug. It is also said to be uniformly smooth if the limit is attained
uniformly for all z,y € Ug. The norm of E is said to be Fréchet differentiable if, for all
x € Ug, the above limit is attained uniformly for all y € Ug. The modulus of smoothness
of E is the function pg : [0,00) — [0, 00) defined by

1
pe(r) =sup {S(lz+yll+llz—yl) = 1: 1l <1, llyl <7}, ¥r > 0.

The Banach space E is uniformly smooth if and only if lim,_ pET(T) = 0. Let ¢ > 1.
The Banach space F is said to be g-uniformly smooth if there exists a constant ¢ > 0
such that pg(7) < cr9. It is shown in [14] that there is no Banach space which is g-
uniformly smooth with ¢ > 2. Hilbert spaces, L? (or [?) spaces and Sobolev space W},
where p > 2 are 2-uniformly smooth. Typical examples of both uniformly convex and
uniformly smooth Banach spaces are LP, where p > 1. More precisely, L? is min{p, 2}-
uniformly smooth for every p > 1.

It is known that if E is 2-uniformly smooth with the best smooth constant K, then
the following inequality holds:

LDz +yl® < llzll* +2(y, i(2)) + 20| Kyl*, Va,y € E.

Let C be a nonempty, closed and convex subset of E. Let T': C' — C be a mapping.
In this paper, we use F(T') to denote the fixed point set of 7. Recall that the mapping
T is said to be a k-strict pseudo-contraction if there exist a constant x € (0, %] and
j(x —y) € J(z —y) such that

(12)  (Tz—Ty,j(z—y)) < lle—yI* =l =Tz~ (I = Dyl? Va,y € C.

The class of strict pseudo-contractions was first introduced by Browder and Petryshyn
in Hilbert spaces, see [2] for more details. If I denotes the identity mapping, then (1.2)
can be rewritten as follows

(13) (=TI -Ty,jlz~-y)) 2r|U-T)z— (=Tl Va,yeC.
If E is a Hilbert space, then (1.2) is reduced to
(Tz =Ty, —y) < |le —yl|* =&l (I = T)z — (I = T)yl*, Va,y € C,
which is equivalent to
(14) Tz = Tyl* < lle—yl* + 1 = 26)|(1 = T)a — (I = T)yll*, Va,y € C.
If k = 1, then (1.4) is reduced to
[Tz =Tyl < |z —yll, Va,yeC.

That is, T" is non-expansive. Recall that the mapping T is said to be an asymptotically
K-strict pseudo-contraction if there exist a constant € (0, ], a sequence {kn} C [1, 00)
with lim, 00 kn = 1 and j(z — y) € J(x — y) such that

(T"x =Ty, j(& —y)) < kalle —ylI* = &ll(1 = T™)z — (I =T")y|*,

(1.5)
Vz,ye C, Vn>1.

The class of asymptotically x-strict pseudo-contraction was first introduced by Qihou in
Hilbert spaces, see [11] for more details. If I denotes the identity mapping, then (1.5)
can be rewritten as follows

(I =Tz = (I =T")y,j(x —y))
> w1 =T"a — (I =T"Y)|I* = (kn = Dllz — 9, Yo,y € C, ¥n > 1.
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If E is a Hilbert space, then (1.5) is reduced to

(L) (T"z —T"y,x —y) < knllz —ylI* — &l|(I = T™)x — (I = T")y|%,
' Ve,ye C, Vn > 1,

which is equivalent to

(18) IT"x — T"y||* < (2kn — Dz =yl + (1 = 26)[|(T = T™)z — (I = T")y|%,
. Ve,ye C, Vn > 1.

If k = 3, then (1.8) is reduced to
(1.9)  ||T"z = T™|* < (2kn — D]z — y|*, Y,y €C, Yn > 1.

That is, T' is an asymptotically non-expansive mapping which was introduced by Goebel
and Kirk [3] as a generalization of the class of non-expansive mappings. It is clear that if
kn = 1 for each n > 1, then the class of asymptotically non-expansive mappings is reduced
to the class of non-expansive mappings. If C' is a nonempty bounded closed convex subset
of a uniformly convex Banach space, then every asymptotically non-expansive mapping
has a unique fixed point in C.

The normal Mann iterative process [5] generates a sequence {z,} in the following
manner

(1.10) z1 €C, Znt1 = an®n+ (1 —an)Tzn, Y0 > 1,

where z; ia an initial value and {ay,} is a sequence in the interval (0, 1).

In 1979, Reich [12] obtained the following celebrated weak convergence theorem.

1.1. Theorem. Let C be a closed convex subset of a uniformly convexr Banach space E
with a Fréchet differential norm, T : C — C' a non-expansive mapping with a fized point,
and {an} a real sequence such that 0 < an <1 and Y o7, an(l — an) = co. Let {zn} be
a sequence generated in (1.10). Then the sequence {xn} converges weakly to a fized point
of T.

Marino and Xu [6] extended the results of Reich [12] from the class of non-expansive
mappings to the class of strict pseudo-contractions and obtained a weak convergence
theorem based on the normal Mann iterative process in Hilbert spaces. More precisely,
they proved the following results.

1.2. Theorem. Let C be a closed convex subset of a Hilbert space H. Let T : C — C
be a k-strictly pseudo-contractive mapping defined in (1.4) and assume that T admits a
fized point in C. Let {xn} be the sequence generated in the normal Mann iterative process
algorithm (1.10). Assume that the control sequence {am, } is chosen so that 1—2k < an, < 1
for alln >1 and 377 (an — 1+ 26)(1 — an) = co. Then {xn} converges weakly to a
fized point of T.

Recently, Acedo and Xu [1], still in the framework of Hilbert spaces, introduced the
following cyclic iterative algorithm.

Let C be a closed convex subset of a Hilbert space H and let {Ti}f\r:f)l be k;-strict
pseudo-contractions on C such that (X" F(T;) # 0. Let z0 € C and {ax} be a sequence
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in (0,1). The cyclic algorithm generates a sequence {z,} in the following manner:

x1 = aopwo + (1 — ao)Towo,

o = arwy + (1 — a1) T,

N =an-12N-1+ (1 —an-1)IN-1ZN-1,

zn+1 = anzn + (1 —an)Tozn,

In a compact form, z,41 can be rewritten as
(111) Tptl = Apn + (1 - Oln)T[n]x'm
where T,) = T; with i =n (mod N) for 0 <i < N — 1.
They also established a weak convergence theorem based on the cyclic iterative algo-

rithm (1.11) in the framework of Hilbert spaces. To be more precise, they proved the
following results.

1.3. Theorem. Let C be a closed convex subset of a Hilbert space H. Let N > 1 be
an integer. Let, for each 0 < i < N —1, T; : C — C be a k;-strict pseudo-contraction
as defined in (1.4). Let k = min{k; : 1 < i < N}. Assume that the common fized
point set of {T;}1y" is nonempty. For any xo € C, let {x,} be the sequence generated
in the cyclic algorithm (1.11). Assume that the control sequence {an} is chosen so that
1-2k+e<an<1-—c¢foralln>0 and somee € (0,1). Then {zn} converges weakly
to a common fized point of {T;} N5t

In this paper, we introduce the following iterative process for a family of asymptotically
strict pseudo-contractions. Let zo € C and {an} be a sequence in (0,1). The sequence
{zn} generated in the following manner:

1 = apxo + (1 — ao) T zo,

o = a1 + (1 — a1) T,

zn =anv-1ZN-1+ (1 —an-1)TNoN-1,

2
N1 =anzn + (1 —an)TizN,

2
xan = aan-1Z2n-1 + (1 — con—1)TNT2N-1

3
Tant+1 = aanTon + (1 — con)Ti zan

is called the explicit iterative sequence of a finite family of asymptotically strict pseudo-
contractions {T1,7%,...,Tn}.

Since, for each n > 1, it can be written as n = (h — 1)N + ¢, where ¢ = i(n) €
{1,2,--- ,N}, h = h(n) > 1 is a positive integer and h(n) — oo as n — oco. Hence we
can rewrite the above table in the following compact form:

. Tn = Op—1Tpn—1 + — On—1 : Tn—1, n = 1.
1.12 1 T Vn>1

7

In this paper, motivated by the research announced in [1,7-10], we consider the weak
convergence of the iteration process (1.12) for a finite family of asymptotically strict
pseudo-contraction in a 2-uniformly smooth and uniformly convex Banach space. The
results presented in this paper improve and extend the corresponding results in Acedo
and Xu [1] and Marino and Xu [6].

In order to prove our main results, we need the following lemmas.
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1.4. Lemma (Kriippel [4]). Let C be a nonempty closed convex bounded subset of a
uniformly convex Banach space E and T : C — E a non-expansive mapping. Let {xn}
be a sequence in C such that {zn} converges weakly to some point x. Then there exists
an increasing continuous function h : [0,00) — [0,00) with h(0) = 0 depending on the
diameter of C' such that h(||lxz — Tz||) < lminfp oo ||2n — Tznl|.

1.5. Lemma. Let C be a nonempty subset of a Banach space E and T : C — C an
asymptotically k-strict pseudo-contraction. Then T is uniformly L-Lipschitz.

Proof. Note that (1.5) is equivalent to
(113) IT"e = T"y||* < (2kn = Dl —ylI* + (1 = 26)|lz —y — (T« = T"y)|I%,
' Ve,ye C, Vn > 1.
It follows that
17" = T2 < (26 — Dlle — ylI? + (1 = 26) (Jlz — I
—2T"z — T"y, j(x — y)) + | T"z — T"y||*)
< 2(hkn — W)z — ylI? + 21 — 20)|T" — Ty |z — g
+ (1 =28)||T"x — T"y|*, Yo,y € C, Yn > 1.
This implies that
gy 2T =T =20 = 200l — T = Tyl = 20k~ W)l ~ i <O,
' Ve,y € C,¥n > 1.

Solving the quadratic inequality, we see that
n n 1—-2k++/1+4k(kn — 1)
|77~ Ty < = Dz — g,

Ve,ye C, VYn > 1.

(1.15)

. ~ 2wt /1% (kn =1)
Putting L = Supnz{l = 12t4 —

IT"z — T"y|| < Lz —y||, Yo,y € C, Yn > 1.

}, we arrive at

This shows that 1" is uniformly Lipschitz continuous. O

1.6. Lemma (Tan and Xu [13]). Let {rn}, {sn} and {t,} be three nonnegative sequences
satisfying the following condition:

Tnt1 < (14 sn)rn + tn, Vn > 0.

If 3770 sn <00 and Y oo | tn < 00, then limy sco ' €xists. O

2. Main Results
Now we are ready to give our main results in this paper.

2.1. Theorem. Let E be a uniformly convexr and 2-uniformly smooth Banach space with
the best smooth constant K which also satisfies Opial’s condition and C a nonempty
closed convex subset of E. Let N > 1 be an integer and, for each 1 < i < N, T; :
C — C an asymptotically k;-strict pseudo-contraction defined in (1.5) with the sequence
En,i in [1,00) such that > oo (kni — 1) < co. Let k = min{x; : 1 < ¢ < N} and
kn = max{kn,; : 1 <i < N}. Assume that the set ﬂfil F(T;) of common fized points of
{T} Y, is nonempty. For any xo € C, let {x,} be the sequence generated in the cyclic
iterative algorithm (1.12). Assume that the control sequence {an} is chosen such that
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1-# <a<a, <b<1 foralln > 1 and for some a,b € (0,1). Then {xn} converges
weakly to some common fized point of {T;} N ;.

Proof. Let p € ﬂfv:l F(T3). 1t follows from (1.1) and (1.6) that

ln — plI* = llan 1201+ (1 — an-1) T} an 1 —pl|”
=|lzn1—p— (1= an1) (@1 — Ty w0 )|

< a1 = pl* = 201 = an-1)(@no1 = Ty 201, j(2n-1 — )

7

2 2 h(n 2
+2K°(1 = an-1)?[[@n—1 — Ty 2 |

(2.1) < Jlan-1 = pll* =201 = ana) (Bllzn-1 = Ti) wa|®
= (kngmy = Dll@n—1 = pl1*) + 2K*(1 = an-1)||n-1 = T} 21 ||®
= (14 2(1 — an—1)(kn(n) — 1)) [&a—1 — p|®
—2(1 = an-1)(k — K°(1 = an-1)) |zn-1 — T}V a0 |2

< (1+2(1 — an—1)(kne) — 1)) ll#n—1 — pl|*.

Since Y 2 ((kni — 1) < oo and kn = max{kn; : 1 < ¢ < N}, we have
>0 (kpmy — 1) < oo. Tt follows from Lemma 1.6 that limpsco ||Tn — pl|? exists. It

follows from (2.1) that
lzn = pI* < len-1 = plI* +2(1 = @n-1) (knen) — 1) M

(2.2) .
—2(1—an-1)(k — K*(1 = an-1)) Jwn—1 — Tj( 3 2 |,

K3
where M, is an constant such that M > sup,>o{||lzn — p[|*}. It follows from (2.2) and

the assumptions that

h
(23) 20 =b)(k— K*(1 = a))l|lzn—1 — Ty w0
< en-1 = plI* = llzn = plI* +2(1 = an—1) (ke — 1) M.
Since limy,— o0 || — p||* exists, we obtain that

(24)  lm |lzn_1 — T e, || = 0.
n— oo i(n)

Notice that

h(n
2 — @noill = (1= ane) @t — Tzl

It follows that
(2.5) lim ||zn — zn_1|| = 0.
n— o0
On the other hand, we have
Th(n) Th(n) Tﬁ(7l) Th(n)

2n—1 = Tiy Tall < llzn-1 = Ty Tl + 1T @n-1 — T,y @nll.

Note that 7; is uniformly Lipschitz for each I € {1,2,..., N}. Combining (2.4) with (2.5)
yields that

(2.6) nlLII;O ||137L71 — TZEE:)L):C”H =0.

In view of (2.5), we see that

(2.7) lim ||zn —2nti]| =0, Vje{1,2,--- ,N}
n— o0
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Any positive integer n > N can be written as n = (k(n) — 1)N + i(n), where i(n) €
{1,2,---,N}. Observe that

||xn71 - Tnxnfl H

< lwno1 = T wna ||+ 1745 @nt = Toana |
= llen—1 = T anall + 1T En 1 = Tigmyzna
= <l = T w0l + LITL a0y = 2]
< llwnr = T |+ LTS ™ o0y = T w0 |

h —1
T o znn = T-ny—1 |+ 2 m-ny—1 = za-1]]).

Since, for each n > N, n = (n — N) (mod N), we notice that n = (k(n) — 1)N + i(n).
Therefore, we have

n—N=(k(n) —1)N +i(n) — N = (k(n— N) —1)N +i(n — N),
that is,

h(n — N)=h(n)—1, i(n— N)=1i(n).
Observe that

h -1 h -1 h -1 h -1
(2.9) 1T w1 = T @ = TG ™ s = T e
< L”xnfl - xanH
and
h -1 h(n—N
(210) T ann = 2wyl = [T 20y = By

Substituting (2.9) and (2.10) into (2.8), we arrive at

[Zn-1 = Tngn-1]l < 2n—1 = T} 0]l + L(L]@n — 2n-n]|

2 T Tney = 21+ 21 = Ta-all).
It follows from (2.4), (2.6) and (2.7) that
(2.12) nlllr;o |zn—1 — Than-1| = 0.
Note that
6 — Tooall < 10 — il + 201 — Tana ]l + [ Tan-1 — Toa]
< (14 D)lfen — 2noa | + [0t — Taznal].
From (2.5) and (2.12), we obtain that
(2.14) nhﬁn;o [|tn — Trhan| = 0.

(2.13)

On the other hand, we have
lzn = Toyjznll < ll2n — Tasll + |20ty — Tnti@n | + [ Tntstnss — Totjzall
(2.15) S (4 Dllen = @njll + [2n+s — Toti@ntsll,
Vje{l,2,...,N}
In view of (2.7) and (2.14), we see that
lim ||zn — Thtjza|| =0, Vi€ {1,2,...,N},
n— o0
which gives that
(2.16) lim ||an — Tizn|| =0, Vi€ {1,2,...,N}.
n— oo
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Since E is a g-uniformly smooth Banach space and {z,} is bounded, we see that there
exists a subsequence {zn,} C {zn} such that {z,,} converges weakly to p1 € C.

Next, we show that p; € ﬂfil F(Ty). It follows from (1.1) and (1.6) that
(el + (1 = a)T")z = (al + (1 — )Tyl
=llz—y— (1 —a)((I =Tz~ (I = T")y)|I”
<o =yl =201 = a)((I =Tz = (I = T")y), j(z — y))
+2K%(1 = a)’||(I = Tz — (I = T")y)|I?
<z = yl* =201 = a) (wll(I = Tz — (I = T")ylI*
= (ko = Dlle —ylI*) +2K*(1 = a)’|(I = ") — (I = T")y)|I*
= (1+2(1 = a)(kn — 1)) [l — yI*
—2(1-a)(k— K*(1 = a))|(I =Tz — (I = T")y)|I.
for all z,y € C and for all [ € {1,2,...,N}. In view of 1 — % < a, we see that
(@l + (1 = )Tz — (@l + (1 — )Tl < (14201 — a)(kn — 1)l — g%,
that is,
(@l + (1 = )Tz — (al + (1 — )Tyl < iz — yll,

where v, = [14+2(1 — a)(kn — 1)], for all z,y € C and for all [ € {1,2,..., N}. It follows
that the mapping %(a[—l— (1—a)T}") is non-expansive for all n > 1 and l € {1,2,...,N}.
Since {zn} is bounded, we know that there exists R > 0 such that ||zn — p|| < R for all
n > 1. Let

Br={z€E:|z-p| <R}, K=C[)Br
Then K is nonempty closed convex and bounded and {z,} is a sequence in K. In view of
Lemma 1.4, we see that there exists an increasing continuous function h : [0, c0) — [0, c0)
with h(0) = 0 depending on the diameter of K such that
1 m L 1 m

(217) (s = == (al + (1= )T )pal) < lim i = (el + (1 = a) 17"
for each m > 1 and ! € {1,2,...,N}. On the other hand, we have

1 m
l[n — 7—(af+ (I = a)T7")za||

m 1 m
Slwn = (al + (1 = a)Ty" )an|| + (1 - 7—)|\(aI+ (I =a)Ti™)zn —p+pll

(2.18) .
< llen = (al + (1= a)T" )an|| + (1 — 7—)(%Hwn =l +llpl)

éww%M+U—Wme+O—$N%R+MD

for each m > 1 and [ € {1,2,..., N}. Note that
[n = (al + (1 = a)T/" )anll < [lon — T 2a||

m
<ST e — Tyl
j=1

< Lmflzn — Tizn||
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for each m > 1 and ! € {1,2,..., N}. It follows from (2.16) that
(2.19)  lim ||zn — (al + (1 —a)T")za|| =0
n— oo

for each m > 1 and ! € {1,2,...,N}. It follows from (2.18) and (2.19) that

. 1 m 1
limsup [z = ——(al + (1 = )T")anl < (1 = ) (ym R + I}

n— o0 m

for each m > 1 and ! € {1,2,...,N}. In view of (2.17), we see that
1 m 1

h(llpr - Sl + (1= a)Ty o) < (1 - ) (m B+ )

m

for each m > 1 and ! € {1,2,..., N}. Notice that limy—c0 vm = 1. It follows that

. 1 m
(2:20)  lim [jp1 — S (al + (1 —a)T;")p1]| =0

m

for each [ € {1,2,..., N}. On the other hand, we have
lp1 = (al + (1 = a)Ti")pu |

1 m 1 m
Slipe = ——(al+ (1 - a)T; )p1|\+(1—7—)ll(a1+(1—a)Tz Jpall

1 - 1
< |lp1 — 7—(a1+ (1= a)T")pa| + (1 — ,Y—)M%

m

where M, is an appropriate constant, for each m > 1 and [ € {1,2,...,N}. It follows
from (2.20) and limm,— o0 ym = 1 that

im lp1 = T"pa|| = 0
for each m > 1and l € {1,2,...,N}. In view of Lemma 1.5, we have p; = T;p; for each
l€{1,2,...,N}. This shows that p1 € O\, F(T3).
Next, we show {z,} converges weakly to pi. Suppose the contrary. If {z,} has

another subsequence {n;} which converges weakly to ps such that p2 # p1, then we also
have p2 € ﬂllil F(T1). Note that E satisfies Opial’s condition. It follows that

lim [[zn —p1fl = lm [lzn, —pif| < lim |20, — pofl
n—oo n;—00 n;—00
= lim ||xn —p2|| = lim [|zn; — pof
< lim |zn; —pil| = lim [Jzn —p1.

This is a contradiction. This implies that p; = p2. This shows that the sequence {z,}
converges weakly to p1 € ﬂllil F(T;). This completes the proof. O

In Hilbert spaces, we know that K = g The following results are not hard to derive
from Theorem 2.1.

2.2. Corollary. Let H be a Hilbert space and C a nonempty closed convexr subset of
H. Let N > 1 be an integer and, for each 1 < i < N, T; : C — C an asymptotically
Ki-strict pseudo-contraction as defined in (1.7) with the sequence kn; in [1,00) such that

o 1(knyi—1) < oo. Let k =min{k; : 1 < i < N} and kn = max{kn;: 1 < ¢ < N}
Assume that the set ﬂfv:l F(T;) of common fized points of {T;}N.1 is nonempty. For
any xo € C, let {xzn} be the sequence generated in the cyclic iterative algorithm (1.12).
Assume that the control sequence {an} is chosen such that 1 — 2k < a < an, <b<1 for
alln > 1 and for some a,b € (0,1). Then {zn} converges weakly to some common fized
point of {Ti},. d

As corollaries of Theorem 2.1, we also have the following.
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2.3. Corollary. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K which also satisfies Opial’s condition and C' a nonempty
closed convex subset of E. LetT : C' — C' be an asymptotically k-strict pseudo-contraction
defined in (1.5) with the sequence {kn} C [1,00) such that Y oo (kn — 1) < co. Assume
that F(T) is nonempty. Let {zn} be a sequence generated in the following manner

20 €C, Tp=0an-1Tn-1+ (1 —an-1)T"Tn_1, ¥Yn > 1.

Assume that the control sequence {an} is chosen so that 1 — % <a<a, <b<1 forall
n > 1 and some a,b € (0,1). Then {x,} converges weakly to some fized point of T. O

2.4. Corollary. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K which also satisfies Opial’s condition and C a nonempty
closed convex subset of E. Let N > 1 be an integer and, for each 1 < i< N, T; : C — C
a Ki-strict pseudo-contraction as defined in (1.2). Let Kk = min{x; : 1 < i < N} and
assume that the set ﬂfil F(T;) of common fized points of {T;}11 is nonempty. For any
zo € C, let {zn} be a sequence generated in the following manner:

Zo 607 mn:anflxnfl+(1_an71)Tnxnfl7 vn > 1,

where Tr, = Tpmod N Assume that the control sequence {an} is chosen such that 1 —
#2) <a<a, <b<1 foralln>1 and for some a,b € (0,1). Then {x,} converges
weakly to some fized point of T'. (|

2.5. Remark. Corollary 2.4 is a version of Theorem 1.3 in the framework of Banach
spaces.
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