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Abstract

Let R be a noncommutative prime ring of characteristic different from 2
with right Utumi quotient ring U and extended centroid C, I a nonzero
right ideal of R. Let f(x1, . . . , xn) be a non-central multilinear poly-
nomial over C, m ≥ 1 a fixed integer, a a fixed element of R, G a
non-zero generalized derivation of R. If aG(f(r1, . . . , rn))

m ∈ Z(R) for
all r1, . . . , rn ∈ I , then one of the following holds:

(1) aI = aG(I) = (0);
(2) G(x) = qx, for some q ∈ U and aqI = 0;
(3) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I ;
(4) G(x) = cx + [q, x] for all x ∈ R, where c, q ∈ U such that

cI = 0 and [q, I ]I = 0;
(5) dimC(RC) ≤ 4;
(6) G(x) = αx, for some α ∈ C; moreover a ∈ C and

f(x1, . . . , xn)
m is central valued on R.
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1. Introduction and Preliminaries

Throughout this paper unless specially stated, R always denotes a prime ring with
center Z(R), U its right Utumi quotient ring and C its extended centroid (which is
the center of U). The definitions, the axiomatic formulations and the properties of this
quotient ring U can be found in [1]. In any case, when R is a prime ring, all that we
need about U is that:

(1) R ⊆ U ;
(2) U is a prime ring with identity;
(3) The center of U , denoted by C, is a field which is called the extended centroid

of R.

By a derivation of R we mean that an additive map d from R into itself satisfies the rule
d(xy) = d(x)y+ xd(y) for all x, y ∈ R. For any x, y ∈ R, the symbol [x, y] stands for the
commutator xy−yx. For b ∈ U , we use ad(b) to denote the inner derivation induced by b;
that is , ad(b)(x) = [b, x] for x ∈ R. An additive mapping g : R → R is called a generalized

derivation of R if there exists a derivation d of R such that g(xy) = g(x)y+ xd(y) for all
x, y ∈ R [8]. Obviously any derivation is a generalized derivation. Moreover, other basic
examples of generalized derivations are the following: (i) g(x) = ax + xb, for a, b ∈ R;
(ii) g(x) = ax, for some a ∈ R. Many authors have studied generalized derivations in the
context of prime and semiprime rings (see [8, 11, 16]).

In [2] M. Bresar proved that if R is a semiprime ring, d a nonzero derivation of R and
a ∈ R such that ad(x)m = 0, for all x ∈ R, where m is a fixed integer, then ad(R) = 0
when R is (m − 1)!-torsion free. In [15] T.K. Lee and J.S. Lin proved Bresar’s result
without the (m− 1)!-torsion free assumption on R. They studied the Lie ideal case and,
for the prime case, they showed that if R is a prime ring with a derivation d 6= 0, L a Lie
ideal of R, a ∈ R such that ad(u)m = 0, for all u ∈ L, where m is fixed, then ad(L) = 0
unless the case when char(R) = 2 and dimC RC = 4. In addition, if [L, L] 6= 0, then
ad(R) = 0.

In [4] C.M. Chang and T.K. Lee established a unified version of the previous results for
prime rings. More precisely they proved the following theorem: let R be a prime ring, ̺ a
nonzero right ideal of R, d a nonzero derivation of R, a ∈ R such that ad([x, y])m ∈ Z(R)
(d([x, y])ma ∈ Z(R)). If [̺, ̺]̺ 6= 0 and dimC RC > 4, then either ad(̺) = 0 (a = 0
resp.) or d is the inner derivation induced by some q ∈ U such that q̺ = 0.

Recently in the first part of [3], C.M. Chang generalized above results by proving
that if R is a prime ring with extended centroid C, I a non-zero right ideal of R, d

a non-zero derivation of R, f(x1, . . . , xn) a multilinear polynomial over C, a ∈ R and
m ≥ 1 a fixed integer such that ad(f(r1 . . . , rn))

m = 0 for all r1 . . . , rn ∈ I , then either
aI = d(I)I = (0) or [f(x1, . . . , xn), xn+1]xn+2 is an identity for I .

In [7] the second author obtained some results under the assumption that I is a nonzero
right ideal of a noncommutative prime ring R, G is a generalized derivation of R, m is a
fixed positive integer, f(x1, . . . , xn) is a non-central multilinear polynomial over C such
that aG(f(r1, . . . , rn))

m = 0 for all r1, . . . , rn ∈ I . In this case one of the following holds:

(1) aI = aG(I) = (0);
(2) G(x) = qx, for some q ∈ U and aqI = 0;
(3) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I ;
(4) G(x) = cx+ [q, x] for all x ∈ R, where c, q ∈ U such that cI = 0 and [q, I ]I = 0.

Motivated by the above results we will prove:

1.1. Theorem. Let R be a noncommutative prime ring of characteristic different from

2 with right Utumi quotient ring U and extended centroid C, I a nonzero right ideal of R.
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Let f(x1, . . . , xn) be a non-central multilinear polynomial over C, m ≥ 1 a fixed integer,

a a fixed element of R, G a non-zero generalized derivation of R. If aG(f(r1, . . . , rn))
m ∈

Z(R) for all r1, . . . , rn ∈ I, then one of the following holds:

(1) aI = aG(I) = (0);
(2) G(x) = qx, for some q ∈ U and aqI = 0;
(3) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I;

(4) G(x) = cx+ [q, x] for all x ∈ R, where c, q ∈ U such that cI = 0 and [q, I ]I = 0;
(5) dimC(RC) ≤ 4;
(6) G(x) = αx, for some α ∈ C; moreover a ∈ C and f(x1, . . . , xn)

m is central

valued on R.

In order to prove our Theorem we will use frequently the theory of generalized poly-
nomial identities and differential identities (see [1, 9, 13, 17]). In particular we need to
recall the following:

1.2. Remark. In [11], T.K. Lee proved that every generalized derivation G of R can
be uniquely extended to a generalized derivation of U . In particular, there exists a ∈ U

and a derivation d of U such that G(x) = ax+ d(x) for all x ∈ U [11, Theorem 3].

1.3. Remark. We need to recall the following notation:

f(x1, . . . , xn) = x1x2 · . . . · xn +
∑

σ∈Sn,σ 6=1

ασxσ(1) . . . xσ(n)

for some ασ ∈ C and we denote by fd(x1, . . . , xn) the polynomial obtained from
f(x1, . . . , xn) by replacing each coefficient ασ with d(ασ · 1). Thus, for d a usual
derivation, we write d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +

∑

i
f(r1, . . . , d(ri), . . . , rn), for

all r1, . . . , rn ∈ R.

Finally we also recall the following:

1.4. Definition. By a differential polynomial f(dj(xi)) over U we mean a generalized
polynomial with coefficients in U and with variables acted on by derivation words, that
is, f(zij) is a generalized polynomial in variables zij and with coefficients in U , and each
dj is either a derivation word or the identity map of R.

In particular in this note we consider the differential polynomial

f(x1, . . . , xn, d(x1), . . . , d(xn)),

that is, we will consider the case when a derivation d and the identity map act on the
variables.

We say that the differential polynomial f(dj(xi)) is a central differential identity (cen-
tral DI) for a right ideal ̺ of R if f(zij) has no constant term and f(dj(ri)) ∈ C for all
r1, . . . , rn ∈ ̺, but there exist s1, . . . , sn ∈ ̺ such that f(dj(si)) 6= 0 (for more details we
refer the reader to [4]).

Proof. Firstly we prove Theorem 1.1. We consider G(x) = cx+d(x), for some c ∈ U and
a derivation d on U . If aG(f(r1, . . . , rn))

m = 0 for all r1, . . . , rn ∈ I , the result follows
from [7]. Hence we suppose there exist s1, . . . , sn ∈ I such that aG(f(s1, . . . , sn))

m 6= 0.
Therefore aG(f(x1, . . . , xn))

m ∈ Z(R) is a central DI for I , then by [4, Theorem 1], R
is a PI-ring. Thus by Posner’s Theorem (see for example [18, Theorem 1.7.9]), RC is
a finite-dimensional central simple algebra over C and RC ∼= Mk(F ), the ring of k × k

matrices over F , for some integer k and some finite-dimensional central division algebra
F over C. We note that in this case a is invertible, therefore aG(f(x1, . . . , xn))

m ∈ Z(R)
if and only if G(f(x1, . . . , xn))

ma ∈ Z(R). By [13, Theorem 2], G(f(r1, . . . , rn))
ma ∈ C
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for all r1, . . . , rn ∈ IC. In order to prove our result we may replace R with RC and I

with IC, so that we assume without loss of generality that R ∼= Mk(F ). Since I satisfies

(

cf(x1, . . . , xn) + f
d(x1, . . . , xn) +

n
∑

i=1

f(x1, . . . , d(xi), . . . , xn)
)m

a ∈ C,

then for all y ∈ R, I also satisfies
(

cf(x1y, . . . , xn) + f
d(x1y, . . . , xn) + f(d(x1)y + x1d(y), x2 . . . , xn)

+

n
∑

i=2

f(x1y, . . . , d(xi), . . . , xn)
)m

a ∈ C.

In the light of Kharchenko’s theory [9], we divide the proof into two cases:

If the derivation d is not inner, I satisfies
(

cf(x1y, . . . , xn) + f
d(x1y, . . . , xn) + f(d(x1)y + x1z, x2 . . . , xn)

+
n
∑

i=2

f(x1y, . . . , d(xi), . . . , xn)
)m

a ∈ C,

where the variable z falls in R. In particular, for y = 0, I satisfies f(x1z, . . . , xn)
ma ∈ C

for all z ∈ R, that is, I satisfies f(x1, . . . , xn)
ma ∈ C.

In case there are z1, . . . , zn ∈ I such that f(z1, . . . , zn)
ma 6= 0, then by [14, Theorem 1],

f(x1, . . . , xn)
m is central valued on R and also a ∈ C. Thus I = R and G(f(x1, . . . , xn))

m

is central valued on R. Hence, by [19], either f(x1, . . . , xn) is central valued on R, or R

satisfies s4 the standard identity of degree 4, or there exists α ∈ C such that G(x) = αx.
In any case we are done.

On the other hand, if I satisfies f(x1, . . . , xn)
ma. Then, by [6] we get the conclusion

that either a = 0 or f(x1, . . . , xn)xn+1 is an identity for I .

Let now d be the inner derivation induced by q ∈ U , namely d(x) = [q, x], then we
have G(x) = (c+ q)x− xq. In this case I satisfies

(1.1)
(

(c+ q)f(x1, . . . , xn) + f(x1, . . . , xn)(−q)
)m

a ∈ C.

Denote by K the algebraic closure of F if F is infinite, otherwise let K = F . Then
Mk(F ) ⊗C K ∼= Ml(K) for some l ≥ 2. By [12, Lemma 2] and [10, Proposition], it
follows that ((c+ q)f(r1, . . . , rn)+ f(r1, . . . , rn)(−q))ma ∈ Z(Ml(K)) for all r1, . . . , rn ∈
IC ⊗C K. Also in this case we assume, without loss of generality, that R = Ml(K) and
I =

∑t

i=1 eiiR, where t ≤ l.

If l = 2 we are done, thus we suppose that l ≥ 3. By [3, Lemma 3], if [f(x1, . . . , xn),
xn+1]xn+2 is not an identity for I , then for all α ∈ F , i ≤ l and j 6= i there exist
r1, . . . , rn ∈ I such that f(r1, . . . , rn) = αeij . Without loss of generality we may consider
f(r1, . . . , rn) = eij . Therefore ((c+ q)eij + eij(−q))ma ∈ Z(Ml(K)). Since ((c+ q)eij +
eij(−q))ma has rank ≤ 2, then it is zero in Ml(K), hence ((c + q)eij + eij(−q))m = 0,
since a is invertible. This means both eij((c + q)eij + eij(−q))m = 0 and ((c + q)eij +
eij(−q))meij=0. Therefore the (j, i)-entries of the matrices q and c is zero, so that
qI ⊆ I and cI ⊆ I . This means that G(I) ⊆ I and so G(f(r1, . . . , rn))

ma ∈ I ∩ K, for
all r1, . . . , rn ∈ I , implies I = R = Ml(K). Therefore R satisfies (1).

In the light of this, we may repeat the previous argument, for any i 6= j and with
no assumption on i and j. There are r1, . . . , rn ∈ R such that f(r1, . . . , rn) = eij and
((c+ q)eij+eij(−q))ma ∈ Z(Ml(K)). As above we have that ((c+ q)eij+eij(−q))m = 0.
Since it holds for all i 6= j, it follows that both c and q are diagonal matrices in R and a
standard argument shows that both c and q are central matrices in R. Thus G(x) = cx
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for c ∈ C, and (cm)af(x1, . . . , xn)
m ∈ C is satisfied by R. Consider the following subset

of R:

A = {x ∈ R : xf(r1, . . . , rn)
m ∈ C, ∀ r1, . . . , rn ∈ R}.

Of course A is a subgroup of R which is invariant under the action of all the inner K-
automorphisms. By [5] either A ⊆ Z(R) or [R,R] ⊆ A. In the first case a ∈ Z(R) and
f(x1, . . . , xn)

m is central valued onR. In the second one, for all i 6= j, eijf(x1, . . . , xn)
m ∈

Z(R). By commuting this last with eij we get

0 = [eijf(r1, . . . , rn)
m
, eij ] = eijf(r1, . . . , rn)

m
eij ,

for all r1, . . . , rn ∈ R. This means that f(r1, . . . , rn)
m is a diagonal matrix on R, and

as above we obtain that f(r1, . . . , rn)
m is a central matrix, for all r1, . . . , rn ∈ R. As a

consequence, once again a ∈ Z(R). �

As a consequence of the previous theorem we also have the following:

1.5. Corollary. Let R be a noncommutative prime ring of characteristic different from

2 with right Utumi quotient ring U and extended centroid C, I a nonzero right ideal of

R. Let m ≥ 1 be a fixed integer, a a fixed element of R, G a generalized derivation of R.

If aG(r)m ∈ Z(R) for all r ∈ I, then one of the following holds:

(1) aI = aG(I) = (0);
(2) G(x) = qx, for some q ∈ U and aqI = 0;
(3) [x1, x2]x3 is an identity for I;

(4) G(x) = cx+ [q, x] for all x ∈ R, where c, q ∈ U such that cI = 0 and [q, I ]I = 0;
(5) dimC(RC) ≤ 4. �

We would like to conclude this note with the following results, which are easy reduc-
tions of the previous ones:

1.6. Corollary. Let R be a noncommutative prime ring of characteristic different from

2 with right Utumi quotient ring U and extended centroid C, I a non-zero two-sided ideal

of R. Let f(x1, . . . , xn) be a non-central multilinear polynomial over C, m ≥ 1 a fixed

integer, a a non-zero fixed element of R, G a non-zero generalized derivation of R. If

aG(f(r1, . . . , rn))
m ∈ Z(R) for all r1, . . . , rn ∈ I, then one of the following holds:

(1) G(x) = qx, for some q ∈ U and aq = 0;
(2) R satisfies s4, the standard identity of degree 4;
(3) G(x) = αx, for some α ∈ C; moreover a ∈ C and f(x1, . . . , xn)

m is central

valued on R. �

1.7. Corollary. Let R be a noncommutative prime ring of characteristic different from

2 with right Utumi quotient ring U and extended centroid C, I a non-zero two-sided ideal

of R. Let m ≥ 1 be a fixed integer, a a non-zero fixed element of R, G a non-zero

generalized derivation of R. If aG(r)m ∈ Z(R) for all r ∈ I, then one of the following

holds:

(1) G(x) = qx, for some q ∈ U and aq = 0;
(2) R satisfies s4, the standard identity of degree 4. �
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852 N. Argaç, V. De Filippis

[4] Chang, C.M. and Lee, T.K. Annihilators of power values of derivations in prime rings,
Comm. Algebra, 26 (7), 2091–2113, 1998.

[5] Chuang, C. L. On invariant additive subgroups, Israel J. Math. 57 (1), 116–128, 1987.
[6] Chuang, C. L. and Lee, T.K. Rings with annihilator conditions on multilinear polynomials,

Chinese J. Math. 24 (2), 177–185, 1996.
[7] Filippis, V., De. Annihilators of power values of generalized derivations on multilinear

polynomials, Bull. Austr. Math. Soc. 80, 217–232, 2009.
[8] Hvala, B. Generalized derivations in rings, Comm. Algebra, 26 (4), 1147–1166, 1998.
[9] Kharchenko, V.K. Differential identities of prime rings, Algebra and Logic 17, 155–168,

1978.
[10] Lee, P. H. and Wong, T. L. Derivations cocentralizing Lie ideals, Bull. Inst. Math. Academia

Sinica 23, 1–5, 1995.
[11] Lee, T.K. Generalized derivations of left faithful rings, Comm. Algebra 27 (8), 4057–4073,

1999.
[12] Lee, T.K. Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347, 3159–

3165, 1995.
[13] Lee, T.K. Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1),

27–38, 1992.
[14] Lee, T.K. Independence property of polynomials in prime rings, Bull. Inst. Math. Acad.

Sinica 25, 19–28, 1997.
[15] Lee, T.K. and Lin, J. S. A result on derivations, Proc. Amer. Math. Soc. 124 (6), 1687–1691,

1996.
[16] Lee, T.K. and Shiue, W.K. Identities with generalized derivations, Comm. Algebra 29 (10),

4435–4450, 2001.
[17] Martindale, W. S. III Prime rings satisfying a generalized polynomial identity, J. Algebra,

12, 576–584, 1969.
[18] Rowen, L.H. Polynomial identities in Ring Theory (Academic Press, New York, 1980).
[19] Wang, Y. Generalized derivations with power central values on multilinear polynomials,

Algebra Colloquium 13 (3), 405–410, 2006.


