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Abstract

In this paper, we prove a common fixed point theorem for a family
of non-self mappings in cone metric spaces (over a cone which is not
necessarily normal). Our result generalizes and extends some recent
results of Radenovic and Rhoades.
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1. Introduction and preliminaries

The existing literature of fixed point theory contains many results enunciating fixed
point theorems for self-mappings in metric and Banach spaces. Recently, Huang and
Zhang [11] generalized the concept of a metric space, replacing the set of real numbers
by ordered Banach space and obtained some fixed point theorems for mappings satisfying
different contractive conditions. Subsequently, the study of fixed point theorems in such
spaces is followed by some other mathematicians, see [1-3, 5-7, 9-10, 12-13, 16-22, 24-28,
30-31]. However, fixed point theorems for non-self mappings are not frequently discussed
and so form a natural subject for further investigation. The study of fixed point theorems
for non-self mappings in metrically convex metric spaces was initiated by Assad and
Kirk[4]. Recently, Radenovic and Rhoades [22] obtained a fixed point theorem for two
non-self mappings in cone metric spaces. Motivated by Radenovic and Rhoades [22], we
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prove a common fixed point theorem for a family of non-self mappings in cone metric
spaces in which the cone need not be normal.

Consistent with Huang and Zhang [11], the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and
only if y− x ∈ P . A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖ .

The least positive number K satisfying the above inequality is called the normal constant
of P , while x ≪ y stands for y − x ∈ intP (interior of P ).

Rezapour and Hamlbarani [28] proved that there is no normal cone with normal
constant K < 1 and for each k > 1 there are cones with normal constants K > k.

1.1. Definition. [11] Let X be a nonempty set. Suppose that the mapping d : X×X →
E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

1.2. Definition. [11] Let (X, d) be a cone metric space. We say that {xn} is:

(e) a Cauchy sequence if for every c ∈ E with θ ≪ c, there is an N such that for all
n,m > N, d(xn, xm) ≪ c;

(f) a convergent sequence if for every c ∈ E with θ ≪ c, there is an N such that for
all n > N, d(xn, x) ≪ c for some fixed x ∈ X.

The cone metric space (X, d) is called complete if every Cauchy sequence in X is
convergent in X. It is known that {xn} converges to x ∈ X if and only if d(xn, x) → θ
as n → ∞. It is a Cauchy sequence if and only if d(xn, xm) → θ(n,m → ∞).

1.3. Remark. [32] Let E be an ordered Banach (normed) space. Then c is an interior
point of P , if and only if [−c, c] is a neighborhood of θ.

1.4. Corollary. [30]

(1) If a ≤ b and b ≪ c, then a ≪ c.

Indeed, c−a = (c−b)+(b−a) ≥ c−b implies [−(c−a), c−a] ⊇ [−(c−b), c−b].
(2) If a ≪ b and b ≪ c, then a ≪ c.

Indeed, c−a = (c−b)+(b−a) ≥ c−b implies [−(c−a), c−a] ⊇ [−(c−b), c−b].
(3) If θ ≤ u ≪ c for each c ∈ intP then u = θ. �

1.5. Remark. [22] If c ∈ intP, θ ≤ an and an → θ, then there exists an n0 such that
for all n > n0 we have an ≪ c.

1.6. Remark.

If E is a real Banach space with cone P and if a ≤ ka where a ∈ P and 0 < k < 1, then
a = θ.
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We find it convenient to introduce the following definition.

1.8. Definition. [22] Let (X, d) be a cone metric space, C a nonempty closed subset of
X, and f, g : C → X. If f and g satisfy the condition

d(fx, fy) ≤ λu

where

(1.1) u ∈
{d(gx, gy)

2
, d(fx, gx), d(fy, gy),

d(fx, gy) + d(fy, gx)

q

}

,

for all x, y ∈ C, 0 < λ < 1
2
, q ≥ 2−λ, then f is called a generalized g-contractive mapping

of C into X.

1.9. Definition. [1] Let f and g be self maps of a set X (i.e., f, g : X → X). If
w = fx = gx for some x in X, then x is called a coincidence point of f and g, and
w is called a point of coincidence of f and g. Self maps f and g are said to be weakly
compatible if they commute at their coincidence point; i.e., if fx = gx for some x ∈ X,
then fgx = gfx.

2. Main result

Radenovic and Rhoades [22] obtained the following theorem which is a generalization
of the corresponding result of Imdad and Kumar [15] in cone metric spaces.

2.1. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C (the boundary of
C) such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f, g : C → X are such that f is a generalized g-contractive mapping of C
into X, and

(i) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(ii) gx ∈ ∂C implies that fx ∈ C,
(iii) gC is closed in X.

Then the pair (f, g) has a coincidence point. Moreover, if the pair (f, g) is weakly com-
patible, then f and g have a unique common fixed point. �

The purpose of this paper is to extend the above theorem to a family of non-self
mappings in cone metric spaces whose cone need not be normal. It is worth pointing out
that some fixed point results are not real generalizations [10], but our main result is a real
generalization, since Theorem 2.3 cannot be considered as a consequence of Theorem 2.1.
We begin with the following definition.

2.2. Definition. Let (X, d) be a complete cone metric space, C a nonempty closed
subset of X, and {Fn}∞n=1, S, T : C → X non-self mappings. If there exist λ ∈ (0, 1

2
) and

q ≥ 2− λ such that for all x, y ∈ C with x 6= y,

(2.1) d(Fix, Fjy) ≤ λu,

where

u ∈ {d(Tx, Sy)
2

, d(Tx,Fix), d(Sy,Fjy),
d(Tx,Fjy) + d(Sy,Fix)

q
},

i = 2n− 1, j = 2n for some n ∈ N , then (Fi, Fj) is called a generalized (T, S)-contractive
mapping pair of C into X.
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Notice that by setting Fi = Fj = f and T = S = g in (2.1), one deduces a slightly
generalized form of (1.1).

We state and prove our main result as follows.

2.3. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C (the boundary of
C) such that

d(x, z) + d(z, y) = d(x, y).

Suppose that {Fn}∞n=1, S, T : C → X are such that (Fi, Fj) is a generalized (T, S)-
contractive mapping pair on C for all i = 2n− 1, j = 2n(n ∈ N), and

(I) ∂C ⊆ SC ∩ TC, FiC ∩ C ⊆ SC,FjC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fix ∈ C,Sx ∈ ∂C implies that Fjx ∈ C,
(III) SC and TC (or FiC and FjC) are closed in X.

Then

(IV) (Fi, T ) has a point of coincidence,
(V) (Fj , S) has a point of coincidence.

Moreover, if (Fi, T ) and (Fj , S) are weakly compatible pairs for all i = 2n − 1, j = 2n
(n ∈ N), then {Fn}∞n=1, S and T have a unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following
way.

Let x ∈ ∂C be arbitrary. Then (due to ∂C ⊆ TC) there exists a point x0 ∈ C such
that x = Tx0. Since Tx0 ∈ ∂C, from (I) and (II), we have F1x0 ∈ F1C ∩C ⊆ SC. Thus,
there exists x1 ∈ C such that y1 = Sx1 = F1x0 ∈ C. Since y1 = F1x0 there exists a
point y2 = F2x1 such that

d(y1, y2) = d(F1x0, F2x1).

Suppose y2 ∈ C. Then y2 ∈ F2C ∩ C ⊆ TC, which implies that there exists a point
x2 ∈ C such that y2 = Tx2. Otherwise, if y2 6∈ C, then there exists a point p ∈ ∂C such
that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂C ⊆ TC, there exists a point x2 ∈ C with p = Tx2 such that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = F3x2 be such that d(y2, y3) = d(F2x1, F3x2). Thus, repeating the foregoing
arguments, one obtains two sequences {xn} and {yn} such that

(a) y2n = F2nx2n−1 for every n ∈ N , y2n+1 = F2n+1x2n for every n ∈ N0 = N ∪{0},
(b) y2n ∈ C implies that y2n = Tx2n or y2n 6∈ C implies that Tx2n ∈ ∂C and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

(c) y2n+1 ∈ C implies that y2n+1 = Sx2n+1 or y2n+1 6∈ C implies that Sx2n+1 ∈ ∂C
and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We set
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P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i},
P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},
Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

Note that (Tx2n, Sx2n+1) 6∈ P1 × Q1, as if Tx2n ∈ P1, then y2n 6= Tx2n and one infers
that Tx2n ∈ ∂C which implies that y2n+1 = F2n+1x2n ∈ C. Hence y2n+1 = Sx2n+1 ∈ Q0.
Similarly, one can argue that (Sx2n−1, Tx2n) 6∈ Q1 × P1.

Now, we distinguish the following three cases.

Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then from (2.1)

d(Tx2n, Sx2n+1) = d(F2n+1x2n, F2nx2n−1) ≤ λu2n,

where

u2n ∈ {d(Sx2n−1, Tx2n)

2
, d(Sx2n−1, F2nx2n−1), d(Tx2n, F2n+1x2n),

d(Tx2n, F2nx2n−1) + d(Sx2n−1, F2n+1x2n)

q
}

= {d(y2n−1, y2n)

2
, d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n+1)

q
}.

Clearly, there are infinitely many n such that at least one of the following four cases
holds:

(1) d(Tx2n, Sx2n+1) ≤ λ
d(y2n−1,y2n)

2
≤ λd(Sx2n−1, Tx2n);

(2) d(Tx2n, Sx2n+1) ≤ λd(y2n−1, y2n) = λd(Sx2n−1, Tx2n);
(3) d(Tx2n, Sx2n+1) ≤ λd(y2n, y2n+1) ⇒ d(Tx2n, Sx2n+1) = θ ≤ λd(Sx2n−1, Tx2n);

(4) d(Tx2n, Sx2n+1) ≤ λ
d(y2n−1, y2n+1)

q
≤ λ

d(y2n−1, y2n) + d(y2n, y2n+1)

q

= λ
d(Sx2n−1, Tx2n) + d(Tx2n, Sx2n+1)

q
,

which implies that (1− λ
q
)d(Tx2n, Sx2n+1) ≤ λ

q
d(Sx2n−1, Tx2n), that is,

d(Tx2n, Sx2n+1) ≤ λ

q − λ
d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n).

It follows from (1), (2), (3), (4) that

(2.2) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n).

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P0, we have

(2.3) d(Sx2n+1, Tx2n+2) = d(F2n+1x2n, F2n+2x2n+1) ≤ λd(Tx2n, Sx2n+1).

If (Sx2n−1, Tx2n) ∈ Q0 × P0, we have

(2.4) d(Sx2n−1, Tx2n) = d(F2n−1x2n−2, F2nx2n−1) ≤ λd(Tx2n−2, Sx2n−1).

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then Sx2n+1 ∈ Q1 and

(2.5) d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turns yields

(2.6) d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1)

and hence

(2.7) d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) = d(F2n+1x2n, F2nx2n−1).
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Now, proceeding as in Case 1, we have that (2.2) holds.

If (Sx2n+1, Tx2n+2) ∈ Q1 × P0, then Tx2n ∈ P0. We show that

(2.8) d(Sx2n+1, Tx2n+2) ≤ λd(Tx2n, Sx2n−1).

Using (2.5), we get

(2.9)
d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+1) + d(y2n+1, Tx2n+2)

= d(Tx2n, y2n+1)− d(Tx2n, Sx2n+1) + d(y2n+1, Tx2n+2).

By noting that Tx2n+2, Tx2n ∈ P0, one can conclude that

(2.10)
d(y2n+1, Tx2n+2) = d(y2n+1, y2n+2) = d(F2n+1x2n, F2n+2x2n+1)

≤ λd(Tx2n, Sx2n+1),

and

(2.11) d(Tx2n, y2n+1) = d(y2n, y2n+1) = d(F2nx2n−1, F2n+1x2n) ≤ λd(Sx2n−1, Tx2n),

in view of Case 1.

Thus,

d(Sx2n+1, Tx2n+2) ≤ λd(Sx2n−1, Tx2n)− (1− λ)d(Tx2n, Sx2n+1)

≤ λd(Sx2n−1, Tx2n),

and we have proved (2.8).

Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 ∈ Q0. We show that

(2.12) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2).

Since Tx2n ∈ P1, then

(2.13) d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n)

From this, we get

(2.14)
d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(y2n, Sx2n+1)

= d(Sx2n−1, y2n)− d(Sx2n−1, Tx2n) + d(y2n, Sx2n+1).

By noting that Sx2n+1, Sx2n−1 ∈ Q0, one can conclude that

(2.15) d(y2n, Sx2n+1) = d(y2n, y2n+1) = d(F2n+1x2n, F2nx2n−1) ≤ λd(Sx2n−1, Tx2n),

and

(2.16)
d(Sx2n−1, y2n) = d(y2n−1, y2n) = d(F2n−1x2n−2, F2nx2n−1)

≤ λd(Sx2n−1, Tx2n−2),

in view of Case 1. Thus,

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2)− (1− λ)d(Sx2n−1, Tx2n)

≤ λd(Sx2n−1, Tx2n−2),

and we have proved (2.12).

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P1, then Tx2n+2 ∈ P1, and

d(Sx2n+1, Tx2n+2) + d(Tx2n+2, y2n+2) = d(Sx2n+1, y2n+2).

From this, we have

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) + d(y2n+2, Tx2n+2)

≤ d(Sx2n+1, y2n+2) + d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

= 2d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2),
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thus

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2).

By noting that Sx2n+1 ∈ Q0, one can conclude that

(2.17)
d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) = d(F2n+1x2n, F2n+2x2n+1)

≤ λd(Tx2n, Sx2n+1

in view of Case 1. Thus, in all the cases 1-3, there exists w2n ∈
{

d(Sx2n−1, Tx2n),

d(Tx2n−2, Sx2n−1)
}

such that

d(Tx2n, Sx2n+1) ≤ λw2n,

and there exists w2n+1 ∈ {d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)} such that

d(Sx2n+1, Tx2n+2) ≤ λw2n+1.

Following the procedure of Assad and Kirk [4], it can be easily shown by induction that,
for n ≥ 1, there exists w2 ∈ {d(Tx0, Sx1), d(Sx1, Tx2)}, such that

(2.18) d(Tx2n, Sx2n+1) ≤ λn− 1

2w2 and d(Sx2n+1, Tx2n+2) ≤ λnw2.

From (2.18) and by the triangle inequality, for n > m we have

d(Tx2n, Sx2m+1) ≤ d(Tx2n, Sx2n−1) + d(Sx2n−1, Tx2n−2)

+ · · ·+ d(Tx2m+2, Sx2m+1)

≤ (λm + λm+ 1

2 + · · ·+ λn−1)w2

≤ λm

1−
√
λ
w2 → θ, as m → ∞.

From Remark 1.5 and Corollary 1.4 (1), we, obtain d(Tx2n, Sx2m+1) ≪ c.

Thus, the sequence {Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n−1, . . .} is a Cauchy
sequence and hence converges to some point z in C (say). Then as noted in [8], there exists
at least one subsequence {Tx2nk

} or {Sx2nk+1} which is contained in P0 or Q0 respec-
tively having as limit point z. Furthermore, the subsequences {Tx2nk

} and {Sx2nk+1}
both converge to z ∈ C as C is a closed subset of the complete cone metric space (X, d).
We assume that there exists a subsequence {Tx2nk

} ⊆ P0 for each k ∈ N and TC as
well as SC are closed in X. Since {Tx2nk

} is Cauchy in TC, it converges to a point
z ∈ TC. Let w ∈ T−1z, then Tw = z. Similarly, {Sx2nk+1} being a subsequence of
Cauchy sequence {Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n−1, . . .} also converges to
z as SC is closed.

Using (2.1), one can write

d(Fiw, z) ≤ d(Fiw,Fjx2nk−1) + d(Fjx2nk−1, z) ≤ λu2nk−1 + d(Fjx2nk−1, z),

where

u2nk−1 ∈
{

d(Tw,Sx2nk−1)

2
, d(Tw,Fiw), d(Sx2nk−1, Fjx2nk−1),

d(Tw,Fjx2nk−1) + d(Fiw,Sx2nk−1)

q

}

=

{

d(z, Sx2nk−1)

2
, d(z, Fiw), d(Sx2nk−1, Fjx2nk−1),

d(z, Fix2nk−1) + d(Fjw,Sx2nk−1)

q

}

,

for any odd integer i ∈ N and even integer j ∈ N .



860 X. Huang, C. Zhu, X. Wen

Let θ ≪ c. Clearly at least one of the following four cases holds for infinitely many n.

(1) d(Fiw, z) ≤ λ
d(z,Sx2n

k
−1)

2
+ d(Fjx2nk−1, z) ≪ λ c

2λ
+ c

2
= c;

(2) d(Fiw, z) ≤ λd(z, Fiw) + d(Fjx2nk−1, z) =⇒

d(Fiw, z) ≤ 1

1− λ
d(Fjx2nk−1, z) ≪ 1

1− λ
(1− λ)c = c;

(3) d(Fiw, z) ≤ λd(Sx2nk−1, Fjx2nk−1) + d(Fjx2nk−1, z)

≤ λ(d(Sx2nk−1, z) + d(z, Fjx2nk−1)) + d(Fjx2nk−1, z)

≤ (λ+ 1)d(Fjx2nk−1, z) + λd(Sx2nk−1, z)

≪ (λ+ 1)
c

2(λ + 1)
+ λ

c

2λ
= c;

(4) d(Fiw, z) ≤ λ
d(z, Fjx2nk−1) + d(Fiw,Sx2nk−1)

q
+ d(Fjx2nk−1, z)

≤ λ
d(z, Fjx2nk−1) + d(Fiw, z) + d(z, Sx2nk−1)

q
+ d(Fjx2nk−1, z) =⇒

d(Fiw, z) ≤ q + λ

q − λ
d(Fjx2nk−1, z) +

λ

q − λ
d(z, Sx2nk−1)

≪ q + λ

q − λ

c

2 q+λ

q−λ

+
λ

q − λ

c

2 λ
q−λ

= c

In all the cases we obtain d(Fiw, z) ≪ c for each c ∈ intP . Using Corollary 1.4 (3) it
follows that d(Fiw, z) = θ or Fiw = z. Thus, Fiw = z = Tw, that is z is a coincidence
point of Fi, T for any odd integer i ∈ N .

Furthermore, since the Cauchy sequence {Tx2n
k
} converges to z ∈ C and z = Fiw, z ∈

FiC ∩ C ⊆ SC, there exists v ∈ C such that Sv = z. Again using (2.1), we get

d(Sv, Fjv) = d(z, Fjv) = d(Fiw,Fjv) ≤ λu,

where

u ∈
{

d(Tw,Sv)

2
, d(Tw, Fiw), d(Sv, Fjv),

d(Tw,Fjv) + d(Fiw,Sv)

q

}

=

{

θ, θ, d(Sv, Fjv),
d(z, Fjv) + θ

q
} = {θ, d(Sv, Fjv),

d(Sv, Fjv)

q

}

for any odd integer i ∈ N and even integer j ∈ N .

Hence, we get the following cases:

d(Sv, Fjv) ≤ λθ = θ, d(Sv,Fjv) ≤ λd(Sv, Fjv) and d(Sv, Fjv) ≤ λ

q
d(Sv, Fjv).

Since λ
q
≤ λ

2−λ
= λ

1+(1−λ)
< λ, using Remark 1.6 and Corollary 1.4 (3), it follows that

Sv = Fjv, therefore, Sv = z = Fjv, that is z is a coincidence point of (Fj , S) for any
even integer j ∈ N .

In the case FiC and FjC are closed inX, then z ∈ FiC∩C ⊆ SC or z ∈ FjC∩C ⊆ TC.
Analogous arguments establish (IV) and (V). If we assume that there exists a subsequence
{Sx2nk+1} ⊆ Q0 with TC as well as SC closed in X, then noting that {Sx2nk+1} is a
Cauchy sequence in SC, the foregoing arguments establish (IV) and (V).

Suppose now that (Fi, T ) and (Fj , S) are weakly compatible pairs, then

z = Fiw = Tw implies that Fiz = FiTw = TFiw = Tz
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and

z = Fjv = Sv implies that Fjz = FjSv = SFjv = Sz.

Thus, from (2.1),

d(Fiz, z) = d(Fiz, Fjv) ≤ λu,

where

u ∈
{

d(Sv, T z)

2
, d(Tz,Fiz), d(Sv, Fjv),

d(Tz,Fjv) + d(Sv, Fiz)

q

}

=

{

d(z, Fiz)

2
, d(z, Fiz), d(z, z),

d(Fiz, z) + d(z, Fiz)

q

}

=

{

d(z, Fiz)

2
, d(z, Fiz), θ,

2d(z, Fiz)

q

}

.

Hence, we get the following cases:

d(Fiz, z) ≤ λ
d(z, Fiz)

2
, d(Fiz, z) ≤ λd(z, Fiz),

d(Fiz, z) ≤ λθ = θ, and d(Fiz, z) ≤ 2λd(z, Fiz)

q
.

Since 2λ
q

≤ 2λ
2−λ

= 2λ
1+(1−λ)

< 2λ < 1, using Remark 1.6 and Corollary 1.4 (3), it follows

that Fiz = z. Thus, Fiz = z = Tz.

Similarly, we can prove Fjz = z = Sz. Therefore z = Fiz = Fjz = Sz = Tz, that is,
z is a common fixed point of {Fn}∞n=1, S and T .

The uniqueness of the common fixed point follows easily from (2.1). �

The following example shows that in general Fi, Fj , S and T satisfying the hypotheses
of Theorem 2.3 need not have a common point of coincidence so justifying the two
separate conclusions (IV) and (V).

2.4. Example. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X =
[0,+∞), C = [0, 2] and d : X × X → E defined by d(x, y) = |x − y|ϕ, where ϕ ∈ P
is a fixed function, e.g., ϕ(t) = et. Then (X, d) is a complete cone metric space with a
non-normal cone having a nonempty interior. Define Fi, Fj , S and T : C → X as

Fix = x+
4

5
, i = 2n− 1, Fjx = x2 +

4

5
, j = 2n, Tx = 5x and Sx = 5x2, x ∈ C.

Note that ∂C = {0, 2}. Clearly, for each x ∈ C and y 6∈ C there exists a point z = 2 ∈ ∂C
such that d(x, z) + d(z, y) = d(x, y). Furthermore,

SC ∩ TC = [0, 20] ∩ [0, 10] = [0, 10] ⊃ {0, 2} = ∂C,

FiC ∩ C =
[

4
5
, 14

5

]

∩ [0, 2] =
[

4
5
, 2
]

⊂ C,

FjC ∩ C =
[

4
5
, 24

5

]

∩ [0, 2] =
[

4
5
, 2
]

⊂ TC,

and, SC, TC, FiC and FjC are closed in X.
Also,

T0 = 0 ∈ ∂C =⇒ Fi0 =
4

5
∈ C, S0 = 0 ∈ ∂C =⇒ Fj0 =

4

5
∈ C.

T ( 2
5
) = 2 ∈ ∂C =⇒ Fi

(

2
5

)

= 6
5
∈ C,

S
(
√

2
5

)

= 2 ∈ ∂C =⇒ Fj

(
√

2
5

)

= 6
5
∈ C.

Moreover, for each x, y ∈ C,

d(Fix, Fjy) = |x− y2|ϕ = 2
5
( 1
2
d(Tx,Sy)),
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that is (2.1) is satisfied with λ = 2
5
.

Evidentally, 1 = T
(

1
5

)

= Fi

(

1
5

)

6= 1
5
and 1 = S

(

1√
5

)

= Fj

(

1√
5

)

6= 1√
5
. Notice that the

two separate coincidence points are not common fixed points as FiT
(

1
5

)

6= TFi

(

1
5

)

and

SFj

(

1√
5

)

6= FjS
(

1√
5

)

, which shows the necessity of the weakly compatible property in

Theorem 2.3.

Next, We furnish an illustrate example in support of our result. In doing so, we are
essentially inspired by Imdad and Kumar [15].

2.5. Example. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X =
[1,+∞), C = [1, 3] and d : X × X → E defined by d(x, y) = |x − y|ϕ, where ϕ ∈ P
is a fixed function, e.g., ϕ(t) = et. Then (X, d) is a complete cone metric space with a
non-normal cone having a nonempty interior. Define Fi, Fj , S and T : C → X as

Fix =

{

x2−1+n
n

if 1 ≤ x ≤ 2,
n+1
n

if 2 < x ≤ 3,
i = 2n−1 (n ≥ 1) Tx =

{

4x4 − 3 if 1 ≤ x ≤ 2,

13 if 2 < x ≤ 3,

Fjx =

{

x3−1+n
n

if 1 ≤ x ≤ 2,
n+1
n

if 2 < x ≤ 3,
j = 2n (n ≥ 1) Sx =

{

4x6 − 3 if 1 ≤ x ≤ 2,

13 if 2 < x ≤ 3.

Note that ∂C = {1, 3}. Clearly, for each x ∈ C and y 6∈ C there exists a point z = 3 ∈ ∂C
such that d(x, z) + d(z, y) = d(x, y). Further,

SC ∩ TC = [1, 253] ∩ [1, 61] = [1, 61] ⊃ {1, 3} = ∂C,

FiC ∩ C =
[

1,
n+ 3

n

]

∩ [1, 3] ⊂ SC and FjC ∩ C =
[

1,
n+ 7

n

]

∩ [1, 3] ⊂ TC.

Also,

T1 = 1 ∈ ∂C =⇒ Fi1 = 1 ∈ C, S1 = 1 ∈ ∂C =⇒ Fj1 = 1 ∈ C.

T

(

4

√

3

2

)

= 3 ∈ ∂C =⇒ Fi

(

4

√

3

2

)

=

√

3
2
− 1

n
+ 1 ∈ C,

S

(

6

√

3

2

)

= 3 ∈ ∂C =⇒ Fj

(

6

√

3

2

)

=

√

3
2
− 1

n
+ 1 ∈ C.

Moreover, if x ∈ [1, 2] and y ∈ [2, 3], then

d(Fix, Fjy) =
1

n
|x2−2|ϕ =

|x4 − 4|
n|x2 + 2|ϕ =

4|x4 − 4|/2
2n|x2 + 2| ϕ =

1

2n(x2 + 2)

d(Tx,Sy)

2
.

Next, if x, y ∈ (2, 3], then

d(Fix, Fjy) = 0 = λ
d(Tx,Sy)

2
.

Finally, if x, y ∈ [1, 2], then

d(Fix, Fjy) =
1

n
|x2 − y3|ϕ =

|x4 − y6|
n|x2 + y3|ϕ =

4|x4 − y6|/2
2n|x2 + y3| ϕ

=
1

2n(x2 + y3)

d(Tx,Sy)

2
.

Therefore, condition (2.1) is satisfied if we choose λ = max
{

1
2n(x2+2)

, 1
2n(x2+y3)

}

∈
(

0, 1
2

)

. Moreover 1 is a point of coincidence as T1 = Fi1 as well as S1 = Fj1, whereas
both pairs (Fi, T ) and (Fj , S) are weakly compatible as TFi1 = 1 = FiT1 and SFj1 =
1 = FjS1. Also, SC, TC,FiC and FjC are closed in X. Thus, all the conditions of
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Theorem 2.3 are satisfied and 1 is the unique common fixed point of Fi, Fj , S and T .
One may note that 1 is also a point of coincidence for both pairs (Fi, T ) and (Fj , S).

2.6. Remark. Setting Fi = F and Fj = G for all i = 2n − 1, j = 2n(n ∈ N) in
Theorem 2.3, we obtain the following result:

2.7. Corollary. [12] Let (X, d) be a complete cone metric space, C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)-contractive
mapping pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC, GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.

Then

(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.

Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a
unique common fixed point.

2.8. Remark. Setting Fi = Fj = f for all i = 2n− 1, j = 2n(n ∈ N) and T = S = g in
Theorem 2.3, one deduces Theorem 2.1 due to Radenovic and Rhoades [22].

Setting Fi = Fj = f for all i = 2n−1, j = 2n(n ∈ N) and T = S = IX in Theorem 2.3,
we obtain the following result:

2.9. Corollary. Let (X, d) be complete cone metric space, and C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f : C → X satisfies the condition

d(fx, fy) ≤ λu(x, y),

where

u(x, y) ∈
{d(x, y)

2
, d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

q

}

for all x, y ∈ C, 0 < λ < 1
2
, q ≥ 2 − λ, and f has the additional property that for each

x ∈ ∂C, fx ∈ C. Then f has a unique fixed point.
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