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Abstract

In this paper we obtain some new Ostrowski-Griiss type inequalities
containing twice differentiable functions.
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1. Introduction
In [11], Ostrowski proved the following inequality.

1.1. Theorem. Let f: I — R, where I C R is an interval, be a mapping differentiable
in the interior of I and a,b € I°, a <b. If |f'| < M, Vt € [a,b], then we have

L L, (o)’
b_a/f(t)dt < [ZJFW} (b—a)M,

(LY | f(z) -

for x € [a, b].

In the past several years there has been considerable interest in the study of Ostrowski
type inequalities. In [12], Ozdemir et al. proved Ostrowski’s type inequalities for (o, m)-
convex functions and in [15], an Ostrowski type inequality was given by Sarikaya. How-
ever, some new types of inequality are established, for example inequalities of Ostrowski-
Griiss type and inequalities of Ostrowski-Chebyshev type. In [9], Milovanovi¢ and Pecarié
gave a generalization of Ostrowski’s inequality and some related applications.
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An Ostrowski-Griiss type inequality was given for the first time by Dragomir and Wang
in [4]. In [8], Matié et al., generalized and improved this inequality. For generalizations,
improvements and recent results see the papers [1]-[10], [13], [14], [16] and [18]. Recently,
in [17], Ujevié proved following theorems;

1.2. Theorem. Let f: I — R, where I C R is an interval, be a mapping differentiable
in the interior of I and a,b € I°, a < b. If there exist constants v,I" € R such that
v < f'(t) < T, Vt € la,b] and f' € Li[a,b], then we have

19 |- (o= 52 IO LD L [ < 050 s

2 b—a 5
and
b
(13)  |f(2) - <x_a42rb) f(b;:if(a) ‘bia/f(t)dt . (b;a) s
whereS:W.

1.3. Theorem. Let f : I — R, where I C R is an interval, be a twice continuously
differentiable mapping in the interior of I with f" € La[a,b] and a,b € I°, a < b. Then
we have

b 3
(14)  |f(z)— <x— “;“b> [0) = J(a) _ bia/f(t)dt < % 171,

b—a

for x € [a, b].

The main purpose of this paper is to prove Ostrowski-Griiss type inequalities similar
to above but now involving twice differentiable mappings.

2. Main Results

2.1. Theorem. Let f : I — R, where I C R is an interval, be a twice differentiable
mapping in the interior of I and a,b € I°, a < b. If there exist constants v,I" € R such
that v < f"(¢t) <T, Vt € [a,b] and f" € Lz[a,b], then we have

fla) - af (x) - LDV O

2(b—a)
b
(2.1) _<%_a +c;b+b ) f(bz);:i(a) ‘bia/f(t)dt
S(b;a) (S—7)
and
f(@) = af (z) - W
b
(2.2) _<%_a +c;b+b ) f(bl)):i(a) ‘bia/f(t)dt
(b—a)?
)
whereS:W‘
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Proof. We can define a mapping K (x,t) as follows:

L(t—2 t
Kz~ [£0-20, €l
5 (t—2b), te(xb.
By using this mapping and integrating by parts, we have

b

bia /K(m)f”(t) dt
‘ T b
(2.3) = bia l/%(t—2a)f”(t)dt+/%(t—zb)f”(t)dt]

—of(@) - fla)+ LWL L [ yya

By a simple computation, we have

b

1 22 a® +ab+ b?

2.4 — | K(z,t)dt= — — ———
a) o [Kna=2 .

a

and

b
5 [fwa=ro -1
Using (2.3), (2.4) and (2.5), we get

o @) - o) 4 A @ =PI 0)

2(b—a)
_(%_a —|—(§b+b > f/(bz:il(a)+bia/f(t)dt
1 " 1 / , ;
= ma/K(Wf (1) dt - ma/f (t)dta/K(m) i,

We set

b b b
Ru(z) = bia /K(:c,t)f”(t) dt — ﬁ/f”(t)dt/l{(@t) dt.

If we write Ry (z) as follows with C' € R an arbitrary constant, then we have

b
(2.6) Rn(l’) = bia / (f”(t) _ C)

b
K(z,t) — bia/K(xys)ds] dt

a

We know that
b

2.7) /[K(m)— bia/bK(m) ds] dt =0

a a
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So, if we choose C' =~ in (2.6). Then we get

Rn(x): bia/(f//(t)—fy) [K(:C7t)—bia/K($7S)dS] dt

a

and

b
2 a® + ab + b? "
. n(z)] < ) — (= - =TT - .
28) || < g s [ Kot - (5 ) 1w = a
Since
22 a®+ab+b? (b—a)?
K(z,t) — [ = — =
2 |K @) <2 3 )! 3

and

/\f“(t)—w dt = f'(6) — f'(a) — 7 (b - a)
—(5—7)(b-a),

from (2.8) we have

(b a)*

(2.9)  [Ra(2)| < (5=7),
which gives (2.1).

Secondly, if we choose C' =T in (2.6) then by a similar argument we get

(210) |Ru(z)| < K(x,t) - (% - %) \ / |7 () ~ T dt

b—a tgl[%]

and

(2.11) [1r@-rld=rt-0 - 70)+ '@

— (-5 (b-a)
so from (2.10) and (2.11), we get (2.2). O

2.2. Theorem. Let f : I — R, where I C R is an interval, be a twice continuously
differentiable mapping in the interior of I with ' € La[a,b] and a,b € I°, a < b. Then
we have

@) = o ) - SHOZLLO

2(b—a)
b
(2.12) _<%_a +%b+b>f(bl)):£(a)—bia/f(t)dt

a

5 oo ()

where S = 7f/(bl):f/(“).
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Proof. Let R,(z) be defined as in the equality (2.6) with C' € R an arbitrary constant.
If we choose C' = f" (2£2), we get

| B ()]
x> a® +ab+ b / a+b
S tr'grl[g,?é] K(z,t) — <7 — f) ’/ Ty (T)’ dt.
By a simple computation, we get the required result. O
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