ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

M. Emin Özdemir*, Ahmet Ocak Akdemir† and Erhan Set‡§

Received 26:06:2011: Accepted 30:01:2012

Abstract

In this paper we obtain some new Ostrowski-Grüss type inequalities containing twice differentiable functions.

Keywords: Ostrowski-Grüss Inequality.

2000 AMS Classification: Primary: 26 D 15, 26 A 07.

1. Introduction

In [11], Ostrowski proved the following inequality.

1.1. Theorem. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a mapping differentiable in the interior of I and $a, b \in I^o$, a < b. If $|f'| \le M$, $\forall t \in [a, b]$, then we have

$$(1.1) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right| \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{(b-a)^{2}} \right] (b-a) M,$$

for $x \in [a, b]$.

In the past several years there has been considerable interest in the study of Ostrowski type inequalities. In [12], Özdemir et~al. proved Ostrowski's type inequalities for (α,m) -convex functions and in [15], an Ostrowski type inequality was given by Sarıkaya. However, some new types of inequality are established, for example inequalities of Ostrowski-Grüss type and inequalities of Ostrowski-Chebyshev type. In [9], Milovanović and Pečarić gave a generalization of Ostrowski's inequality and some related applications.

^{*}Ataturk University, K.K. Education Faculty, Department of Mathematics, 25640, Kampus, Erzurum, Turkey. E-mail: emos@atauni.edu.tr

[†]Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey. E-mail: ahmetakdemir@agri.edu.tr

[‡]Duzce University, Faculty of Science and Arts, Department of Mathematics, Düzce, Turkey. E-mail: erhanset@yahoo.com

[§]Corresponding Author.

An Ostrowski-Grüss type inequality was given for the first time by Dragomir and Wang in [4]. In [8], Matić *et al.*, generalized and improved this inequality. For generalizations, improvements and recent results see the papers [1]–[10], [13], [14], [16] and [18]. Recently, in [17], Ujević proved following theorems;

1.2. Theorem. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a mapping differentiable in the interior of I and $a, b \in I^o$, a < b. If there exist constants $\gamma, \Gamma \in \mathbb{R}$ such that $\gamma \leq f'(t) \leq \Gamma$, $\forall t \in [a, b]$ and $f' \in L_1[a, b]$, then we have

$$(1.2) \left| f(x) - \left(x - \frac{a+b}{2} \right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \frac{(b-a)}{2} (S - \gamma)$$

and

(1.3)
$$\left| f(x) - \left(x - \frac{a+b}{2} \right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \frac{(b-a)}{2} (\Gamma - S),$$

where $S = \frac{f(b) - f(a)}{b - a}$.

1.3. Theorem. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a twice continuously differentiable mapping in the interior of I with $f'' \in L_2[a,b]$ and $a,b \in I^o$, a < b. Then we have

$$(1.4) \qquad \left| f(x) - \left(x - \frac{a+b}{2} \right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right| \le \frac{(b-a)^{\frac{3}{2}}}{2\pi\sqrt{3}} \left\| f'' \right\|_{2},$$

for $x \in [a, b]$.

The main purpose of this paper is to prove Ostrowski-Grüss type inequalities similar to above but now involving twice differentiable mappings.

2. Main Results

2.1. Theorem. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a twice differentiable mapping in the interior of I and $a, b \in I^o$, a < b. If there exist constants $\gamma, \Gamma \in \mathbb{R}$ such that $\gamma \leq f''(t) \leq \Gamma$, $\forall t \in [a,b]$ and $f'' \in L_2[a,b]$, then we have

$$\left| f(x) - xf'(x) - \frac{a^2 f'(a) - b^2 f'(b)}{2(b-a)} \right| \\
- \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \frac{f'(b) - f'(a)}{b-a} - \frac{1}{b-a} \int_a^b f(t) dt \right| \\
\leq \frac{(b-a)^2}{3} (S - \gamma)$$

and

$$\left| f(x) - xf'(x) - \frac{a^2 f'(a) - b^2 f'(b)}{2(b-a)} \right|$$

$$- \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \frac{f'(b) - f'(a)}{b-a} - \frac{1}{b-a} \int_a^b f(t) dt \right|$$

$$\leq \frac{(b-a)^2}{3} \left(\Gamma - S \right)$$

where $S = \frac{f'(b) - f'(a)}{b - a}$

Proof. We can define a mapping K(x,t) as follows:

$$K(x,t) = \begin{cases} \frac{t}{2} (t - 2a), & t \in [a, x], \\ \frac{t}{2} (t - 2b), & t \in (x, b]. \end{cases}$$

By using this mapping and integrating by parts, we have

(2.3)
$$\frac{1}{b-a} \int_{a}^{b} K(x,t)f''(t) dt$$

$$= \frac{1}{b-a} \left[\int_{a}^{x} \frac{t}{2} (t-2a) f''(t) dt + \int_{x}^{b} \frac{t}{2} (t-2b) f''(t) dt \right]$$

$$= xf'(x) - f(x) + \frac{a^{2}f'(a) - b^{2}f'(b)}{2(b-a)} + \frac{1}{b-a} \int_{a}^{b} f(t) dt.$$

By a simple computation, we have

(2.4)
$$\frac{1}{b-a} \int_{a}^{b} K(x,t) dt = \frac{x^2}{2} - \frac{a^2 + ab + b^2}{3}$$

and

(2.5)
$$\int_{a}^{b} f''(t) dt = f'(b) - f'(a).$$

Using (2.3), (2.4) and (2.5), we get

$$xf'(x) - f(x) + \frac{a^2 f'(a) - b^2 f'(b)}{2(b - a)}$$

$$- \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3}\right) \frac{f'(b) - f'(a)}{b - a} + \frac{1}{b - a} \int_a^b f(t) dt$$

$$= \frac{1}{b - a} \int_a^b K(x, t) f''(t) dt - \frac{1}{(b - a)^2} \int_a^b f''(t) dt \int_a^b K(x, t) dt.$$

We set

$$R_n(x) = \frac{1}{b-a} \int_a^b K(x,t) f''(t) dt - \frac{1}{(b-a)^2} \int_a^b f''(t) dt \int_a^b K(x,t) dt.$$

If we write $R_n(x)$ as follows with $C \in \mathbb{R}$ an arbitrary constant, then we have

(2.6)
$$R_n(x) = \frac{1}{b-a} \int_a^b \left(f''(t) - C \right) \left[K(x,t) - \frac{1}{b-a} \int_a^b K(x,s) \, ds \right] dt$$

We know that

(2.7)
$$\int_{a}^{b} \left[K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) \, ds \right] dt = 0$$

So, if we choose $C = \gamma$ in (2.6). Then we get

$$R_n(x) = \frac{1}{b-a} \int_a^b \left(f''(t) - \gamma \right) \left[K(x,t) - \frac{1}{b-a} \int_a^b K(x,s) \, ds \right] dt$$

and

$$(2.8) |R_n(x)| \le \frac{1}{b-a} \max_{t \in [a,b]} \left| K(x,t) - \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \right| \int_a^b |f''(t) - \gamma| dt.$$

Since

$$\max_{t \in [a,b]} \left| K(x,t) - \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \right| = \frac{(b-a)^2}{3}$$

and

$$\int_{a}^{b} |f''(t) - \gamma| dt = f'(b) - f'(a) - \gamma (b - a)$$
$$= (S - \gamma) (b - a),$$

from (2.8) we have

(2.9)
$$|R_n(x)| \le \frac{(b-a)^2}{3} (S-\gamma),$$

which gives (2.1).

Secondly, if we choose $C = \Gamma$ in (2.6) then by a similar argument we get

$$(2.10) |R_n(x)| \le \frac{1}{b-a} \max_{t \in [a,b]} \left| K(x,t) - \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \right| \int_a^b |f''(t) - \Gamma| dt$$

and

(2.11)
$$\int_{a}^{b} |f''(t) - \Gamma| dt = \Gamma(b - a) - f'(b) + f'(a)$$
$$= (\Gamma - S)(b - a)$$

so from (2.10) and (2.11), we get (2.2).

2.2. Theorem. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a twice continuously differentiable mapping in the interior of I with $f'' \in L_2[a,b]$ and $a,b \in I^o$, a < b. Then we have

$$\left| f(x) - xf'(x) - \frac{a^2 f'(a) - b^2 f'(b)}{2(b-a)} \right|$$

$$\left| -\left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3}\right) \frac{f'(b) - f'(a)}{b-a} - \frac{1}{b-a} \int_a^b f(t) dt \right|$$

$$\leq \frac{(b-a)^2}{3} \left(S - f''\left(\frac{a+b}{2}\right) \right),$$

where $S = \frac{f'(b) - f'(a)}{b - a}$.

Proof. Let $R_n(x)$ be defined as in the equality (2.6) with $C \in \mathbb{R}$ an arbitrary constant. If we choose $C = f''\left(\frac{a+b}{2}\right)$, we get

$$|R_n(x)|$$

$$\leq \frac{1}{b-a} \max_{t \in [a,b]} \left| K(x,t) - \left(\frac{x^2}{2} - \frac{a^2 + ab + b^2}{3} \right) \right| \int_a^b \left| f''(t) - f''\left(\frac{a+b}{2} \right) \right| dt.$$

By a simple computation, we get the required result.

References

- Anastassiou, G. A. Ostrowski type inequalities, Proc. Amer. Math. Soc. 123, 3775–3781, 1995.
- [2] Cerone, P, Dragomir, S.S. Roumeliotis, J. An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications in numerical integration, KYUNGPOOK Math. J. 39 (2), 331–341, 1999.
- [3] Cheng, X. L. Improvement of some Ostrowski-Grüss type inequalities, Computers & Mathematics with Applications 42 (1/2), 109–114, 2001.
- [4] Dragomir, S. S. and Wang, S. An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numeraical quadrature rules, Computers & Mathematics with Applications 33 (11), 15–20, 1997.
- [5] Feng, Q. and Meng, F. Some generalized Ostrowski-Grüss type integral inequalities, Computers & Mathematics with Applications 63 (3), 652-659, 2012.
- [6] Liu, Z. Some Ostrowski Grüss type inequalities and applications, Computers & Mathematics with Applications 53, 73–79, 2007.
- [7] Liu, Z. A sharp generalized Ostrowski-Grüss inequality, Tamsui Oxford Journal of Mathematical Sciences 24 (2), 175–184, 2008.
- [8] Matić, M., Pečarić, J. and Ujević, N. Improvement and further generalization of some inequalities of Ostrowski-Grüss type, Computers & Mathematics with Applications 39 (3/4), 161–175, 2000.
- [9] Milovanović, G. V. and Pečarić, J. E. On generalization of the inequality of A. Ostrowski and some related applications, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (544-576), 155-158, 1976.
- [10] Niezgoda, M. A new inequality of Ostrowski-Grüss type and applications to some numerical quadrature rules, Computers & Mathematics with Applications 58 (3), 589–596, 2009.
- [11] Ostrowski, A. Über die Absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv. 10, 226–227, 1938.
- [12] Özdemir, M. E., Kavurmacı, H. and Set, E. Ostrowski's type inequalities for (α, m)-convex functions, KYUNGPOOK Math. J. 50, 371–378, 2010.
- [13] Pachpatte, B.G. On Čebyšev-Grüss type inequalities via Pečarić's extension of the Montgomery identity, J. Inequal. Pure Appl. Math. 7 (1), Article 11, 2006.
- [14] Pearce, C. E. M., Pečarić, J., Ujević, N. and Varoš, S. Generalizations of some inequalities of Ostrowski Grüss type, Math. Inequal. Appl. 3 (1), 25–34, 2000.
- [15] Sarıkaya, M. Z. On the Ostrowski type integral inequality, Acta Math. Univ. Comenianee LXXIX (1), 129–134, 2010.
- [16] Tong, F. and Guan, L. A simple proof of the generalized Ostrowski-Grüss type integral inequality, Int. Journal of Math. Analysis 2 (18), 889–892, 2008.
- [17] Ujević, N. New bounds for the first inequality of Ostrowski-Grüss type and applications, Computers & Mathematics with Applications 46, 421-427, 2003.
- [18] Yang, S. A unified approach to some inequalities of Ostrowski-Grüss type, Computers & Mathematics with Applications 51, 1047–1056, 2006.