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Abstract

In the Hilbert space of vector-functions L2(H, (a, b)), where H is any
separable Hilbert space, the general representation in terms of bound-
ary values of all normal extensions of the formally normal minimal
operator, generated by linear differential-operator expressions of third
order in the form

l(u) = u
′′′(t) +A

3
u(t), A : D(A) ⊂ H → H, A = A

∗ ≥ E,

is obtained in the first part of this study. Then, some spectral prop-
erties of these normal extensions are investigated. In particular, the
case of A−1 ∈ S∞(H), asymptotic estimates of normal extensions of
eigenvalues has been established at infinity.

Keywords: Normal extension, Compact operator, Eigenvalue, Asymptotical behavior
of eigenvalues.
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1. Introduction

It is known that operator theory plays an exceptionally important role in modern
mathematics and physics, especially in boundary value problems, quantum mechanics
and deformation theory. Also, spectral analysis of differential operators is one of the
most important areas of modern mathematical physics [1]. In addition the investigation of
different selfadjoint extensions of densely defined closed symmetric operators is among the
fundamental mathematical problems arising in any physical model. By using the Calkin
theory a survey of the selfadjoint (dissipative, accumulative) extensions and their spectral
analysis has been analyzed in the case of symmetric differential-operator expressions first
and second order in L2(H, (a, b)), a, b ∈ R [6] (for a detail analysis of these problems
see [9]). However, many physical problems oblige one to investigate normal extensions
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of formally normal differential-operators of lower order in the Hilbert space of vector-
functions on a finite interval.

The basic results of this theory had been established and developed by E.A. Codding-
ton [2]. Unfortunately, applications of this theory to the theory of differential operators
in Hilbert space have not received the attention it deserves. In this sense, for first and
second order differential operators, some results have been obtained in [7, 8].

In this study, the general representation of boundary values of all normal extensions of
the formally normal minimal operator, generated by two-term linear differential-operator
expression for third order with selfadjoint coefficient, in the Hilbert space of vector func-
tions L2(H, (a, b)) where H is any separable Hilbert space and a, b ∈ R, is obtained.
Furthermore, some spectral properties of these normal extensions are investigated. Fi-
nally, in the special case of operator coefficient asymptotically estimates of these normal
extensions eigenvalues has been established at infinity.

2. The minimal and maximal operators

Let us start with a important definition.

2.1. Definition. A densely defined closed operator N in a Hilbert space is called formally
normal if D(N) ⊂ D(N∗) and ‖Nf‖ = ‖N∗f‖, for all f ∈ D(N). If a formally normal
operator has no formally normal non-trivial extension, then it is called amaximal formally
normal operator. If a formally normal operator N satisfies the condition D(N) = D(N∗),
then it is called a normal operator [2].

In the space L2(H, (a, b)) consider a linear differential-operator expression of third-
order in the form

(2.1) l(u) = u
′′′(t) + A

3(t)u(t),

where for each t ∈ [a, b], A(t) is a linear selfadjoint operator in H , A(t) ≥ E and
D(A(t)) = D. It is clear that a formally adjoint expression in the space L2(H, (a, b)) to
(2.1), is in the form

(2.2) l
+(v) = −v′′′(t) + A

3(t)v(t).

Now let us define the operator L′
0 on the dense manifold of the vector-functions D′

0 in
L2(H, (a, b))

D
′
0 :=

{
u(t) ∈ L

2 : u(t) =

n∑

k=1

ϕk(t)fk, ϕk(t) ∈ C
∞
0 (a, b), fk ∈ D(A),

k = 1, 2, . . . , n, n ∈ N

}

as L′
0 := l(u). Since for all u ∈ D′

0

Re(L
/
0u, u)L2 = Re(lu(t), u(t))L2 = Re(A3(t)u(t), u(t))L2 ≥ ‖u(t)‖2L2

≥ 0,

then L′
0 is an accretive operator, and so it has a closure in L2(H, (a, b)) [3]. The closure

of L′
0 in L2(H, (a, b)) is called the minimal operator generated by the differential-operator

expression (2.1) and it is denoted by L0. In a similar way, the minimal operator L+
0 ,

generated by the differential operator expression (2.2) in L2(H, (a, b)) is constructed.

The adjoint operator of L+
0 (L0) in L2(H, (a, b)) is called the maximal operator gen-

erated by (2.1) ((2.2)), and is denoted by L (L+). It is clear that L0 ⊂ L, L+
0 ⊂ L+.
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2.2. Lemma. If f ∈ L2(a, b), a, b ∈ R and for all real-valued function ϕ, ψ ∈ C∞
0 (a, b)

and

b∫

a

f(t) (ϕ(t)ψ(t))′ dt = 0,

then f = constant almost everywhere in (a, b).

Proof. In this case,

b∫

a

f(t)(ϕ(t)ψ(t))′dt

=

b∫

a

f(t)ϕ′(t)ψ(t)dt+

b∫

a

f(t)ϕ(t)ψ′(t) dt

=




t∫

a

f(s)ϕ′(s)ds



ψ(t)

∣∣∣∣∣∣

t=b

t=a

−
b∫

a




t∫

a

f(s)ϕ′(s) ds



ψ
′(t) dt

+

b∫

a

f(t)ϕ(t)ψ′(t) dt

=

b∫

a



f(t)ϕ(t)−
t∫

a

f(s)ϕ′(s) ds



ψ
′(t) dt = 0.

Hence, there exists a real number c ∈ R for every ϕ ∈ C∞
0 (a, b), f(t)ϕ(t)−

t∫

a

f(s)ϕ′(s) ds

= c a.e. [4]. If ϕ(t) 6= 0, t ∈ (a, b), then the function f∗(t) :=

t∫

a

f(s)ϕ′(s) ds− c

φ(t)
,

a < t < b, is equal the function f a.e., and so

t∫

a

f
∗(s)ϕ′(s)ds = f

∗(t)ϕ(t) + c

holds. From this relation and continuity of the function f∗ on (a, b), this function is
differentiable and f∗′(t) = 0. Therefore the function f is constant a.e. in (a, b). �

2.3. Theorem. Let σx(t) := (A3(t)x, x)H , x ∈ D. If the minimal operator L0 is
formally normal in L2(H, (a, b)) , then σx = constant a.e. in (a, b).

Proof. For every u(t) ∈ D(L0)

‖L0u(t)‖2L2 − ‖L+
u(t)‖2L2 = 2

[
(u′′′(t),A3(t)u(t))L2 + (A3(t)u(t), u′′′(t))L2

]
= 0.

By using this relation, for the special vector-function u(t) = ϕ(t)x ∈ D′
0, x ∈ D,

(
u
′′′(t), A3(t)u(t)

)
L2 +

(
A

3(t)u(t), u′′′(t)
)
L2

=

b∫

a

σx(t)
(
ϕ

′′′(t)ϕ(t) + ϕ(t)ϕ′′′ (t)
)
dt = 0.
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If ϕ ∈ C∞
0 (a, b) is a real-valued function, then

b∫

a

σx(t)ϕ
′′′(t)ϕ(t) dt = 0

is true. For every real-valued function ϕ ∈ C∞
0 (a, b), eitϕ(t) belong to C∞

0 (a, b). If these
functions are used in the last equation

b∫

a

σx(t)
((
e
it
ϕ(t)

)′′′
e
−it
ϕ(t) + e

it
ϕ(t)(eitϕ(t))

′′′)
dt

=

b∫

a

σx(t)
(
2ϕ(t)ϕ′′′(t)− 6ϕ(t)ϕ′(t)

)
dt

= −6

b∫

a

σx(t)ϕ(t)ϕ
′(t) dt = −3

b∫

a

σx(t)
(
(ϕ(t))2

)′
dt = 0,

then for every real-valued functions ϕ ∈ C∞
0 (a, b)

b∫

a

σx(t)
(
(ϕ(t))2

)′
dt = 0

is true. For every real-valued functions ϕ, ψ ∈ C∞
0 (a, b), ϕ+ψ ∈ C∞

0 (a, b) and from the
last equation

b∫

a

σx(t)
(
(ϕ(t) + ψ(t))2

)′
dt = 2

b∫

a

σx(t) (ϕ(t)ψ(t))
′
dt = 0

holds. Therefore, by Lemma 2.2, σx(t) = constant a.e. for any x ∈ D . �

2.4. Corollary. If α(t) = α(t) ∈ L2(a, b) and A(t) = α(t)A, A∗ = A ≥ E, then the
minimal operator L0 is formally normal in L2(H, (a, b)) if and only if the function α is
constant a.e. in (a, b). �

2.5. Corollary. If dimH < +∞, then the minimal operator L0 is formally normal in
the Hilbert space L2(H, (a, b)) if and only if A(t) = costant a.e. in (a, b). �

According to these results, throughout this work let us consider A(t) = A, A ≥ E in
(a, b).

3. Domains of minimal and maximal operators

Let H be a separable Hilbert space, A : D (A) ⊂ H → H,A∗ = A ≥ E and define an
inner product on the domain D(A) by

(x, y)+1/2 :=
(
A

1/2
x,A

1/2
y
)

H
.

With this inner product D(A) is Hilbert space, which will be denoted by H+1/2 =
H+1/2(A). Also let us introduce in H a new norm:

‖y‖H−1/2
:= sup

x∈H+1/2

|(y, x)H |
‖x‖+1/2

The completion of H with respect to the norm ‖ · ‖H−1/2 is denoted by H−1/2 =
H−1/2(A). The elements of this space are called generalized elements. In this case
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A : H+1/2 → H is a continuous operator and its adjoint operator is denoted by Ã : H →
H−1/2. Also Ã is an extension of A and Ã∗ = Ã ≥ E [6].

From now on it will be considered that

(3.1) l̃(u) = u
′′′(t) + Ã

3
u(t).

We state the following lemmas. Their proofs can be done similarly to those in [6].

3.1. Lemma. The operators

x 7→ e
−Ã(t−a)

x, x 7→ e
Ã(t−b)

x

are continuous from H−1/2 to L2(H, (a, b)). �

3.2. Lemma. The operators

f(t) 7→
b∫

a

e
−Ã(t−a)

f(t) dt, f(t) 7→
b∫

a

e
Ã(t−b)

f(t) dt

are continuous from L2(H, (a, b)) into H+1/2.

The following theorem can be proved by using results in [6, 10].

3.3. Theorem. The domain D(L) of the maximal operator L generated by expression
(3.1) consists of the vector-function f(t) that have a representation Lu(t) = f(t), f ∈
L2(H, (a, b)), where

u(t) = e
−(t−a)Ã

x1 + e
1−i

√
3

2
(t−b)Ã

x2 + e
1+i

√
3

2
(t−b)Ã

x3 +
1

3
A

−2

t∫

a

e
−(t−s)A

f(s) ds

+
1− i

√
3

6
A

−2

b∫

t

e
1−i

√
3

2
(t−s)A

f(s) ds+
1 + i

√
3

6
A

−2

b∫

t

e
1+i

√
3

2
(t−s)A

f(s) ds,

xi ∈ H−1/2, i = 1, 2, 3. �

Also the domain of the minimal operator L0 consists of vector-functions u(t) ∈ D(L)
for which u(a) = u(b) = u′(a) = u′(b) = u′′(a) = u′′(b) = 0.

3.4. Corollary. If Ln, L0 ⊂ Ln ⊂ L is a normal extension, then the domain D(Ln) of
Ln consists of the vector-functions u(t) that have the representation

u(t) = e
−(t−a)Ã

x1 + e
1−i

√
3

2
(t−b)Ã

x2 + e
1+i

√
3

2
(t−b)Ã

x3 +
1

3
A

−2

t∫

a

e
−(t−s)A

f(s) ds

+
1− i

√
3

6
A

−2

b∫

t

e
1−i

√
3

2
(t−s)A

f(s) ds+
1 + i

√
3

6
A

−2

b∫

t

e
1+i

√
3

2
(t−s)A

f(s) ds,

xi ∈ H+1/2, i = 1, 2, 3,

where Lnu(t) = f(t), f ∈ L2(H, (a, b)).
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Proof. Since Ln, L0 ⊂ Ln ⊂ L is a normal operator, then for every u(t) ∈ D(Ln) we

have Ãu(t) ∈ L2(H, (a, b)). By using Theorem 3.3,

Ãu(t)

= e
(a−t)Ã

Ãx1 + e
1−i

√
3

2
(t−b)Ã

Ãx2 + e
1+i

√
3

2
(t−b)Ã

Ãx3 +
1

3
A

−1

t∫

a

e
(s−t)A

f(s) ds

+
1− i

√
3

6
A

−1

b∫

t

e
1−i

√
3

2
(t−s)A

f(s) ds+
1 + i

√
3

6
A

−1

b∫

t

e
1+i

√
3

2
(t−s)A

f(s) ds

∈ L2(H, (a, b)).

Thus, Ãxi ∈ H+1/2, i = 1, 2, 3 and from Lemma 3.2, xi ∈ H+1/2, i = 1, 2, 3 are obtained.
�

4. Description of normal extensions

The main purpose of this section is to describe all normal extensions of the minimal

operator L0 generated by (3.1). Since the index number of the minimal operator Im(L0)
is (dimH3,dimH3), where H3 = H ⊕H ⊕H , there exist at least one space of boundary

values [6]. Let (H3, γ1, γ2) be a space of boundary values for the minimal operator Im(L0)

and Â :=




Ã 0 0

0 Ã 0

0 0 Ã



, Â : H3 → H3.

4.1. Theorem. Let A : D(A) ⊂ H → H, A = A∗ ≥ E be a linear operator and

ÃW 3
2 (H, (a, b)) ⊂ W 3

2 (H, (a, b). Every normal extension Ln, L0 ⊂ Ln ⊂ L, of the
minimal operator L0 in L2(H(a, b)) is generated by the differential-operator expression
(3.1) and the boundary condition

(4.1) (W − E)γ1(u) + i(W + E)γ2(u) = 0,

where W and Â3/2WÂ−3/2 are unitary operators in H3. The unitary operator W is
determined uniquely by the extension Ln, i.e. Ln = LW .

On the contrary, the restriction of the maximal operator L to the manifold of vector-
functions u(t) ∈ W 3

2 (H, (a, b)) that satisfy (4.1) for any unitary operators W and

Â3/2WÂ−3/2 in H3, is a normal extension of the minimal operator L0 in L2(H, (a, b)).

Proof. Let Ln be a normal extension of L0. In this case

Re(Ln)u = A
3
u(t), u ∈ D(Ln),

Im(Ln)u = −iu′′′(t), u ∈ D(Ln)

are selfadjoint operators in L2(H, (a, b)). Firstly, for the minimal operator Im(L0) we
prove that the triple (H3, γ1, γ2), where

γ1(u) :=

{
−iu′′(b),

i

2

(
u
′(b)− u

′(a)
)
, iu

′′(a)

}
, γ2(u) :=

{
u(b), u′(b) + u

′(a), u(a)
}

is a space of boundary values. For every u, v ∈ W 3
2 (H, (a, b))

(Im(L∗
0)u, v)L2 − (u, Im(L∗

0)v)L2 = (γ1(u), γ2(v))H3 − (γ2(u), γ1(v))H3
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and if {x1, x2, x3}, {y1, y2, y3} are arbitrary vectors from H3, then the vector-function
u(t) := α1(t)y3 + α2(t)(−2ix2 + y2) + iα3(t)y3 + β1(t)y1 + 1

2
β2(t)(y2 + ix2) + iβ3(t)x3,

where the αi, βi ∈W 3
2 (a, b), i = 1, 2, 3 satisfy the conditions

α1(a) = 1, α
′
1(a) = α

′′
1 (a) = α1(b) = α

′
1(b) = α

′′
1 (b) = 0,

α
′′
2 (a) = 1, α2(a) = α

′′
2 (a) = α2(b) = α

′
2(b) = α

′′
2 (b) = 0,

α
′′
3 (a) = 1, α3(a) = α

′
3(a) = α3(b) = α

′
3(b) = α

′′
3 (b) = 0,

β1(b) = 1, β1(a) = β
′
1(a) = β

′′
1 (a) = β

′
1(b) = β

′′
1 (b) = 0,

β
′
2(b) = 1, β2(a) = β

′
2(a) = β

′′
2 (a) = β2(b) = β

′′
1 (b) = 0,

β
′′
3 (b) = 1, β3(a) = β

′
3(a) = β

′′
3 (a) = β

′
1(b) = β

′′
1 (b) = 0

belongs to D(Im(L∗
0) and γ1(u) = {x1, x2, x3}, γ2(u) = {y1, y2, y3}. Thus we have proved

that the triple (H3, γ1, γ2) is a space of boundary values for the minimal operator Im(L0).

It is known that a selfadjoint extension Im(Ln) of the minimal operator Im(L0) in
L2(H, (a, b)) is described by the following boundary condition

(W − E)γ1(u) + i(W + E)γ2(u) = 0,

with a uniquely unitary operator W in H3 [6]. On the other hand since the extension
Ln is a normal operator, then for every u(t) ∈ D(Ln) the following equality holds

(Re(Ln)u, Im(Ln)u)L2 = (Im(Ln)u,Re(Ln)u)L2 .

In other words for every u(t) ∈ D(Ln)

(Re(Ln)u(t), Im(Ln)u(t))L2 − (Im(Ln)u(t),Re(Ln)u(t))L2

=
(
γ1
(
Ã

3/2
u
)
, γ2
(
Ã

3/2
u
))

H3 −
(
γ2
(
Ã

3/2
u
)
, γ1
(
Ã

3/2
u
))

H3 = 0.

From the above, the linear relation

θ :=
{{
γ1
(
Ã

3/2
u
)
, γ1
(
Ã

3/2
u
)}

: u ∈ D(Ln)
}
⊂ H

3 ⊕H
3

is selfadjoint, so there is a unitary operator V : H3 → H3 such that

(V − E)γ1
(
Ã

3/2
u
)
+ i(V + E)γ2

(
Ã

3/2
u
)
= 0.

Let us set U := Ã−3/2V Ã3/2. In this case the relation implies that

(U −E)γ1(u) + i(U +E)γ2(u) = 0, u ∈ D(Ln).

Since the unitary operator W is determined uniquely by the extension Im(Ln), then U

is a unitary operator and U = W , i.e., Â3/2WÂ−3/2 is a unitary operator in H3. It is
clear that the unitary operator W is determined uniquely by the extension Ln.

Now let LW be an operator generated by the differential-operator expression l̃(u) with
the boundary condition (4.1) in L2(H, (a, b)), that is,

LWu = l(u),

D(LW ) =
{
u ∈ W

3
2 (H, (a, b)) : (W − E)γ1(u) + i(W +E)γ2(u) = 0

}
,

whereW and Â3/2WÂ−3/2 are unitary operators in H3. In this case the adjoint operator
L∗

W is generated by the differential-operator expression l̃∗(v) = −v′′′(t)+ Ã3v(t) with the
boundary condition

(W ∗ − E)γ1(v)− i(W ∗ + E)γ2(v) = 0, v ∈ D(L∗
W ).

It is easy to see that D(LW ) = D(L∗
W ) and the other conditions of normality extensions

in L2 can be easily verified. �
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5. The spectrum of normal extensions and asymptotical behavior

of their eigenvalues

In this section the spectrum of the normal extension LW of minimal operator L0 in L2

generated by linear differential-operator expression (3.1) and boundary conditions (4.1)

with unitary operators W and Â3/2WÂ−3/2 in H3 will be investigated.

Now for any λ ∈ R we define two matrixes as

∆1(λ)

=



















(

1−λ2/3 1+i
√

3
2

)

e
λ1/3

(√
3+i
2

)

(b−a) (

1−λ2/3 1−i
√

3
2

)

e
λ1/3

(

−
√

3+i
2

)

(b−a)
(1+λ2/3)e−iλ1/3(b−a)

λ1/3



1+3e
λ1/3

(√
3+i
2

)

(b−a)





√
3+i
4

λ1/3



1+3e
λ1/3

(

−
√

3+i
2

)

(b−a)





−
√

3+i
4

−iλ1/3
(

1+3e−iλ1/3(b−a)
)

2

1+λ2/3 1+i
√

3
2

1+λ2/3 1−i
√

3
2

1−λ2/3



















∆2(λ)

=



















(

1+λ2/3 1+i
√

3
2

)

e
λ1/3

(√
3+i
2

)

(b−a) (

1+λ2/3 1−i
√

3
2

)

e
λ1/3

(

−
√

3+i
2

)

(b−a)
(1−λ2/3)e−iλ1/3(b−a)

λ1/3



3+e
λ1/3

(√
3+i
2

)

(b−a)





√
3+i
4

λ1/3



3+e
λ1/3

(

−
√

3+i
2

)

(b−a)





−
√

3+i
4

−iλ1/3
(

3+e−iλ1/3(b−a)
)

2

1−λ2/3 1+i
√

3
2

1−λ2/3 1−i
√

3
2

1+λ2/3.



















5.1. Theorem. LetW and Â3/2WÂ−3/2 be unitary operators in H3 satisfying the condi-
tion ÃW 3

2 (H, (a, b)) ⊂W 3
2 (H, (a, b). The point spectrum of the normal extension LW has

the form λ = λr+ iλi ∈ C if and only if λr ∈ σp(Ã
3⊗E), 0 ∈ σp(W∆1(λi)+∆2(λi)) and

there exists a vector different from the zero vector in the intersection of the eigenspaces
Hλr(Ã

3 ⊗E) and Hλi(ImLW ).

Proof. Suppose that λ = λr + iλi is an eigenvalue of the operator LW . Since LW is a
normal operator, then

u
′′′
λ (t) + Ã

3
u(t) = λuλ(t)

−u′′′
λ (t) + Ã

3
u(t) = λuλ(t)

and from this

u
′′′
λ (t) = iλiuλ(t)

Ã
3
u(t) = λruλ(t)

are obtained. It is clear that

uλ(t) = e
α1(t−a)

x1 + e
α2(t−a)

x2 + e
α3(t−a)

x3 6= 0,

where αk+1 = λ
1/3
i

(
cos(π

6
+ 2kπ

3
) + i sin(π

6
+ 2kπ

3
)
)
, k = 0, 1, 2, xj ∈ H, j = 1, 2, 3 and

uλ(t) ∈ Hλr (Ã⊗E)∩Hλi(ImLW ). Also this eigenvalue provides the boundary conditions
(4.1), so

(W∆1(λi) + ∆2(λi)) {x1, x2, x3} = 0

is found. This implies that 0 ∈ σp(W∆1(λi) + ∆2(λi)).

The converse of the theorem can be easily seen. �

Now we will investigate the point spectrum spectrum of LW in the special cases
W = ±E.
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5.2. Lemma. The function f(λ) := − sin(2λ)− sinλ cosh
(√

3λ
)
+

√
3 cosλ sinh

(√
3λ
)

has only one root in the interval
(
2n−1

2
π, 2n+1

2
π
)
for all n ∈ Z.

Proof. In this case for all n ∈ Z, f
(
2n−1

2
π
)
f
(
2n+1

2
π
)
< 0 and so there exits a root in

the interval
(
2n−1

2
π, 2n+1

2
π
)
. But

f
′′(λ) = 4 sin 2λ− 8 sinλ cosh

(√
3λ
)
= 8 sinλ

(
cosλ− cosh

(√
3λ
))

.

This shows that for any interval
(
2n−1

2
π, 2n+1

2
π
)
, n ∈ Z the function f is convex in a

half interval which is
(
2n−1

2
π, nπ

)
or
(
nπ, 2n+1

2
π
)
, and concave in the other half interval.

This result implies that the root is unique for every interval
(
2n−1

2
π, 2n+1

2
π
)
, n ∈ Z. �

5.3. Corollary. The point spectrum of the normal operator LE has the form

σp (LE)

=
{
λr + iλi : λr ∈ σp

(
Ã

3 ⊗ E
)
, λi is the unique solution of the equation

f(λ) = 0 in every interval
((2n− 1

b− a
π
)3
,
(2n+ 1

b− a
π
)3)

, n ∈ Z

}
.

Proof. If λ = λr + iλi is an arbitrary element in σp (LE), then according to the proof of

theorem 5.2 there exits an eigenvector uλ(t) = eα1(t−a)x1 + eα2(t−a)x2 + eα3(t−a)x3 6= 0,

where αk+1 = λ
1/3
i

(
cos(π

6
+ 2kπ

3
) + i sin(π

6
+ 2kπ

3
)
)
, k = 0, 1, 2, xj ∈ H, j = 1, 2, 3. This

vector satisfies the boundary condition (4.1) with W = E, and so



eα1(b−a) eα2(b−a) eα3(b−a)

α1e
α1(b−a) + α1 α2e

α2(b−a) + α2 α3e
α1(b−a) + α3

1 1 1








x1

x2

x3



 = 0.

This is possible when the matrix determinant is equal to zero. Consequently, compute
this matrix determinant:

− 2
√
3i sin

(
λ
1/3
i (b− a)

)
+ 6i cos

(
1

2
λ
1/3
i (b− a)

)
sinh

(√
3

2
λ
1/3
i (b− a)

)

− 2
√
3i sin

(
1

2
λ
1/3
i (b− a)

)
cosh

(√
3

2
λ
1/3
i (b− a)

)
= 0.

Therefore, by using Theorem 5.1 and Lemma 5.2 the proof is completed. �

5.4. Lemma. The function g(λ) := cos(2λ)−cos λ cosh
(√

3λ
)
+
√
3 sinλ sinh

(√
3λ
)
has

only one root in the interval
(
2n−1

2
π, 2n+1

2
π
)
for all n ∈ Z.

Proof. In this case for all n ∈ Z, g
(
2n−1

2
π
)
g
(
2n+1

2
π
)
< 0 and so there exits a root in

the interval
(
2n−1

2
π, 2n+1

2
π
)
. Also,

g
′(λ) = 4 sinλ

(
cosh

(√
3λ
)
− cosλ

)
.

From this, for any interval
(
2n−1

2
π, 2n+1

2
π
)
, n ∈ Z, λ = nπ is the only local ex-

tremum point of the function g. This means that the root is unique for every interval(
2n−1

2
π, 2n+1

2
π
)
, n ∈ Z. �

5.5. Corollary. The point spectrum of the normal operator L−E has the form

σp (L−E)

=
{
λr + iλi : λr ∈ σp

(
Ã

3 ⊗ E
)
, λi is the unique solution of the equation

g(λ) = 0 in every interval
((2n− 1

b− a
π
)3
,
(2n+ 1

b− a
π
)3)

, n ∈ Z

}
.
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Proof. The proof of corollary is similar to Corollary 5.3 by using to Lemma 5.4. �

5.6. Corollary. If dimH = m < +∞, then each normal extension LW has a pure point
spectrum and their eigenvalue numbers have the same asymptotics

λn(ImLW ) ∼
(

2n+ 1

m(b− a)
π

)3

, as n→ ∞.

Let now the linear operators Â1 and Â2 be defined in H3 as follows

Â1:=















(−iÃ2+iE)e(a−b)Ã −
√

3−i
2

Ã2+iE
√

3+i
2

Ã2+iE

− i
2
Ã(3e(a−b)Ã+E)

√
3+i
4

Ã

(

e
1−i

√
3

2
(a−b)Ã

+3E

)

−
√

3+i
4

Ã

(

e
1+i

√
3

2
(a−b)Ã

+3E

)

iÃ+iE
(√

3−i
2

Ã2+iE
)

e
1−i

√
3

2
(a−b)Ã

(

−
√

3+i
2

Ã2+iE
)

e
1+i

√
3

2
(a−b)Ã















,

Â2:=















(iÃ2+iE)e(a−b)Ã
√

3−i
2

Ã2+iE −
√

3+i
2

Ã2+iE

− i
2
Ã
(

e(a−b)Ã+3E
) √

3−i
4

Ã

(

e
1−i

√
3

2
(a−b)Ã−E

) √
3−i
4

Ã

(

e
1+i

√
3

2
(a−b)Ã

+E

)

−iÃ+iE
(

−
√

3+i
2

Ã2+iE
)

e
1−i

√
3

2
(a−b)Ã

(−
√

3+i
2

Ã2+iE
)

e
1+i

√
3

2
(a−b)Ã















.

5.7. Theorem. If A−1 ∈ S∞(H), 0 ∈ ρ(WÂ1+Â2) and the operator LW is any normal
extension of minimal operator L0, then L

−1
W ∈ S∞

(
L2
)
.

Proof. In this case, because the equation

LW = Ã⊗ EL2(a,b) + iEH ⊗
(
−id

3
W

dt3

)

= Ã⊗ EL2(a,b)

(
E + (iÃ−1 ⊗ EL2(a,b))EH ⊗

(
−id

3
W

dt3

))

is valid, LW has the inverse

L
−1
W = Ã

−1 ⊗ EL2(a,b)

(
E + (iÃ−1 ⊗ EL2(a,b))EH ⊗

(
−id

3
W

dt3

))−1

and this operator is bounded. According to Theorem 3.3 and the domain of LW ,

L
−1
W f(t)

= e
(a−t)Ã

x1 + e
1−i

√
3

2
(t−b)Ã

x2 + e
1+i

√
3

2
(t−b)Ã

x3 +
1

3
A

−2

t∫

a

e
(s−t)A

f(s) ds

+
1− i

√
3

6
A

−2

b∫

t

e
1−i

√
3

2
(t−s)A

f(s) ds+
1 + i

√
3

6
A

−2

b∫

t

e
1+i

√
3

2
(t−s)A

f(s) ds,
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where

(
WÂ1 + Â2

)



x1

x2

x3



 =
(
WÂ3 + Â4

)





b∫

a

e(s−b)Af(s) ds

b∫

a

e
1−i

√
3

2
(a−s)Af(s) ds

b∫

a

e
1+i

√
3

2
(a−s)Af(s) ds





,

Â3 :=





i
3

(
A−2 − E

)
0 0

i
3
A−1 −

√
3+i

12
A−1

√
3+i
12

A−1

0 −
√

3+i
6

A−2 + i
3
E

√
3−i
6
A−2 + i

3
E



 ,

Â4 :=




− i

3

(
A−2 + E

)
0 0

i
6
A−1 −

√
3+i
4
A−1

√
3+i
4
A−1

0 −
√
3+i
6
A−2 + i

3
E

√
3−i
6

A−2 − i
3
E



 .

Because of A−1 ∈ S∞(H) the operators
t∫

a

e(s−t)Af(s) ds,
b∫

t

e
1−i

√
3

2
(t−s)Af(s) ds,

b∫

t

e
1+i

√
3

2
(t−s)Af(s) ds and

b∫

a

e(s−b)Af(s) ds are compact [8]. Moreover, 0 ∈ ρ(WÂ1+ Â2)

implies that there exits a continuous inverse of (WÂ1 + Â2) and so

L
−1
W f(t)

=
(
e(a−t)Ã e

1−i
√

3
2

(t−b)Ã e
1+i

√
3

2
(t−b)Ã

)
∆(W )





b∫

a

e(s−b)Af(s) ds

b∫

a

e
1−i

√
3

2
(a−s)Af(s) ds

b∫

a

e
1+i

√
3

2
(a−s)Af(s) ds





+
1

3
A

−2

t∫

a

e
(s−t)A

f(s) ds+
1− i

√
3

6
A

−2

b∫

t

e
1−i

√
3

2
(t−s)A

f(s) ds

+
1 + i

√
3

6
A

−2

b∫

t

e
1+i

√
3

2
(t−s)A

f(s) ds.

is a compact operator in L2(H, (a, b)), where ∆(W ) :=
(
WÂ1 + Â2

)−1(
WÂ3 + Â4

)
. �

5.8. Corollary. If A−1 ∈ S∞(H), 0 ∈ ρ(WÂ1 + Â2), LW is any normal operator and
λ ∈ ρ(LW ), then Rλ(LW ) ∈ S∞

(
L2
)
. �

5.9. Theorem. Let A−1 be a compact operator in H and 0 ∈ ρ(Â1 ± Â2). Then the
relation

σ (L±E) = σp (ReL±E) + iσp (Im (L±E))

is satisfied.

Proof. Under the assumptions of the theorem there exit compact inverses of LE and L−E

from Theorem 5.7. Also, by using corollaries 5.3 and 5.5, the relation is correct. �
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5.10. Theorem. If A−1 ∈ S∞(H), 0 ∈ ρ(Â1 ± Â2) and λn (A) ∼ cnα, n → +∞, 0 <
c, α < +∞, then the asymptotic behavior of L±E has the form

|λn (L±E)| ∼ βn
3α

3+α , β > 0, n→ +∞.

Proof. Firstly, assume that λm (A) ∼ cmα, m → +∞, 0 < c, α < +∞. For sufficiently
large m we have

(
c
2
m

2α +

(
2n− 1

b− a
π

)6
)1/2

≤ |λ (L±E)| ≤
(
c
2
m

2α +

(
2n+ 1

b− a
π

)6
)1/2

,

n ∈ Z, m ∈ N.

from Corollary 5.3 and Corollary 5.5. Hence for sufficiently large m the relation

|λ (L±E)| ∼
(
c
2
m

2α + d
6 (2n+ 1)6

)1/2
, n ∈ Z, m ∈ N, d =

π

b− a

is true. Now we define

N (λ;T ) := card {n : |λn(T )| 6 |λ|} ,
that is,

N (λ;T ) :=
∑

06|λn(T )|6|λ|
1, λ ∈ C,

which gives the number of eigenvalues of a linear closed operator T in any Hilbert space
with the modules of the eigenvalues less than or equal to |λ|. This function takes values in
the set of non-negative integers, and in the case where T is unbounded it is non-decreasing
and tends to +∞ as |λ| → ∞.

In this case it is easy see that

N (λ,L±E) = 2N+ (λ,L±E)−N (λ,A) ,

where N+ (λ,L±E) :=
∑

|λ(L±E)|≤λ

Imλ(L±E)≥0

1, λ > 0.

Moreover, using the methods established in [5] or [6] it can be obtained that

|λn (L±E)| ∼ βn
3α

3+α , β > 0, n→ +∞. �

5.11. Theorem. Suppose that A∗ = A ≥ E, A−1 ∈ S∞ (H), ∆(W )−∆(E) ∈ S∞
(
H3
)

and sn (∆(W )−∆(E)) = O
(
n
− 3α

3+α

)
, n→ +∞. Then for an eigenvalue of the operator

L−1
W the relation

∣∣λn

(
L

−1
W

)∣∣ = O
(
n
− 3α

3+α

)
, n→ +∞

is true.

Proof. From the proof of Theorem 5.7

(L−1
W − L

−1
E )f(t) =

(
e(a−t)Ã e

1−i
√

3
2

(t−b)Ã e
1+i

√
3

2
(t−b)Ã

)

× (∆(W )−∆(E))





b∫

a

e(s−b)Af(s) ds

b∫

a

e
1−i

√
3

2
(a−s)Af(s) ds

b∫

a

e
1+i

√
3

2
(a−s)Af(s) ds




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is valid. This implies that for all n ∈ N the equality

sn
(
L

−1
W − L

−1
E

)
≤ d sn (∆ (W )) , d > 0

holds. Because of this and a known result for the numbers s [6],

s2n−1

(
L

−1
W

)
= s2n−1

(
L

−1
W − L

−1
E + L

−1
E

)

≤ sn
(
L

−1
W − L

−1
E

)
+ sn

(
L

−1
E

)

≤ d sn (∆ (W )) + sn
(
L

−1
E

)
, n ≥ 1

is obtained. Also λn (A) ∼ cnα, n → +∞, 0 < c, α < +∞, sn (∆(W )−∆(E)) =

O
(
n
− 3α

3+α

)
, n → +∞; and from the theorem sn

(
L−1

E

)
∼ βn

− 3α
3+α , n → +∞, β > 0, so

that

0 ≤ s2n−1

(
L−1

W

)

n
− 3α

3+α

≤ d
sn (∆ (W ))

n
− 3α

3+α

+
sn
(
L−1

E

)

n
− 3α

3+α

≤ h, h > 0, n→ +∞

i.e.,

s2n−1

(
L

−1
W

)
= O

(
n
− 3α

3+α

)
, n→ +∞.

In the same way, the relation

s2n
(
L

−1
W

)
= O

(
n
− 3α

3+α

)
, n→ +∞

is found. On the other hand the relations

s2n−1

(
L−1

W

)

(2n− 1)−
3α

3+α

=
s2n−1

(
L−1

W

)

n
− 3α

3+α

(
2n− 1

n

) 3α
3+α

,

s2n
(
L−1

W

)

(2n)−
3α

3+α

=
s2n

(
L−1

W

)

n
− 3α

3+α

(
2n

n

) 3α
3+α

,

are true. These may be correlated as follows:

s2n−1

(
L

−1
W

)
= O

(
(2n− 1)−

3α
3+α

)
, n→ +∞,

s2n
(
L

−1
W

)
= O

(
(2n)−

3α
3+α

)
, n→ +∞.

Since L−1
W is a normal operator,

∣∣λn

(
L

−1
W

)∣∣ = sn
(
L

−1
W

)
= O

(
n
− 3α

3+α

)
, n→ +∞

is valid. �

5.12. Example. The operator Nu (t, x) := ∂3u(t,x)

∂t3
− ∂6u(t,x)

∂x6 with the following bound-
ary conditions

u (a, x) = u (b, x) = 0, c ≤ x ≤ d,

∂u (a, x)

∂t
+
∂u (b, x)

∂t
= 0, c ≤ x ≤ d,

u (t, c) = u (t, d) = 0, a ≤ t ≤ b,

∂2u (t, c)

∂x2
=
∂2u (t, d)

∂x2
= 0, a ≤ t ≤ b,

∂4u (t, c)

∂x4
=
∂4u (t, d)

∂x4
= 0, a ≤ t ≤ b
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is an extension of the minimal operator L0 generated by the differential expression

l(·) = ∂3

∂t3
− ∂6

∂x6

in the Hilbert space L2((a, b) × (c, d)), a < b, c < d, a, b, c, d ∈ R. In this case, the
extension N can be written in the form

Nu(t, x) =
∂3u(t, x)

∂t3
+ A

3
u(t, x),

u (a, x) = u (b, x) = 0, c ≤ x ≤ d,

∂u(a, x)

∂t
+
∂u(b, x)

∂t
= 0, c ≤ x ≤ d,

in L2(H, (a, b)), where H = L2(c, d), A :W 2
2 (c, d) ∩

0

W 1
2 (c, d) ⊂ L2(c, d) → L2(c, d),

Au(t, x) = −∂
2u (t, x)

∂x2
,

u (t, c) = u (t, d) = 0, a ≤ t ≤ b.

On the other hand by the Theorem 4.1 (W = E) the extension N is a normal operator.
It is know that A = A∗ ≥ 2E, A−1 ∈ S∞(L2(c, d)) and that the eigenvalues of A have
the following asymptotic at infinity [5]

λn (A) ∼ π2n2

(d− c)2
, n→ +∞.

Hence, according to Theorem 5.10 the asymptotic behavior of the eigenvalues of the
operator N is obtained as

|λn (N)| ∼ αn
6
5 , α > 0, n→ +∞.
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