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Abstract

The aim of this work is to define a soft topology and an L-fuzzy soft
topology with respect to a parameter set E using a new approach and
to study the concept of soft compactness and L-fuzzy soft compactness.
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1. Introduction

In 1999, Russian researcher Molodtsov [13] introduced the concept of soft set theory
and started to develop the basics of the corresponding theory as a new approach for
modeling uncertainties. Editing the original definition, by a soft set over X we mean a
triple (M,E,X), where E is a set of parameters and the mappingM : E → 2X is referred
to as a soft structure on the set X. Soft set theory has a rich potential for applications in
several directions. Maji et al.[11] presented some new definitions on soft sets. Pei et al.
[17] discussed the relationship between soft sets and information systems. They showed
that soft sets are a class of special information systems.

In 2001, Maji et al. [10] expanded the soft set to fuzzy soft set theory. To continue the
investigation on fuzzy soft sets, Ahmad and Kharal [1] presented some more properties
of fuzzy soft sets and introduced the notion of a mapping on the class of fuzzy soft sets.
Yang et al.[22] combined the interval-valued fuzzy set and soft set models and introduced
the concept of interval-valued fuzzy soft set. Majumdar and Samanta [12] introduced the
concept of generalized fuzzy soft sets.

Algebraic structures of fuzzy soft sets and soft sets have been studied by many authors.
Aktaş and Çağman [2] gave the notion of soft groups. In 2009, Aygünoğlu and Aygün
[3] introduced fuzzy soft groups by using a t-norm. Feng [8] defined soft semirings and
several related concepts. Varol et al. [14] studied fuzzy soft rings.
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Topological structures of soft set and fuzzy soft set have been studied by some authors
in recent years. Shabir and Naz [20] gave the definition of soft topological spaces and
studied soft neighborhoods of a point, soft separation axioms and their basic properties.
At the same time, Aygünoğlu and Aygün [4] introduced soft topological spaces and
soft continuity of soft mappings. They also investigated initial soft topologies and soft
compactness. Fuzzy soft topology was studied by Varol and Aygün [15]. They showed
that a fuzzy soft topological space gives a parametrized family of fuzzy topological spaces
and studied fuzzy soft continuity. As a different approach to soft topology Varol et al.
[16] interpreted categories related to categories of topological spaces as special categories
of soft sets.

In the present paper we consider the soft interpretation of topological spaces. Firstly
we give some basic concepts related to soft sets and L-fuzzy soft sets. We define soft
topology and L-fuzzy soft topology, which are mappings from the parameter set E to

22
X

and from E to LL
X

respectively (where L is a fuzzy lattice). With respect to this
idea, the soft topology T is a soft set on 2X and we can say that this set is open according
to the parameter set E. The L-fuzzy soft topology T is an L-fuzzy soft set on the family
of all L-fuzzy sets on X. Finally we present the concepts of soft compactness and L-
fuzzy soft compactness for soft topological spaces and L-fuzzy soft topological spaces,
respectively.

2. Preliminaries

Throughout this paper let X be a nonempty set refereed to as the universe and let E
be the set of all convenient parameters for the universe X.

2.1. Definition. [13] A pair (M,E) is called a soft set over X ifM is a mapping from E

into the set of all subsets of the set X, i.e., M : E −→ 2X , where 2X is the power set of
X. In what follows we denote a soft set (M,E) over X as a triple (M,E,X). Sometimes
the mapping M : E → 2X is referred to as a soft structure on the set X.

A soft set is a parameterized family of subsets of the set X. For e ∈ E, M(e) can be
considered as the set of e-approximate elements of the soft set (M,E). According to this
manner, we can view a soft set (M,E,X) as a consisting of collection of approximations:
(M,E) = {M(e) : e ∈ E}.

2.2. Example. Let a soft set (M,E,X) describe the attractiveness of the skirts with
respect to the parameters, which Mrs. A is going to wear. Suppose that there are four
skirts in the universeX = {x1, x2, x3, x4} under consideration and E = {e1 = cheap, e2 =
expensive, e3 = colorful} is the set of parameters. To define a soft set means to point
out cheap skirts, expensive skirts and colorful skirts.

Suppose that M(e1) = {x1, x2}, M(e2) = {x3, x4}, M(e3) = {x1, x3, x4}. Then the
family {M(ei) : i = 1, 2, 3} of 2X is a soft set (M,E,X).

2.3. Definition. Given two soft structures M1 : E → 2X , M2 : E → 2X over the set X
we say that M1 weaker than M2 if M1(e) ⊆M2(e) for every e ∈ E. We write in this case
M1 �M2.

2.4. Definition. For two soft sets (M,E,X) and (N,E,X), we say that (M,E,X) is a
soft subset of (N,E,X) and write (M,E,X) ⊑ (N,E,X) if for each e ∈ E, M(e) ⊆ N(e)
[6].

(M,E,X) is called a soft super set of (N,E,X) if (N,E,X) is a soft subset of
(M,E,X), and we write (M,E,X) ⊒ (N,E,X).
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2.5. Definition. [6] Two soft sets (M,E,X) and (N,E,X) are said to be equal if
(M,E,X) ⊑ (N,E,X) and (N,E,X) ⊑ (M,E,X).

2.6. Definition. [6] The union of two soft sets (M,E,X) and (N,E,X) is the soft set
(K,E,X), where K(e) =M(e) ∪N(e), ∀e ∈ E.

We write (M,E,X) ⊔ (N,E,X) = (K,E,X).

2.7. Definition. [6] The intersection of two soft sets (M,E,X) and (N,E,X) is the
soft set (K,E,X), where K(e) =M(e) ∩N(e), ∀e ∈ E.

We write (M,E,X) ⊓ (N,E,X) = (K,E,X).

2.8. Definition. [6] The complement of a soft set (M,E,X) is denoted by (M,E,X)c,
where Mc : E → 2X is the mapping given by Mc(e) = X \M(e),∀e ∈ E.

2.9. Proposition. [20] Let (M,E,X) and (N,E,X) be soft sets. Then we have the
following:

(1) ((M,E,X) ⊔ (N,E,X))c = (M,E,X)c ⊓ (N,E,X)c,
(2) ((M,E,X) ⊓ (N,E,X))c = (M,E,X)c ⊔ (N,E,X)c. �

2.10. Definition. [6] Let (M,E,X) be a soft set. If M(e) = ∅, ∀e ∈ E, then (M,E,X)

is called the null soft set and is denoted by Φ̃.

2.11. Definition. [6] Let (M,E,X) be a soft set. IfM(e) = X, ∀e ∈ E, then (M,E,X)

is called the universal soft set and is denoted by Ẽ.

2.12. Theorem. [16] [Lattice of soft structures]
Let M be the set of all soft structures on (E,X) equipped with the partial order �.

Then (M,�) is a complete lattice where the supremum and the infimum of a family
{Mi | i ∈ I} are defined respectively by

∨
i∈I

Mi(e) =
⋃
i∈I

Mi(e) and
∧
i∈I

Mi(e) =⋂
i∈I

Mi(e). In particular the top and the bottom elements in the lattice M are given
respectively by M⊤(e) = X ∀e ∈ E and M⊥(e) = ∅ ∀e ∈ E. �

To consider soft sets as a category we have to define morphisms between two soft sets.

2.13. Definition. [16] Let ψ : E → F and ϕ : X → Y be two functions. Then the
pair (ψ,ϕ) is called a soft mapping from (M,E,X) to (N,F, Y ), denoted as (ψ,ϕ) :
(M,E,X) → (N,F, Y ), whenever ϕ→ ◦M ≥ N ◦ ψ:

E

ψ

��

M // 2X

ϕ→

��

F
N

// 2Y

where ϕ→ : 2X → 2Y is the forward powerset operator (see e.g. [19]), that is ϕ→(A) :=
ϕ(A) for all A ∈ 2X .

Since the componentwise composition of two soft functions (ψ,ϕ) : (M,E,X) →
(N,F, Y ) and (ψ′, ϕ′) : (N,F, Y ) → (P,G,Z) is obviously a soft function

(ψ′ ◦ ψ,ϕ′ ◦ ϕ) : (M,E,X) → (P,G,Z),

and the pair of identities (idE , idX) : (M,E,X) → (M,E,X) is the identical morphism,
soft sets and soft mappings form a category which will be denoted by SOFSET.

Let (M,E,X) and (N, F, Y ) be two soft sets and (ψ,ϕ) a soft function from (M,E,X)
to (N, F, Y ). The image of (M,E,X) under the soft function (ψ,ϕ) is defined by
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(ψ,ϕ)(M,E,X) := (ϕ(M), ψ(E), Y ), where ψ(E) is the image of E in the category
SET and ϕ(M) is defined by the Zadeh extension principle, that is

ϕ(M)(f) =
⋃

ψ(e)=f

ϕ(M(e)), ∀ f ∈ F,

see e.g. [4].

The pre-image of (N,F, Y ) under the soft function (ψ,ϕ) is defined by

(ψ,ϕ)−1(N,F, Y ) := (ϕ← ◦N ◦ ψ,ψ−1(F ), X),

where ψ−1(F ) is the preimage of F in the category of sets and the mapping ϕ← is the
backward operator induced by the mapping ϕ : X → Y, (see e.g. [19]), that is

(ϕ← ◦N ◦ ψ)(e) = ϕ
←(N(ψ(e))), ∀e ∈ ψ

−1(F ),

cf e.g. [4].

2.14. Definition. [16] For two soft sets (M,E,X) and (N,F, Y ), we say that (M,E,X)
is a soft subset of (N,F, Y ), and write (M,E,X) ⊑ (N,F, Y ), if

(i) X ⊆ Y ,
(ii) E ⊆ F and
(iii) For each e ∈ E, M(e) = N(e) ∩X.

Two soft sets (M,E,X) and (N,F, Y ) are said to be equal if (M,E,X) ⊑ (N,F, Y ) and
(N,F, Y ) ⊑ (M,E,X).

2.15. Corollary. [16] From Definition 2.14 and Theorem 2.12 it is clear that the soft
subset (M,E,X) of a soft set (N,F, Y ) can be characterized as the initial soft structure
M : E → 2X for the mapping (ψ,ϕ) : (E,X) → (N, F, Y ) determined by the pair of
inclusion functions ϕ : X → Y and ψ : E → F in the category SOFSET. Hence
a soft subset (M,E,X) of a soft set (N, F, Y ) is indeed its subobject in the category
SOFSET. �

2.16. Definition. [16] Given two soft sets (M,E,X) and (N,F, Y ) we consider the triple
(M ×N,E × F,X × Y ) where the mapping M ×N : E × F → 2X×Y is defined by

(M ×N)(e, f) =M(e)×N(f) ∈ 2X × 2Y ⊆ 2X×Y .

One can easily see that the pairs of projections pE : E × F → E, qX : X × Y → X and
pF : E × F → F , qY : X × Y → Y determine morphisms

(pE, qX) : (M ×N,E × F,X × Y ) → (M,E,X)

and

(pF , qY ) : (M ×N,E × F,X × Y ) → (N,F, Y ).

Further, let P be the family of all soft structures P on (E × F,X × Y ) for which

(pE, qX) : (P,E × F,X × Y ) → (M,E,X)

and

(pF , qY ) : (P,E × F,X × Y ) → (N,F, Y )

are morphisms in the category SOFSET and let P0 :=
∧

P. Then (P0, E×F,X ×Y ) is
the product of the soft sets (M,E,X) and (N,F, Y ) in the category SOFSET.
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3. Soft topological spaces and compactness

3.1. Soft Topological Spaces. In this subsection, by a soft topology we mean a soft
set on 2X .

3.1. Definition. A soft topology on a set X with respect to parameters E is a mapping

T : E → 22
X

such that for all e ∈ E, T(e) = Te ∈ 22
X

is a classical topology on X.

The soft topology is denoted by T(X,E). The triple (X,T, E) is called a soft topological
space.

3.2. Example. (1) Let E = {∗} and let (T, {∗}) be a soft set on 2X , i.e., T : {∗} → 22
X

.

If T(∗) ⊂ 22
X

is a topology on X, then T is a soft topology on X with respect to {∗}.

(2) Let E = {0, 1} and let (T, {0, 1}) be a soft set on 2X , i.e., T : {0, 1} → 22
X

. If
T(0) and T(1) are topologies on X, then T is a soft topology on X with respect to {0, 1}.

(3) Let E = [0, 1] = I and let (T, I) be a soft set on 2X , i.e., T : I → 22
X

. If T(α),
∀α ∈ I is a topology on X, then T is a soft topology on X with respect to I .

3.3. Definition. Let (X,T, E) be a soft topological spaces and let (M,E,X) be a soft
set.

(M,E,X) is called an open soft set if for all e ∈ E, M(e) ∈ T(e).

(M,E,X) is called a closed soft set if for all e ∈ E, X\M(e) ∈ T(e).

3.4. Definition. A soft topology T(X,E) is called coarser than a soft topology T
∗(X,E)

if for all e ∈ E, T(e) ⊂ T
∗(e).

3.5. Definition. Let (X,T, E) be a soft topological space and (M,E,X) a soft set.

(1) The closure of (M,E,X) is a soft set cl(M,E,X) with the same of parame-
ters, that is cl(M,E,X) = (clM,E,X), where clM : E → 2X and clM(e) =
cl(M(e)) = ∩{K ⊂ X : K is closed in T(e) and M(e) ⊂ K}.

Clearly, cl(M,E,X) is the smallest closed soft set which includes (M,E,X).
(2) The interior of (M,E,X) is int(M,E,X) = (intM,E,X) where intM : E → 2X

and intM(e) = int(M(e)) = ∪{G ⊂ X : G is open in T(e) and G ⊂M(e)}.

Clearly, int(M,E,X) is the biggest open soft set which is a subset of (M,E,X).

The following are results of (1) and (2):

cl(M,E,X) is a closed soft set and int(M,E,X) is an open soft set on X, and

(1) (M,E,X) is closed soft set iff cl(M,E,X) = (M,E,X),
(2) (M,E,X) is open soft set iff int(M,E,X) = (M,E,X).

3.6. Theorem. Let (X,T, E) be a soft topological space and (M,E,X), (N,E,X) two
soft sets. Then the following hold:

(1) intΦ̃ = Φ̃, intẼ = Ẽ and clΦ̃ = Φ̃, clẼ = Ẽ;
(2) int(M,E,X) ⊑ (M,E,X) ⊑ cl(M,E,X);
(3) (M,E,X) ⊑ (N,E,X) implies int(M,E,X) ⊑ int(N,E,X) and cl(M,E,X) ⊑

cl(N,E,X);
(4) int(int(M,E,X)) = int(M,E,X) and cl(cl(M,E,X)) = cl(M,E,X);
(5) int((M,E,X) ⊓ (N,E,X)) = int(M,E,X) ⊓ int(N,E,X) and

int(M,E,X) ⊔ int(N,E,X) ⊑ int((M,E,X) ⊔ (N,E,X));
(6) cl((M,E,X) ⊔ (N,E,X)) = cl(M,E,X) ⊔ cl(N,E,X) and

cl((M,E,X) ⊓ (N,E,X)) ⊑ cl(M,E,X) ⊓ cl(N,E,X);
(7) cl((M,E,X)c) = (int(M,E,X))c and int((M,E,X)c) = (cl(M,E,X))c.
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Proof. Straightforward. �

3.7. Definition. Let (X,T, E) be a soft topological space and E0 ⊂ E, X0 ⊂ X.

Consider the mapping T0 : E0 → 22
X0

. The family T0(e
′) = {X0 ∩ T(e) : T(e) ⊂ 2X} for

each e′ ∈ E0, is a topology on X0. T0(X0, Eo) is called the soft subspace topology.

(T0(e
′) is a subspace of T(e),∀e ∈ E).

3.8. Definition. Let (X,T, E) and (Y,T∗, F ) be two soft topological spaces. (ψ,ϕ) :
(X,T, E) → (Y,T∗, F ) is called soft continuous if for all e ∈ E and f = ψ(e) ∈ F ,
ϕ : (X,T(e)) → (Y,T∗(f)) is continuous.

(Here, T(e) and T
∗(f) are topologies on X and Y , respectively).

(ψ,ϕ) : (X,T, E) → (Y,T∗, F ) is soft continuous iff (ϕ→)→(T(e)) > T
∗(ψ(e)):

E

ψ

��

T
// 22

X

(ϕ→)→

��

F
T
∗

// 22
Y

3.9. Proposition. Let (X,T1, E1), (Y,T2, E2) and (Z,T3, E3) be soft topological spaces.
If (ψ1, ϕ1) : (X,T1, E1) → (Y,T2, E2) and (ψ2, ϕ2) : (Y,T2, E2) → (Z,T3, E3) are soft
continuous functions, then the composition (ψ2, ϕ2) ◦ (ψ1, ϕ1) = (ψ2 ◦ψ1, ϕ2 ◦ϕ1) is also
soft continuous.

Proof. Since (ψ1, ϕ1) is soft continuous, for each e1 ∈ E1 and e2 = ψ(e1) ∈ E2, ϕ1 :
(X,T1(e1)) → (Y,T2(e2)) is continuous.

Since (ψ2, ϕ2) is soft continuous, for each e2 ∈ E2 and e3 = ψ(e2) ∈ E3, ϕ2 :
(Y,T2(e2)) → (Z, T3(e3)) is continuous.

Hence, (ϕ2 ◦ ϕ1) is continuous, then (ψ2, ϕ2) ◦ (ψ1, ϕ1) is soft continuous. �

3.10. Theorem. The following are equivalent to each other:

(1) (ψ,ϕ) : (X,T, E) → (Y,T∗, F ) is soft continuous.
(2) (ψ,ϕ)−1 (int(N, F, Y )) ⊑ int

(
(ψ,ϕ)−1(N,F, Y, )

)
for each soft set (N,F, Y ).

(3) cl
(
(ψ,ϕ)−1(N,F, Y )

)
⊑ (ψ,ϕ)−1 (cl(N,F, Y )) for each soft set (N,F, Y ).

Proof. Straightforward. �

3.11. Definition. Let (X,T, E) be a soft topological space and (B, E) a soft set on 2X .
If for each e ∈ E a subcollection B(e) of T(e) is a base for T(e), then B(X,E) is called a
soft base for T(X,E).

3.12. Definition. Let (X,T, E) be a soft topological space and (S, E) a soft set on 2X .
If for each e ∈ E a subcollection S(e) of T(e) is a subbase for T(e), then S(X,E) is called
soft subbase for T(X,E).

3.13. Definition. [Construction of the product]
Let (X,T, E) and (Y,T∗, F ) be soft topological spaces. Consider the triple (X × Y,T ×

T
∗, E × F ) where the mapping T × T

∗ : E × F → 22
X×Y

is defined by

(T × T
∗)(e, f) = T(e)× T

∗(f) ∈ 22
X

× 22
Y

⊆ 22
X
×2Y ⊆ 22

X×Y

.

Here T(e) and T
∗(f) are classical topologies on X and Y , respectively.
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The pairs of projections pE : E × F → E, (q→X )→ : 22
X×Y

→ 22
X

and pF : E × F →

F, (q→Y )→ : 22
X×Y

→ 22
Y

determine morphisms

(pE, (q
→

X )→) : (X × Y,T × T
∗
, E × F ) → (X,T, E)

and

(pF , (q
→

Y )→) : (X × Y,T × T
∗
, E × F ) → (Y,T∗, F ).

3.14. Definition. Let {(Xi,Ti, Ei)}i∈J be a family of soft topological spaces. Then the
initial soft topology on X(=

∏
i∈J

Xi) generated by the family {(pEi
, qXi

)}i∈J is called
the product soft topology on X.

3.2. Soft compactness.

3.15. Definition. Let (X,T, E) be a soft topological space. If for all e ∈ E, (X,T(e)) is
compact (nearly compact, almost compact), then (X,T, E) is called a soft compact (soft
nearly compact, soft almost compact) space.

It is easy to see that we have the following assertion:

soft compactness =⇒ soft nearly compactness =⇒ soft almost compactness

But the reserve assertion does not hold always.

3.16. Example. Let E = {∗} and let (X,T, E) be a soft topological space as, given in
Example 3.2 (1). Here T(∗) is a topology on X and (X,T(∗)) is a topological space. It
is well known that in classical topological spaces the reverse assertion does not hold in
general.

3.17. Definition. Let (X,T, E) be a soft topological space and (M,E,X) a soft set.
(M,E,X) is called a soft compact set if for all e ∈ E, M(e) is a compact set on X.

3.18. Theorem. Let (X,T, E), (Y,T∗, F ) be two soft topological spaces and (ψ,ϕ) :
(X,T, E) → (Y,T∗, F ) a soft continuous and onto mapping. If (X,T, E) is soft compact
(soft nearly compact, soft almost compact), then (Y,T∗, F ) is soft compact (soft nearly
compact, soft almost compact).

Proof. Let (X,T, E) be soft compact space. Then for all e ∈ E, (X,T(e)) is compact.

Since (ψ,ϕ) is soft continuous, for all ψ(e) = f , we have ϕ : (X,T(e)) → (Y,T∗(f)) is
continuous. Hence, (Y,T∗(f)) is compact. Consequently, (Y,T∗, F ) is soft compact. �

3.19. Theorem. Let (X,T, E) be a soft compact space and (M,E,X) a closed soft set,
then (M,E,X) is a soft compact set.

Proof. Straightforward. �

3.20. Theorem. Let {(Xi,Ti, Ei)}i∈J be a family of soft topological spaces. Then
{(Xi,Ti, Ei)}i∈J is soft compact space if and only if the product (

∏
i∈J Xi,

∏
i∈J Ti,∏

i∈J
Ei) of these soft topological spaces is a soft compact space.

Proof. Let S(X,E) be a subbase of the product soft topology, i.e., for each e ∈ E,
S(e) ⊂ T(e) is subbase for T(e). By the Alexander Subbase Theorem, we know that
every cover of X =

∏
i∈J

Xi from S(e) has a finite subcover.

Conversely, since the projection mappings (pEi
, (q→Xi

)→)i : (
∏
i∈J Xi,

∏
i∈J Ti,∏

i∈J
Ei) → (Xi,Ti, Ei) are soft continuous and by Theorem 3.18 we obtain that (Xi,

Ti, Ei) is soft compact. �
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4. L-fuzzy soft topological spaces and compactness

4.1. L-fuzzy soft topological spaces. In this subsection, L = L(≤,∨,∧, ′) denotes
a fuzzy lattice, i.e., a completely distributive complete lattice with an order-reversing
involution ′. 1X and 0X denotes the greatest and the least elements of L, respectively.
We denote by LX the set of all L-fuzzy sets on X.

4.1. Definition. [16] A triple (m,E,X) is called an L-fuzzy soft set over X if m is a
mapping from E into LX , i.e., m : E → LX . That is, for each e ∈ E, m(e) = me : E → L

is an L-fuzzy set on X. Sometimes the mapping m : E → LX is referred to as a fuzzy
soft structure over the pair (E,X).

If we take L = I = [0, 1] and A ⊂ E, then (m,A,X) is an I-fuzzy soft set on X as
defined by Maji et.al. [10].

4.2. Definition. [16] Given two fuzzy soft structures m1,m2 over the pair (E,X) we
say that m1 is weaker than m2 if m1(e) 6 m2(e) for every e ∈ E. We write in this case
m1 � m2.

4.3. Definition. Let (m,E,X) and (n,E,X) be L-fuzzy soft sets. Then (m,E,X) is
called an L-fuzzy soft subset of (n,E,X), and we write (m,E,X) ⊑ (n, E,X), if for each
e ∈ E, me 6 ne.

4.4. Definition. Two L-fuzzy soft sets (m,E,X) and (n,E,X) are called equal if
(m,E,X) ⊑ (n,E,X) and (n,E,X) ⊑ (m,E,X).

4.5. Definition. The union of two L-fuzzy soft sets (m,E,X) and (n,E,X) is the
L-fuzzy soft set (k,E,X), where ke = me ∨ ne, ∀e ∈ E.

4.6. Definition. The intersection of two L-fuzzy soft sets (m,E,X) and (n,E,X) is the
L-fuzzy soft set (k,E,X), where ke = me ∧ ne, ∀e ∈ E.

4.7. Definition. The complement of an L-fuzzy soft set (m,E,X) is denoted by (m,E,X)c,
where mc : E → LX is a mapping given by mc

e = (me)
′, ∀e ∈ E.

4.8. Definition. Let (m,E,X) be an L-fuzzy soft set. If me = 0X , ∀e ∈ E, then

(m,E,X) is called the null L-fuzzy soft set and is denoted by 0̃E .

4.9. Definition. Let (m,E,X) be an L-fuzzy soft set. If me = 1X , ∀e ∈ E, then

(m,E,X) is called the universal L-fuzzy soft set and is denoted by 1̃E .

4.10. Theorem. [16] [Lattice of fuzzy soft structures]
Let M be the set of all fuzzy soft structures on (E,X) equipped with the partial order �.

Then (M,�) is a complete lattice where the supremum, the infimum and order-reversing
involution of a family {mi | i ∈ I} are defined respectively by

∨
i∈Imi(e),

∧
i∈I mi(e) and

m′i(e) = (mi(e))
′. In particular the top and the bottom elements in the lattice M are

given respectively by M⊤(e) = 1X ∀e ∈ E and M⊥(e) = 0X ∀ e ∈ E.

The definition of fuzzy soft mapping is similar to the definition of a soft mapping.

Let (m,E,X) and (n, F, Y ) be two L-fuzzy soft sets and let (ψ,ϕ) be a fuzzy soft
function from (m,E,X) to (n, F, Y ).

(1) The image of (m,E,X) under the fuzzy soft function (ψ,ϕ) is the L-fuzzy soft
set over Y defined by (ψ,ϕ)(m,E,X) = (ϕ(m), ψ(E), Y ), where ψ(E) is the
image of E in the category SET and

ϕ(m)k(y) =

{∨
ϕ(x)=y

∨
ψ(e)=kme(x), if ϕ(x) = y;

0, otherwise.
∀ k ∈ ψ(E), ∀ y ∈ Y.
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(2) The pre-image of (n, F, Y ) under the fuzzy soft function (ψ,ϕ) is the L-fuzzy soft
set over X defined by (ψ,ϕ)−1(n, F, Y ) = (ϕ−1(n), ψ−1(F ), X), where ψ−1(F )
is the pre-image of F in the category of sets and

ϕ
−1(n)f (x) = nψ(f)(ϕ(x)), ∀ f ∈ ψ

−1(F ), ∀ x ∈ X.

[16] (for the case L = I, see [3])

If ϕ and ψ are injective (surjective), then (ψ,ϕ) is said to be injective (surjective).

If (ψ1, ϕ1) is a fuzzy soft mapping from X to Y and (ψ2, ϕ2) is a fuzzy soft mapping
from Y to Z then the composition of (ψ1, ϕ1) and (ψ2, ϕ2) is denoted by [(ψ2, ϕ2)◦(ψ1, ϕ1)]
and defined by

[(ψ2, ϕ2) ◦ (ψ1, ϕ1)] := (ψ2 ◦ ψ1, ϕ2 ◦ ϕ1).

4.11. Definition. An L-soft topology on a set X with respect to the parameters E is

a mapping T : E → 2L
X

such that for all e ∈ E, T(e) ⊂ 2L
X

, T(e) : LX → 2, is an
L-topology on X.

That is, for each e ∈ E, T(e) is an L-topology in the sense of Chang – Goguen ([7],
[9]).

4.12. Definition. An L-fuzzifying soft topology on a set X with respect to the param-

eters E is a mapping T : E → L2X such that for all e ∈ E, T(e) ⊂ L2X , τ (e) : 2X → L,
is an L-fuzzifying topology on X.

That is, for each e ∈ E, T(e) is an L-fuzzifying topology in Ying’s sense [23].

4.13. Definition. An L-fuzzy soft topology on a set X with respect to the parameters

E is a mapping T : E → LL
X

such that for all e ∈ E, T(e) ⊂ LL
X

, T(e) : LX → L, is an
L-fuzzy topology on X.

That is, for each e ∈ E, T(e) = Te is an L-fuzzy topology in Shostak’s sense [21].

The L-fuzzy soft topology is denoted by T(X,E). The triple (X,T, E) is called an
L-fuzzy soft topological space.

Let (X,T, E) be an L-fuzzy soft topological space and (m,E,X) an L-fuzzy soft set.
Te(m(e)) is called the degree of openness of the L-fuzzy set m(e), ∀e ∈ E.

4.14. Example. (1) Let (X,T,E) be a soft topological space. If for each e ∈ E, we define
T(e) := χT (e) : 2X → 2, then we can consider (X,T, E) as an L-fuzzy soft topological
space.

(2) Let (X,T, E) be an L-soft topological space. If for each e ∈ E, we define T(e) :=
χτ(e) : L

X → 2, then we can consider (X,T, E) as an L-fuzzy soft topological space.

4.15. Definition. An L-fuzzy soft topology T(X,E) is called coarser than an L-fuzzy
soft topology T

∗(X,E) if for all e ∈ E, T∗(e) ≥ T(e). (this means that for the L-fuzzy
soft set (m,E,X), T∗e (m(e)) ≥ Te(m(e))).

4.16. Definition. Let (X,T, E) be an L-fuzzy soft topological space and (m,E,X) an
L-fuzzy soft set.

(1) The closure cl(m,E,X) of (m,E,X) is an L-fuzzy soft set with the same set of
parameters, that is cl(m,E,X) = (clm,E,X), where clm : E → LX and

clm(e) = cl(m(e)) =
∧

{n ∈ L
X : τe(n

′) > 0 and m(e) ≤ n}, ∀ e ∈ E.

(2) The interior of (m,E,X) is int(m,E,X) = (intm,E,X) where intm : E → LX

and

intm(e) = int(m(e)) =
∨

{n ∈ L
X : τe(n) > 0 and n ≤ m(e)}, ∀ e ∈ E.
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4.17. Definition. Let (X,T, E) and (Y,T∗, F ) be two L-fuzzy soft topological spaces.
Then (ψ,ϕ) : (X,T, E) → (Y,T∗, F ) is called fuzzy soft continuous if for all e ∈ E and
f = ψ(e) ∈ F , ϕ : (X,T(e)) → (Y,T∗(f)) is fuzzy continuous.

Here, T(e) = Te : L
X → L, T∗(f) = T

∗
f : LY → L and for all e ∈ E and f = ψ(e) ∈ F ,

ϕ : (X,Te) → (Y,T∗f ) is fuzzy continuous if for all m ∈ LY , Te(ϕ
−1(m)) ≥ T

∗
f (m).

4.18. Proposition. Let (X,T1, E1), (Y,T2, E2) and (Z,T3, E3) be L-fuzzy soft topological
spaces. If (ψ1, ϕ1) : (X,T1, E1) → (Y,T2, E2) and (ψ2, ϕ2) : (Y,T2, E2) → (Z,T3, E3) are
fuzzy soft continuous, then their composition (ψ2, ϕ2) ◦ (ψ1, ϕ1) = (ψ2 ◦ ψ1, ϕ2 ◦ ϕ1) is
also fuzzy soft continuous.

Proof. Since (ψ2, ϕ2) is fuzzy soft continuous , for each e2 ∈ E2 and e3 = ψ2(e2) ∈ E3,
ϕ2 : (Y,T2(e2)) → (Z,T3(e3)) is fuzzy continuous.

Since (ψ1, ϕ1) is fuzzy soft continuous, for each e1 ∈ E1 and e2 = ψ1(e1) ∈ E2,
ϕ1 : (X,T1(e1)) → (Y,T2(e2)) is fuzzy continuous.

The composition of two fuzzy continuous mappings is also a fuzzy continuous mapping.
So, (ψ2, ϕ2) ◦ (ψ1, ϕ1) is fuzzy soft continuous. �

4.2. L-fuzzy soft compactness.

4.19. Definition. Let (X,T, E) be an L-fuzzy soft topological space. If for all e ∈ E,
(X,T(e)) is fuzzy compact (fuzzy nearly compact, fuzzy almost compact), then (X,T, E)
is called fuzzy soft compact (fuzzy soft nearly compact, fuzzy soft almost compact).

That is, for each e ∈ E, (X,T(e)) is fuzzy compact in Aygun’s sense [5] and fuzzy
nearly (almost) compact in Ramadan’s sense [18].

Let (X,T, E) be an L-fuzzy soft topological space and (m,E) an L-fuzzy soft set on
X. Then (m,E) is called a fuzzy soft compact set on X if for all e ∈ E, m(e) is a fuzzy
compact set.

That is, for each e ∈ E, m(e) is a fuzzy compact set in Aygun’s sense [5].

4.20. Theorem. Let (X,T, E) and (Y,T∗, F ) be two L-fuzzy soft topological spaces. Let
(ψ,ϕ) : (X,T, E) → (Y,T∗, F ) be a fuzzy soft continuous and onto mapping. If (X,T, E)
is a fuzzy soft compact (fuzzy soft nearly compact, fuzzy soft almost compact) space, then
(Y,T∗, F ) is a fuzzy soft compact (fuzzy soft nearly compact, fuzzy soft almost compact)
space.

Proof. Let (X,T, E) be a fuzzy soft compact space. Then for all e ∈ E, (X,T(e)) is fuzzy
compact. Since, (ψ,ϕ) is fuzzy soft continuous for all ψ(e) = f , we have ϕ : (X,T(e)) →
(Y,T∗(f)) is fuzzy continuous. Therefore, (Y,T∗(f)) is a fuzzy compact space. �

4.21. Theorem. Let (X,T, E) be an L-fuzzy soft topological space and let (m,E,X),
(n,E,X) be two L-fuzzy soft sets. If (m,E,X) and (n,E,X) are fuzzy soft compact sets
(fuzzy soft nearly compact, fuzzy soft almost compact), then (m,E,X)⊔(n,E,X) is fuzzy
soft compact set (fuzzy soft nearly compact, fuzzy soft almost compact).

Proof. Let (m,E,X) and (n,E,X) be two fuzzy soft compact sets, i.e., m,n : E → LX

and ∀e ∈ E, m(e), n(e) ∈ LX are fuzzy compact sets. By the definition, we can write
(m,E,X) ⊔ (n, E,X) = (k,E,X), where k(e) = m(e) ∨ n(e) for all e ∈ E. Since m(e)
and n(e) are fuzzy compact sets, from [18] we know that k(e) = m(e) ∨ n(e) is a fuzzy
compact set. Hence, (m,E,X) ⊔ (n, E,X) is a fuzzy soft compact set. �

4.22. Theorem. Let (X,T, E) be an L-fuzzy soft topological space. If X is a finite set,
then (X,T, E) is fuzzy soft compact space.
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Proof. Let (X,T, E) be an L-fuzzy soft topological space, i.e., T : E → LL
X

and for
all e ∈ E, (X,T(e)) is L-fuzzy topological space. Since X is finite, (X,T(e)) is a fuzzy
compact space. Consequently, (X,T, E) is a fuzzy soft compact space. �
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