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Abstract

The number of negative eigenvalues of the “weighted” Schrédinger op-
erator with point d-interactions are found and by means of the Floquet
theory, stability or instability of the solutions to periodic “weighted”
equations with J-interactions are determined.
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1. Introduction and main results

Problems on the study of the Schrodinger operator with short interaction potential (of
0-function type) have appeared in the physical literature. Mathematical investigations of
appropriate physical models were initiated at the beginning of the sixties in the papers [2,
9]. This theme has developed intensively in the last three decades. There is a monograph
[1] where one can be acquainted with details of the Berezin-Minlos-Faddeev theory in its
contemporary state and other new directions arising from this theory. In the same place,
one can find a wide bibliography.

We use the following notation: <C(")(a7 b) is the linear space of scalar complex-valued
functions which are n-times continuously differentiable on (a,b), L2(a,b) is the linear
space of scalar complex-valued functions on (a, b), which have square summable modules,

m is in N and fixed, xo = —o0, and Zy+1 = +00.

The “weighted” one-dimensional Schrédinger operator Li( or Lg(’a) with a point 6-
interaction on a finite set X = {x1,x2,...,Tm} with intensities a = {a1,a2,...,m} is
defined by the differential expression
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on functions y(z) that belong to the space La(—00,00), where the “weighted” function
p(z) = 14+ 3 ard(z — zx) and g(x) is a scalar real-valued nonnegative function on
k=1

(—00,00) such that

oo

/ (1+ x2) q(z)dx < oo.
In this formula, ar > 0, zx(z1 <22 < -+ < xm) (kK =1,2,,m = 1,m) are real numbers.

)
Note that in [8, 5] the inverse problem of the operator LY(g(z) = 0), with the function

p(x) = pi(x) satisfying Zig; € L2(0,1) is investigated.
The operator L is self-adjoint on Lo (—o00, 00).

Here, the approach is based on the idea of approximation of the generalized “weight”
with smooth “weight”s.

Consider the differential expression

0.yl = —ﬁ% <ps(m)%> +q(z)y,

where the density function

1 m
Ps(x) =1 + g Zasz(f - xk)v

k=1

is defined using the characteristic function

1, for z €[0,¢], .
elx) = e< MmN {T; —Ti—1¢.
xe(@) {0, for = ¢ [0, €], i:2,_m{ 1}

Notice that the density function p.(z) is chosen so that it converges to p(z) as ¢ — 0
(see [12]). Therefore, the approximation equation is of the form:

(1.2) £ [yl=Ay —oo <z < oo.
Agree that the solution of equation (1.2) is any function y(z) determined on (—o0, c0)
for which the following conditions are fulfilled:

1) y(z) € C*(xx, xx + ) NC*(2k + &, T11) for k=0, m;

2) —y"(x) + q(@)y(x) = Ay(z) @ € (x, z +€) U (2 + & Tp11), k= 0,m;

3) y(z) =ylwy), M+ aw)y'(z)) =y (x;,) for k=T1,m;

) y((zr+e)") = y((zr+e)7), ¥/ ((zr+e)") = A+ )y ((zx +€)7) for k =Tm.
These conditions guarantee that the functions y(z) and p.(z)y’(z) are continuous at the
points zy and xx +¢, (k= 1,m).

The paper comprises two sections. Section 2 determines the spectrum operator L}.
Section 3 cover the basic Floquet theory, properties of the discriminant and the existence
of the stability and instability intervals.

2. Nature of the spectrum of the operator Lg

In connection with important applications to problems of Quantum Mechanics (see
[1]) it is of interest to study the spectral characteristics of the operator L{.

It is well-known (see [10]) that the equation
=y (2) + q(2)y(z) = My(z), = € (—00,00)
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has two linear independent solutions ¢1(x,\), @2(z,A), any solution of the equation
y(z, A) has the following representation

y(:Z?, )‘) = 01901 (:E, )‘) + 02902(:177 )‘)7

where Cy,Cy are some numbers, moreover for ImA # 0 or A < 0

/|<p2x)\)| dx < oo, /|<p1:c)\)| dx < oo,

/|<p1xA|dx—/|<p2mA|dx—

Then we can write any solution of equation (1.2) in the form

Cf@l(ﬂ?,)\) + 025902(277)‘)7 ifz e ( o0 :171)
ye:(x )\) _ Cikflgol(xv)‘) + Oikgoz(xv)‘% ifze (‘,Z7 Tk + 5) (k = lvm)v
’ Ches191(x, A) + Chypap2(w, ),  ifx € (v +6,241), (F=1,m—1),

Cim+1801(x7)\) +Cim+2802(x7)\)7 ifxe (x'm +57OO)7
where Cj (k =1,4m + 2) are some constant numbers such that for y(z, \) conditions 3)
and 4) are fulfilled.

Define the operator L?_ generated in the Hilbert space L2(—o00, 00) by the differential
expression £3_[y]. The domain of definition of the operator L¢_ is the set of all functions
belonging to La(—00,00) and satisfying the conditions 1)-4).

Let RS be the resolvent of the operator L7 _, and Ry the resolvent of the operator
Li(ar =0, k=1,m).

2.1. Theorem. Let Im\ # 0, then R5 — Ry is a finite-dimensional operator whose rank
doesn’t exceed 2m.

Proof. We construct the resolvent of the operator LI_ for Im\ # 0. For that we solve in
Ly(—00,00) the problem

—y"(x) + q(2)y(z) = Ay(x) + F(z),z # zx, 2x + ¢ (k=T,m)
2.1) y(d) = y(ay), A+ ard)y' (=) =y (zg) (k=1,m)
y((zx +2)7) = y((zr +2)7) (k—17m)7

Y ((xr+e)") =1 +ar)y ((xr +e)7) (k=T,m),

where F'(z) is an arbitrary function belonging to L2 (—00, 00).

By the Lagrange method (see [10]) the solution of problem (2.1) takes the form
y (z,A)

1 oo
_ _mé Rlx, t; \)F (1) dt

bsp2(z, A), —oo < x <1
1 bin_1p1(x, A) + bipp2(x, N), T < x < T +E, (k = L—m)
Wipr, 2] | bipy191(2, A) + bipgopa(z,N), zete<z<azpyr, (k=T,m—1)
bimr1p1(z, A), T < T < 00,
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where
t<ux

($7 )‘)4102(757 )‘)7
t>x

(t7 )‘)902(:177 )‘)7

Rz, ;) = {*”1
1

and b (j = 2,4m + 1) are arbitrary numbers.

Write
Pik = L)0]’(:17767 )‘)7 Sog,k = @;(xkvA)7 @;,k+s

Soj(xk +e, )‘)7 90;,k+5 = @;(fﬂk + 57)‘);

(oo}
J R(zw, ,t;A)F(t)dt, ifh=2k—1,
Ry(F)=1{"s
J R(zp +e,6N)F(t)dt, if h =2k,
— O, h =2k — 1, — e £
Ap = k=1,m); D" (\) = det(Mgn, (A
h {Oék7 h= 2k7 ( ) )) ( ) ( 4 ( ))7
where My, (\) =
[—2.1 (AR ®2,1 0 0 T
—</’/2,1 1+ T1)</’/1,1 1+ Tl)ﬁf’/z,l 0 0
0 ~P114e —$2,14¢ P1,14e P2,14¢
0 -1+ D)eiare —O+ )by —P114e ©2,14¢
—P1,m —P2,m P1,m P2,m 0
—¢1m —P5m 1+ 22)ehm I+ 22)ph 0
: 0 0 7%1,7714»/5 7ﬁ2,m+/€ 90/1,7714»5
L 0 0 —(1+ )P e —(A+ )P e Plmate]
Then for defining the number b5, from the conditions of problem (2.1) we get the sys-
.y bim+1) AR/ = COI(O7 Al.R,l7 07 AzR,27 “oey

tem M,,(\)B* = LAR', where B* = col(b5, b5,
07 Aszé'm)
Define the set I' = {A : Im\ # 0, D*(\) = 0}. For A ¢ I we have

2m

(= 1 €
= TPely) Z APR;M4m,2p,j (A),
=1

bj =
eD=()) =
where M4, 2, ;(A) is an algebraic complement of the element m; ; of the matrix M, (A)

(mi,j)amxam. If we introduce the denotation

AlMZm,2p,1 ()‘) ®2 (:E, )‘) s
Ak [Mim,2p,4k72 ()‘) P1 (:E, )‘)
+ M 2pak—1 (X) o2 (z, )\)} )

T € (_007:171)7

x € (zh,xx +¢) (n=1,m),

Ak [Mim,2p,4k ()‘) ®1 (:E, )‘)
+M4E=m,2p,4k+1 ()‘) P2 (:E, )‘):I 5

AmMZm,2p,4m ()‘) P1 (:E, )‘) 5

X, (z,A) =

x € (K + €, Tht1) (n:Lm—l)7

xG(:cm—Fe,oo),

for p = 1, m, then the solution of problem (2.1) takes the form

RS (F) =y (z,N)
22 S — [ z,t; 1 S E(r
Wi, o iR( ’t7A)F(t)dt+gDs(>\);Xp( S A) By (F) |
where

X5 (.,A) € L? (—o0,00) (p=T,2m) ,ImA #0, A ¢ T
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as ¢ — 0 form expression (2.2) the finite-dimensionality of the operator R§ — Ry follows
and its rank does not exceed 2m. |

Since the operator L} is self-adjoint, consequently its spectrum is real.

2.2. Theorem. Let all intensities of the d-interactions o > 0,k = 1,m. Then the
spectrum of the operator L} consists of the absolutely continuous part [0,400) and has
exactly m distinct eigenvalues on the negative half-line, that are determined as roots of
the equation D* (A\) =0, (¢ = 07).

Proof. By the conditions

')

/ (1+x2)q(x) dx < oo and ¢ (z) > 0,

—o0

the spectrum of the operator L{ (ak =0, k= L—m) is absolutely continuous and co-
incides with the set [0,+c0). Since the operator R} — R{ is finite dimensional then
according to the known results of [3, 6], the absolutely continuous part of the spectrum
of the operator L? coincides with the absolutely continuous part of the spectrum of the
operator L (ak =0, k= L—m), i.e. with [0,+00). According to [7], the spectrum of
the operator L% may differ from the spectrum of the operator L] (ak =0,k= L—m) only
by finitely many negative eigenvalues. Furthermore, the number of these eigenvalues is
exactly m. O

3. On Floquet’s solutions for a periodic “weight” equation
In this section we will state the Floquet theory (see [4]) for the equation
(31) Lilyl=Ay, —co <z < o0

that clarifies the structure of the space of solutions of this equation for each complex value
of the parameter X. Notice that the “weight” function p (z) =14+a) oo 6 (x — Nn)
and the coefficient ¢ () is a real valued periodic continuous function with a period equal
to N, a # 0 and N > 1 are real and natural numbers, respectively. The spectral analysis
of this equation in the case a = 0 was stated in detail in [4, 11].

3.1. Definition. For the given real value of the parameter ), equation (3.1) is said to be
stable if all its solutions are bounded on the axis (—o0, 00), instable if all its solutions are
not bounded on the axis (—o0, 00), conditionally stable if the has at least one non-trivial
solution bounded on the whole of the axis (—o0, 00).

Consider the differential expression
1 d dy
0 =———— | pe —= .
LU= e (@ ) +a@y
Here, the density of the function

oo

pe(@)=1+Z > xe(a—Nn)

n=—oo
is determined by means of the characteristic function

1, for z €10,¢],
Xe (z) =
0, forz ¢[0,e], e < N.
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Notice that the density of the function p. (z) is chosen so that as ¢ — 0T it approaches
the function p (z). The approximation equation is of the form:

(3.2) £ lyl=Ay,—o0o <z < o0.
Agree that a solution of equation (3.2) is any function y (z,A) determined on (—o0, o0)
for which the following conditions are fulfilled.
1) y ()G(Cz(NnNn—&—s)ﬂ(Cz(Nn—&—s Nn+1)fornezZ=1{...,-1,0,1,...}
2) =y’ () +q@)y(z) =Ny () for z € (Nn Nn+5) (Nn +e, N(n+1))7n€Z;

(2) -

®3)y (( ) =y ((Nn)7), (1+2)y (v )") =y ((Nn)7) for n € Z;

(4) y ((]\271—1—5) )—y((Nn+5) )7 ((Nn—i—a) ): (1+ ) '((Nn+5)7)7f0r
ne

These conditions guarantee that y (x) and p. (z)y’ (z) are continuous functions at the
points Nn and Nn + ¢ (n € Z).

If y (x) is a solution of equation (3.1), it follows from the periodicity of the functions
p(x) and ¢ (x) that y (x + N) will be also a solution of this equation. However, generally
speaking, y (z) # y (x + N). We will show that there always exists a non-zero number
p = p(A) and a non-trivial solution v (x, ) of equation (3.2), such that

$O,0) =6 (VA (14 2) ' (N,2) = py' (V)
SN =0 (N0 (5N = (14 2) 0 (7,0,

To this end, we consider a fundamental system of solutions 0 (x, A), ¢ (x, A) of the equa-
tion —y” + ¢ (z) y = Ay that will be determined by means of the initial conditions:
(34) (0,0 =¢ (0,LN) =1, 0'(0,)) = p(0,A) =0

The general solution of equation (3.2) will be of the form:

(3.3)

cif (z,A) +cso(z,N), for0<z<e,

3.5 Sz, ) =
(35 ¥ (= {cie(x,k)ﬂLci@(aJ,A% fore <z <N.

Substituting (3.5) in (3.3), for the definition of the constants C¢, i = 1,4 in (3.5) we get
a homogeneous linear system of equations whose non-trivial solvability condition is the
relation

1 0 —pt9 (N7 )‘) —pY (Nv )‘)
(3.6) 0 14+ £ —pf (N,\)  —pp' (N, ) —0
' 0 (g, ) e (e, A) —0(s,A)  —p(E )
(1+2)0 (N (1+2)d' (N 0N —¢' ()

By (3.4) we have the identity

3.7 0z, )¢ (2, ) =0 (2, N) o (x,2) =1

According to (3.7), as € — 0, equation (3.6) is arranged in the form
(38) PP —[0(N,N)+¢ (N,\) —adp(N,N)]p+1=0

Since, this equation has always the root p, and obviously its roots are non-zero, re-
duced reasoning proves the existence of a non-trivial solution ¢ (z, N) of equation (3.1)
possessing the property 1 (z,\) = pyp (x + N, A).

Introducing the function
1 /
F()‘) = 5 [0(N7)‘) "F(P (N7)‘) _O‘)‘SO(N7)‘)]
with parameter A we rewrite equation (3.8) in the form

(39) p*—2F\)p+1=0
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The function F () is said to be a discriminant, the roots of the equation (3.9) the
multiplicators of equation (3.1).

From Definition 3.1 and results in [4], we obtain the following theorem.

3.2. Theorem. For fized A € (—00,00), the equation (3.1) is instable if |F (X\)| > 1 and
stable if |F(A)] < 1 and also stable if |F (A\)| = 1 and 6’ (N, \) = 2aX, ¢ (N,) = 0.
Finally if |F (\)| = 1 and 0 (N,\) # 2aX or ¢ (N,\) # 0 then (3.1) is conditionally
stable. O
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