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Abstract

Let G be a non-abelian group and let Z(G) be the center of G. The
noncommuting graph of G, Γ(G), is a graph with vertex set G \ Z(G)
and two distinct vertices x and y are adjacent if and only if xy 6= yx. In
this paper the Hyper-Wiener, Schultz, Gutman, eccentric connectivity
and Zagreb group indices of this graph are computed.
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1. Introduction

In this section we recall some definitions that will be used in the paper. Let G
be a simple graph without directed and multiple edges and without loops, the vertex
and edge-sets of which are represented by V (G) and E(G), respectively. The degree of a
vertex v is denoted by degG(v). Suppose Graph is the collection of all graphs. A mapping
Top : Graph −→ R is called a topological index, if G ∼= H implies that Top(G) = Top(H).
If x, y ∈ V (G) then the distance d(x, y) between x and y is defined as the length of a
minimum path connecting x and y. The Wiener index is the first and most studied of the
distance-based topological indices, both from a theoretical point of view and applications
[26]. It is equal to the sum of distances between all pairs of vertices of the respective
graph.

The hyper-Wiener index of acyclic graphs was introduced by Milan Randić in 1993.
Then Klein et al. [17], generalized Randić ’s definition for all connected graphs, as a
generalization of the Wiener index. It is defined as

WW (G) =
1

2
W (G) + 1

2

∑

{u,v}⊆V (G) d(u, v)
2.
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The eccentric connectivity index of G, ξc(G), was proposed by Sharma, Goswami and
Madan [25]. It is defined as ξc(G) =

∑

v∈V (G) degG(v)ε(v), where ε(v) is the largest

distance between v and any other vertex ofG. The radius and diameter of G are defined as
the minimum and maximum eccentricity among vertices of G, respectively. We encourage
the interested reader to consult papers [3, 4, 8, 18, 23] for the chemical meaning and [29]
for mathematical properties of this new topological index.

Suppose G is a graph. The Zagreb indices of G have been introduced more than thirty
years ago by Gutman and Trinajestić [10]. They are defined as:

M1(G) =
∑

v∈V (G)

(degG(v))
2; M2(G) =

∑

uv∈E(G)

degG(u) degG(v).

We refer to [2, 12, 16, 30, 28, 31] for historical background, computational techniques
and mathematical properties of the Zagreb indices. The Schultz index of G, MTI(G),
was introduced by Schultz in 1989, as the molecular topological index [24]. It is defined
by

MTI(G) =
∑

{u,v}⊆V (G)

d(u, v)[deg(u) + deg(v)].

To the best of our knowledge, the first paper on mathematical properties of this graph
invariant was published in 1994 by Ivan Gutman [9], who introduced a modification of
this index. This modification is named the Gutman index [9, 13] and defined by

Gut(G) =
∑

{u,v}⊆V (G)

d(u, v)[deg(u)× deg(v)].

We now assume that w ∈ V (G) and e = uv, f = ab ∈ E(G). Define nu(e) to be the
number of vertices lying closer to u than v and nv(e) is defined analogously. The Szeged
index of G is defined as follows:

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

Notice that in computing vertex and edge Szeged indices of G, vertices equidistant from
both ends of the edge e = uv are not counted [11].

Let G be a non-abelian group and let Z(G) be the center of G. Associate a graph
Γ(G) with G as follows: Take G \ Z(G) as the vertices of Γ(G) and join two distinct
vertices x and y, whenever xy 6= yx. The graph Γ(G) is called the non-commuting graph

of G [20]. This is a graph with exactly |G| − |Z(G)| vertices and |G|
2
(|G| − k(G)) edges,

where k(G) denotes the number of conjugacy classes of G. The complement of a graph
Γ is a graph Γ̄ on the same vertices such that two vertices of Γ̄ are adjacent if and only if
they are not adjacent in Γ. The complement graph Γ̄(G) is called the commuting graph
of G. The best paper in this topic is a paper by Abdollahi, Akbari and Maimani [1].

In the next section, the non-commuting graphs of some well-known finite groups are
considered. In Section 3, the commuting and non-commuting graphs of finite groups are
investigated in general. We first consider a finite group G and present a condition under
which it is possible to decompose the commuting graph Γ̄(G) into complete subgraphs.
Then we focus on the problem of computing distance-based topological indices of these
graphs. Some open questions are also presented.

Throughout this paper our notation is standard and taken mainly from the standard
book of graph theory and references [6, 15, 27]. The complete graph on n vertices is
denoted by Kn and its complement by ∅n. For two graphs with disjoint vertex sets V1

and V2 their union is the graph Γ for which V (Γ) = V1 ∪ V2 and E(Γ) = E1 ∪E2.
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2. Examples

Throughout this paper all groups are presumed to be finite and non-abelian. The aim
of this section is to compute the Wiener and Szeged indices of the groups D2n, SD2n ,
T4n, U6n, V8n, A(n, θ) and a non-abelian p-group P of order p2r which will be defined
later, r ≥ 1 [14]. These groups are defined as follows:

D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉,

SD2n = 〈a, b | a2n = b2 = 1, b−1ab = a−1〉,

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,

U6n = 〈a, b | a2n = b3 = 1, a−1ba = b−1〉,

V8n = 〈a, b | a2n = b4 = 1, ba = a−1b−1, b−1a = a−1b〉,

A(n, θ) =











1 0 0
a 1 0
b aθ 1



 : a, b ∈ F







,

where F = GF (2n) is a finite field of order 2n and θ is an automorphism of F . We start
with dihedral groups.

2.1. Example. Consider the dihedral group D2n.

If n is odd then |Z(D2n)| = 1, CD2n
(ai) = 〈a〉, 1 ≤ i ≤ n− 1, and CD2n

(aib) = 〈aib〉,

0 ≤ i ≤ n− 1. If n is even then Z(D2n) = 〈a
n

2 〉, CD2n
(ai) = 〈a〉, 1 ≤ i 6= n

2
≤ n− 1, and

CD2n
(aib) = 〈aib, a

n

2 〉, 0 ≤ i ≤ n − 1. By the above calculations the complement of the
non-commuting graph Γ(D2n) is:

i) The union of complete graph Kn−1 and empty graph ∅n, when n is odd;
ii) The union of complete graph Kn−2 and n

2
copies of K2, when n is even.

In [5], Azad and Eliasi proved that for a finite non-abelian group G,

W (Γ(G)) =
1

2
[(|G| − |Z(G)|)(|G| − 2|Z(G)| − 2) + |G|(k(G)− |Z(G)|)],

where k(G) denotes the number of conjugacy classes in G. By this formula,

W (Γ(D2n)) =

{

5
2
n2 − 7n+ 6 n is even,

5
2
n2 − 9

2
n+ 2 n is odd.

The Szeged index of this graph can be calculated directly from the non-commuting graph
W (Γ(D2n)). We have:

Sz(Γ(D2n)) =

{

2n3 − 6n2 + 4n n is even,

n3 − 3
2
n2 + 1

2
n n is odd.

2.2. Example. In this example the Wiener and Szeged indices of the dicyclic group
T4n is computed. Since Z(T4n) = 〈an〉, CT4n

(ai) = 〈a〉, 1 ≤ i 6= n ≤ 2n − 1, and
CT4n

(aib) = 〈aib, an〉, 0 ≤ i ≤ 2n− 1. By these calculations, the complement of Γ(T4n)
is the union of the complete graph K2n−2 and n copies of K2. On the other hand,
Γ(T4n) ∼= Γ(D4n). Therefore,

W (Γ(T4n)) =

{

10n2 − 14n+ 6 nis even,

10n2 − 9n+ 2 nis odd,

Sz(Γ(T4n)) =

{

16n3 − 24n2 + 8n n is even,

8n3 − 6n2 + n n is odd.
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In the following two examples, the Szeged and Wiener indices of Γ(U6n) and Γ(V8n)
are computed. These groups were introduced by James and Liebeck in their famous book
[15]. In this book, the conjugacy classes and character table of V8n is computed, when
n is odd. For the case of even n, the conjugacy classes and character table of V8n was
computed by Darafsheh and Poursalavati [7].

2.3. Example. Consider the group U6n of order 6n. Clearly, Z(U6n) = 〈a2〉, CU6n
(a2r+1)

= 〈a〉, CU6n
(a2r+1b) = 〈a2〉·〈{a2s+1b | 0 ≤ s ≤ n−1}〉, CU6n

(a2r+1b2) = 〈a2〉·〈{a2s+1b2 |
0 ≤ s ≤ n − 1}〉 and CU6n

(a2rb) = 〈a2〉 · 〈{a2sb, a2sb2 | 0 ≤ s ≤ n − 1}, 0 ≤ r ≤ n − 1.
By these calculations, the complement of Γ(U6n) is the union of the complete graph K2n

and 3 copies of Kn. Therefore,

W (Γ(U6n)) = 16n2 − 5n and Sz(Γ(U6n)) = 15n4.

2.4. Example. To compute the Szeged and Wiener indices of the non-commuting graph
Γ(V8n), we distinguish two cases that n is odd or even.

We first assume that n is odd. Then Z(V8n) = 〈b2〉, CV8n
(ar) = CV8n

(arb2) =
〈a〉 · Z(V8n), CV8n

(a2rb) = CV8n
(a2rb3) = 〈a2rb〉 and CV8n

(a2r+1b) = CV8n
(a2r+1b3) =

〈a2r+1b, b2〉. Therefore, the complement of Γ(V8n) is a union of the complete graph
on 4n − 2 vertices and a matching of size 2n. So, W (Γ(V8n)) = 40n2 − 28n + 6 and
Sz(Γ(V8n)) = 64n2 − 32n.

Next we assume that n is even. Then Z(V8n) = 〈b2, an〉, CV8n
(ar) = CV8n

(arb2) = 〈a〉·
Z(V8n), CV8n

(a2rb) = CV8n
(a2rb3) = 〈a2rb〉·Z(V8n) and CV8n

(a2r+1b) = CV8n
(a2r+1b3) =

〈a2r+1b, b2, an〉. Therefore, the complement of Γ(V8n) is the union of a complete graph
on 4n − 4 vertices and n copies of the complete graph K4. Hence in this case, we have:
W (Γ(V8n)) = 40n2 − 48n+ 20 and Sz(Γ(V8n)) = 128n(2n2 + n+ 1).

Following Issacs [14], we assume that F = GF (p) and E = GF (pr) are finite fields of
orders p and pr, respectively. Suppose R = {α0 + α1x + α2x

2 | αi ∈ E}, where x3 = 0
and for each α ∈ E, xα = αpx. Then P = P2(p, r) = {1 + α1x + α2x

2 | αi ∈ E} is a
p-subgroup of the group R× of units in R, of order p2r. In the aforementioned paper
it is proved that if p is a prime and r > 1 is a positive integer then the p-group P is
non-abelian of order p2r such that: (1) |Z(P )| = pr; (2) P/Z(P ) is an elementary abelian
p-group; (3) for every non-central element x of P , CP (x) = Z(P )〈x〉, see also [21, 19] for
details.

2.5. Example. In this example the Wiener and Szeged indices of P are computed. We
first calculate k(P ). To do this, we assume that x is a non-central element of P . Then

|xP | = |P : CP (x)| = | P
Z(P )〈x〉

| = pr|Z(P )∩〈x〉|
O(x)

. Suppose 〈xZ(P )〉 is an arbitrary subgroup

of P
Z(P )

. Then 〈x〉 ∩ Z(P ) = 〈xp〉. Thus |〈xp〉| = O(x)
p

and so |xP | = pr−1. To calculate

the number of conjugacy classes, we notice that P has exactly pr one element conjugacy

classes and p2r−pr

pr−1 = p(pr − 1) conjugacy classes of size greater than one. Therefore,

k(P ) = pr+1 + pr − p, W (P ) = 1
2
(pr − 1)[pr(p2r − 2pr − 2) + p2r+1].

2.6. Example. Consider the semi-dihedral group SD2n . It is obvious that Z(SD2n ) =

〈a2n−2

〉, CSD2n
(ai) = 〈a〉, 1 ≤ i 6= 2n−2 ≤ 2n−1−1, CSD2n

(aib) = {e, aib, a2n−2

, ai+2n−2

b},
1 ≤ i ≤ 2n−1 − 1. From these calculations the complement of Γ(SD2n) is a union of a
complete graph K2n−1−2 and 2n−2 copies of K2. The Wiener and Szeged indices of this
graph is computed as follows:

W (Γ(SD2n)) = 22n−1 + 22n−3 − 7× 2n−1 + 6,

Sz(Γ(SD2n)) = 2n(2n−1 − 2)(2n−1 − 1).
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2.7. Example. The group A(n, θ) is a group of order 22n with the unit element U(0, 0).
It is easy to see that if θ is non-trivial then Z(A(n, θ)) = {U(0, b) | b ∈ F}. To simplify
our argument we assume that θ is the Frobenius automorphism of F , θ : x 7→ x2.

Suppose that a 6= 0 and U(a, b) ∈ A(n, θ). Then CA(n,θ)(U(a, b)) = {U(r, s) | r =
0 or a}. Therefore, CA(n,θ)(U(a0, b0)) = CA(n,θ)(U(a1, b1)) if and only if a0 = a1. There-
fore, the complement of Γ(A(n, θ)) contains 2n−1 copies of the complete graph K2n . The
Wiener and Szeged indices of this graph is W (Γ(A(n, θ)) = 24n−1−5×23n−2+2n−22n−2

and Sz(A(n, θ)) = 25n−2(2n−1 − 1).

3. Main results

We say a group G has abelian centralizers, if for each non-central element x ∈ G, CG(x)
is abelian. Such a group is called an AC-group. By [1, Lemma 3.5], for an arbitrary field
F , the group GL(2, F ) is an AC-group. In [22] Rocke proved that the following are
equivalent: (a) G has abelian centralizers; (b) if xy = yx, then CG(x) = CG(y) whenever
x, y 6∈ Z(G); (c) if xy = yx and xz = zx, then yz = zy whenever x 6∈ Z(G); (d) if U and
B are subgroups of G and Z(G) < CG(U) ≤ CG(B) < G then CG(U) = CG(B). In the
following lemma we apply the latter result to obtain the general case of Examples 2.1-2.7.

3.1. Proposition. Let G be a group. Then the commuting graph Γ̄(G) is a union of

complete graphs if and only if G is an AC-group.

Proof. Suppose the commuting graph Γ̄(G) is a union of complete graphs. Then by
definition of Γ̄(G), all proper element centralizers are abelian and so G has abelian
centralizers.

Conversely, suppose that G is a group with abelian centralizers. We prove that the
intersection of two proper element centralizers is the center of G. To do this, we assume
that y, z 6∈ Z(G), CG(y) 6= CG(z) and x is a non-central element of CG(y) ∩ CG(z).
Thus xy = yx and xz = zx and by condition (c) of [22, Lemma 3.2], yz = zy. Hence
by part (b) of the aforementioned theorem, CG(y) = CG(z) which is impossible. So
CG(y) ∩ CG(z) = Z(G). Therefore, if G is a group with abelian centralizers then the
commuting graph Γ̄(G) is a union of complete graphs. �

We notice that there is no finite group G such that Γ̄(G) is a complete graph or a
union of two complete graphs. But it is possible to find a finite group G such that Γ̄(G)
is a union of three complete graphs. By Example 2.1, the dihedral group of order 8 is
such an example and it can be easily seen that Γ̄(D8) is a union of three complete graphs
K2. It is far from true that each graph has this property. To verify this, it is enough to
note that the commuting graph Γ̄(S4) is not a union of complete graphs. In the following
lemma a graph theoretical equivalence for a group G to be AC-group or equivalently for
Γ̄(G) to be a union of complete graphs is obtained.

3.2. Proposition. Let G be a group. Then the commuting graph Γ̄(G) is a union of

complete graphs Kp, p is prime, if and only if p = 2 and G ∼= D8 or Q8.

Proof. Suppose the commuting graph Γ̄(G) is a union of complete graphs Kp, p is an odd
prime. We also assume that a is a non-central element of G. By definition, |CG(a)| =
|Z(G)|+ p and so |Z(G)| ∈ {1, p}.

We first assume that |Z(G)| = 1. Then |CG(a)| = p+1 and |aG| = |G|
p+1

. If there are t

conjugacy classes of non-central elements then t|G|
p+1

+ |Z(G)| = |G| and so (p+1− t)|G| =

p + 1 = |CG(a)|, which is impossible. If |Z(G)| = p then for each non-central element
a ∈ G, |CG(a)| = 2p. This implies that G is a group of order 2p or 2p2. In the first case, G
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is a dihedral group of order 2p and by Example 2.1, Γ̄(G) is a union of a complete graphs
Kp−1 and p isolated vertices, contradicting our assumption. Thus |G| = 2p2. From
elementary group theory we know that up to isomorphism there are three non-abelian
groups of order 2p2 for an odd prime p. These are as follows:

G1 = 〈a, b | ap2 = b2 = 1; b−1ab = a−1〉,

G2 = 〈a, b, c | ap = bp = c2 = 1; c−1ac = a−1; c−1bc = b−1; a−1b−1ab = 1〉,

G3 = 〈a, b, c | ap = bp = c2 = 1; a−1b−1ab = a−1c−1ac = 1; c−1bc = b−1〉.

Since G cannot be a dihedral group, G ∼= G2 or G3. By a simple calculation, we can see
thatG2 is centerless and the element centralizers of the non-central elements are 〈a, b〉 and
〈aibjc〉, 1 ≤ i, j ≤ p−1, which is impossible. Finally, Z(G3) = 〈a〉, CG3

(aibj) = 〈a, b〉 and
CG(a

ibjc) = Z(G) · 〈bjc〉, 1 ≤ i, j ≤ p− 1. Again G has at least two element centralizers
of different orders, which leads to our final contradiction. Therefore, p = 2 and G ∼= D8

or Q8. �

Suppose that G is a finite group G such that the commuting graph Γ̄(G) is a union of
complete graphs Kn, n is not prime. Then |CG(a)| = n+ |Z(G)|, where a is a non-central

element of G. In this case, one can easily seen that |CG(a)| =
|G|(k(G)−|Z(G)|

|G|−|Z(G)|
.

3.3. Question. Is there any classification of finite groups G such that the commuting
graph Γ̄(G) is a union of complete graphs Kn, where n is not necessary prime.

From now on, we compute exact formulas for the Schultz, Gutman, hyper-Wiener,
Eccentric connectivity and Zagreb indices of Γ(G). We begin with the hyper-Wiener
index of a non-commuting graph of a finite group G.

Before going into the calculation of hyper-Wiener index of an arbitrary non-abelian
group G, the hyper-Wiener index of the dihedral groupD2n and the group U6n introduced
in Section 2, are computed. If n is odd then WW (Γ(D2n)) = 3(n − 1)2 and if n is
even WW (Γ(D2n)) = 3(n2 − 3n + 3). The hyper-Wiener index of the group U6n is
WW (Γ(U6n)) =

57
2
n2 − 15

2
n.

3.4. Proposition. Suppose G is a non-abelian finite group. Then

WW (Γ(G)) = 3

(

|G| − |Z(G)|

2

)

− |G|(|G| − k(G)).

Proof. By a result of [1] the diameter of non-commuting graph is two and so,

WW (Γ(G)) =
1

2

∑

{u,v}⊆V (Γ(G))

(d(u, v))2 +
1

2

∑

{u,v}⊆V (Γ(G))

(d(u, v))

=
1

2





∑

uv∈E(Γ(G))

(d(u, v))2 +
∑

uv∈E(Γ̄(G))

(d(u, v))2 +
∑

uv∈E(Γ(G))

(d(u, v))

+
∑

uv∈E(Γ̄(G))

(d(u, v))





= 3|E(Γ̄(G))|+ |E(Γ(G))|

= 3

(

|G| − |Z(G)|

2

)

− |G|(|G| − k(G)),

proving our proposition. �
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Suppose n is an odd positive integer, then MTI(Γ(D2n)) = n(n − 1)(7n − 8). If n
is even, then MTI(Γ(D2n)) = n(n − 2)(7n − 10) and MTI(Γ(U6n)) = 114n3 − 36n2, in
general. In what follows a general formula for the MTI index of Γ(G), G non-abelian, is
computed.

3.5. Proposition. Suppose G is a non-abelian finite group. Then

MTI(Γ(G)) = 4|E(Γ(G))|(|G| − |Z(G)| − 1)−M1(Γ(G)).

Proof. Suppose Γ(G) has exactly n vertices. Then by [1, Proposition 2.1] and the defi-
nition of the Schultz index, we have:

MTI(Γ(G)) =
∑

{u,v}⊆V (Γ(G))

d(u, v)[deg(u) + deg(v)]

=
∑

uv∈E(Γ(G))

[deg(u) + deg(v)] + 2
∑

uv∈E(Γ̄(G))

[deg(u) + deg(v)]

=
∑

u∈V (Γ(G))

(deg(u))2

+ 2
∑

uv∈E(Γ̄(G))

[2(|G| − |Z(G)| − 1)− (degΓ̄(G)(u) + degΓ̄(G)(v))]

= M1(Γ(G)) + 4(|G| − |Z(G)| − 1)|E(Γ̄(G))|

− 2
∑

u∈V (Γ(G))

(degΓ̄(G)(u))
2

= M1(Γ(G)) + 4(|G| − |Z(G)| − 1)|E(Γ̄(G))|

− 2
∑

u∈V (Γ(G))

[|G| − |Z(G)| − 1− degΓ(G)(u)]
2

= M1(Γ(G)) + 4(|G| − |Z(G)| − 1)|E(Γ̄(G))|

− 2(|G| − |Z(G)|)(|G| − |Z(G)| − 1)2

+ 8(|G| − |Z(G)| − 1)|E(Γ(G))| − 2M1(Γ(G))

= 4|E(Γ(G))|(|G| − |Z(G)| − 1)−M1(Γ(G)).

This completes our argument. �

Consider the dihedral group D2n and the group U6n introduced in Section 2. The Za-
greb group indices of the non-commuting graph of these groups are computed as follows:

Table 1. The Zagreb Group Indices of Γ(D2n) and Γ(U6n)

n is odd M1(Γ(D2n)) = n(n− 1)(5n− 4) M2(Γ(D2n)) = 2n(n− 1)2(2n− 1)

n is even M1(Γ(D2n)) = n(n− 2)(5n− 8) M2(Γ(D2n)) = 4n(n− 1)(n− 2)2

for each n M1(Γ(U6n)) = 66n3 M2(Γ(U6n)) = 120n4.

3.6. Proposition. Suppose G is a non-abelian finite group. Then

M1(Γ(G)) = 2|G||E(Γ(G))| − |G|2(k(G)− |Z(G)|) + |G|2β(G),

where β(G) = 1
|G|2

∑

x∈V (Γ(G)) |CG(x)|
2.



522 M. Mirzargar, A.R. Ashrafi

Proof. By definition,

M1(Γ(G)) =
∑

x∈V (Γ(G))

(deg(x))2

=
∑

xy∈E(Γ(G))

(deg(x) + deg(y))

=
∑

xy∈E(Γ(G))

(|G| − |CG(x)|+ |G| − |CG(y)|)

= 2|G||E(Γ(G))| −
∑

xy∈E(Γ(G))

(|CG(x)|+ |CG(y)|)

= 2|G||E(Γ(G))| −
∑

x∈V (Γ(G))

deg(x)|CG(x)|

= 2|G||E(Γ(G))| − |G|2(k(G)− |Z(G)|) + |G|2β(G),

as desired. �

To compute an exact formula for M1(Γ(G)), we must calculate
∑

x∈V (Γ(G)) |CG(x)|
2.

Since β(G) =
∑k(G)−|Z(G)|

i=1
1

|xG
i
|
, where the xi’s are representatives of the non-central

conjugacy classes of G,
∑

x∈V (Γ(G)) |CG(x)|
2 = |G|2

∑k(G)−|Z(G)|
i=1

1
|xG

i
|
= |G|2β(G).

3.7. Question. Is there any simple closed formula for
∑

x∈V (Γ(G)) |CG(x)|
2?

The Gutman index of the non-commuting graph of D2n and U6n is computed as
follows:

Gut(Γ(D2n)) = n(n− 1)(5n2 − 8n+ 2); n is odd,

Gut(Γ(D2n)) = n2(n− 2)(5n− 11); n is even,

Gut(Γ(U6n)) = 204n4 − 66n3.

3.8. Proposition. Suppose G is a non-abelian finite group. Then

Gut(Γ(G)) = 4|E(Γ(G))|2 −M2(Γ(G))−M1(Γ(G)).

Proof. It follows from [2] that M̄2(Γ(G)) =
∑

uv∈Ē(Γ(G)) degΓ(G)(u) degΓ(G)(v), and

M̄2(Γ(G)) = 2|E(Γ(G)|2 −M2(Γ(G))− 1
2
M1(Γ(G)). Therefore,

Gut(Γ(G)) =
∑

{u,v}⊆V (Γ(G))

d(u, v)[deg(u)× deg(v)]

=
∑

uv∈E(Γ(G))

[deg(u)× deg(v)] + 2
∑

uv∈E(Γ̄(G))

[deg(u)× deg(v)]

= M2(Γ(G)) + 2M̄2(Γ(G))

= −M2(Γ(G)) + 4|E(Γ(G))|2 −M1(Γ(G)),

proving the result. �

Suppose u ∈ G \ Z(G) is a vertex of Γ(G). Then for the eccentricity of u we have:

ε(u) =

{

1 ∀ v ∈ G \ Z(G) ∪ {u}, uv 6= vu,

2 otherwise.
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It is clear that for odd n, ξc(Γ(D2n)) = 4n(n− 1), and ξc(Γ(D2n)) = 6n(n− 2), when n
is even. Also, ξc(Γ(U6n)) = 36n2. In the following proposition a closed formula for the
eccentric connectivity index of Γ(G), G non-abelian, is computed.

3.9. Proposition. Suppose G is a non-abelian finite group, then

ξc(Γ(G)) =

{

3
2
|G|2 + |G| − 2|G|k(G) ∃u ∈ G \ Z(G) s.t. ε(u) = 1,

2|G|2 − 2|G|k(G) otherwise.

Proof. We first prove that if u ∈ G\Z(G) and ε(u) = 1 then u has order two, |Z(G)| = 1
and CG(u) = 〈u〉. To do this, we assume that O(u) 6= 2. Then u2 and u3 commute
with u and so u2, u3 ∈ Z(G). Suppose r and s are integers such that 2r + 3s = 1. Then
u = (u2)r(u3)s ∈ Z(G), contradicting our assumption. If CG(u) = Z(G)

⋃

uZ(G) then
|CG(u)| = 2|Z(G)|, as desired. If not, there exists another coset yZ(G) of CG(u) such
that y /∈ Z(G). By assumption yu 6= uy and so y /∈ CG(u). Therefore |CG(u)| = 2|Z(G)|.

On the other hand, ε(u) = 1 implies that deg(u) = |G| − |Z(G)| − 1 = |G| − |CG(u)|.
Thus |CG(u)| = |Z(G)|+ 1 and it follows that |Z(G)| = 1.

Next we assume that there exists an element u ∈ G \ Z(G) such that ε(u) = 1. It

is clear that |uG| = |G|
|CG(u)|

= 1
2
|G|. If there is an element x /∈ uG with ε(x) = 1 then

G = uG
⋃

xG, which is impossible. Thus, all of such elements are in the same conjugacy
class of G.

If there exists u ∈ G \ Z(G) with ε(u) = 1 then we have:

ξc(Γ(G)) =
∑

u∈V (Γ(G))

degΓ(G)(u)ε(u)

=
∑

u∈V (Γ(G)),ε(u)=1

degΓ(G)(u) + 2
∑

u∈V (Γ(G)),ε(u)=2

degΓ(G)(u)

=
∑

u∈V (Γ(G)),ε(u)=1

(|G| − |CG(u)|) + 2
∑

u∈V (Γ(G)),ε(u)=2

(|G| − |CG(u)|)

=
∑

u∈V (Γ(G)),ε(u)=1

(|G| − 2) + 2|G|
(1

2
|G| − |Z(G)|

)

− 2
∑

u∈V (Γ(G)),ε(u)=2

|CG(u)|

=
1

2
|G|2 − |G|+ |G|2 − |G||Z(G)|

− 2

(

∑

u∈V (Γ(G))

|CG(u)| −
∑

u∈V (G),ε(u)=1

|CG(u)|

)

=
3

2
|G|2 + |G| − 2|G|k(G),

as desired. Otherwise, for any u ∈ G \Z(G), ε(u) = 2 and ξc(Γ(G)) = 2|G|2 − 2|G|k(G).
This completes our proof. �

3.10. Proposition. If G is a non-abelian finite group then M2(Γ(G)) = −|G|2|E(Γ(G))|+
|G|M1(Γ(G)) +

∑

xy∈E(Γ(G)) |CG(x)||CG(y)|.
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Proof. By Proposition 3.5, we have:

M2(Γ(G)) =
∑

xy∈E(Γ(G))

deg(x) deg(y)

=
∑

xy∈E(Γ(G))

(|G| − |CG(x)|)(|G| − |CG(y)|)

= |G|2|E(Γ(G))| − |G|
∑

xy∈E(Γ(G))

(|CG(x)|+ |CG(y)|)

4em+
∑

xy∈E(Γ(G))

|CG(x)||CG(y)|

= |G|2||E(Γ(G))| − |G|
∑

x∈V (Γ(G))

deg(x)|CG(x)|

+
∑

xy∈E(Γ(G))

|CG(x)||CG(y)|

= |G|2|E(Γ(G))| − |G|2
∑

x∈V (Γ(G))

|CG(x)|+ |G|
∑

x∈V (Γ(G))

|CG(x)|
2

+
∑

xy∈E(Γ(G))

|CG(x)||CG(y)|

= |G|2|E(Γ(G))| − |G|3(k(G)− |Z(G)|) + |G|(M1(Γ(G))

− 2|G||E(Γ(G))|+ |G|2(k(G)− |Z(G)|))

+
∑

xy∈E(Γ(G))

|CG(x)||CG(y)|

= −|G|2|E(Γ(G))|+ |G|M1(Γ(G)) +
∑

xy∈E(Γ(G))

|CG(x)||CG(y)|

This completes our proof. �

We have several groups that they have the same size and the same Wiener index.
For the first example, we consider non-abelian groups of order p3, p is prime. Then the
Wiener index is 1

2
(p6 + p5 − p4 − 3p3 + 2p2 + 2p). For the second example, we have

groups of order 4p, which p ≡ 3(mod4), the Wiener index is 10p2 − 14p + 6. But it is
possible to find two groups of the same order and different Wiener index. To do this,
suppose p < q < r are prime numbers such that p|q−1 and p|r−1. Define G = Zr ×Tp,q

and H = Zq × Tp,r, where Tp,q and Tp,r are non-abelian groups of order pq and pr,
respectively. Then G and H have exactly r(1 + q−1

p
) and q(1 + r−1

p
) conjugacy classes,

respectively. We now apply the main result of [5] to prove:

W (Γ(G)) =
1

2

[

p2q2r2 − 3pqr2 − 2pqr + q2r2 − qr2 + 2r2 + 2r
]

,

W (Γ(H)) =
1

2

[

p2q2r2 − 3pq2r − 2pqr + q2r2 − q2r + 2q2 + 2q
]

.

Now an easy calculation shows that |G| = |H | but W (Γ(G)) < W (Γ(H)).

We end this paper with the following conjecture:

3.11. Conjecture. Suppose n is a given positive integer. If for any two non-abelain

groups G and H of order n, W (Γ(G)) = W (Γ(H)) then n = p3 or 4p, where p ∼= 3 (
mod 4).
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[19] Moghaddamfar, A.R. About noncommuting graphs, Siberian Mathematical Journal 47, 911–
914, 2006.

[20] Neumann, B.H. A problem of Paul Erdös on groups, J. Aust. Math. Soc. Ser. A 21, 467–472,
1976.

[21] Riedl, J.M. Character degrees, class size, and normal subgroups of a certain class of p-
groups, J. Algebra 218 (1), 190–215, 1999.

[22] Rocke, D.M. p-groups with abelian centralizers, Proc. London Math. Soc. 30 (3), 55–75,
1975.



526 M. Mirzargar, A.R. Ashrafi

[23] Sardana, S. and Madan, A.K. Application of graph theory: Relationship of molecular con-
nectivity index, WienerÆs index and eccentric connectivity index with diuretic activity,
MATCH Commun. Math. Comput. Chem. 43, 85û-98, 2001.
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