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Abstract

Let G be a non-abelian group and let Z(G) be the center of G. The
noncommuting graph of G, I'(G), is a graph with vertex set G \ Z(G)
and two distinct vertices x and y are adjacent if and only if xy # yz. In
this paper the Hyper-Wiener, Schultz, Gutman, eccentric connectivity
and Zagreb group indices of this graph are computed.
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1. Introduction

In this section we recall some definitions that will be used in the paper. Let G
be a simple graph without directed and multiple edges and without loops, the vertex
and edge-sets of which are represented by V(G) and E(G), respectively. The degree of a
vertex v is denoted by deg (v). Suppose Graph is the collection of all graphs. A mapping
Top : Graph — R is called a topological index, if G = H implies that Top(G) = Top(H).
If z,y € V(G) then the distance d(x,y) between x and y is defined as the length of a
minimum path connecting x and y. The Wiener index is the first and most studied of the
distance-based topological indices, both from a theoretical point of view and applications
[26]. It is equal to the sum of distances between all pairs of vertices of the respective
graph.

The hyper-Wiener index of acyclic graphs was introduced by Milan Randié¢ in 1993.
Then Klein et al. [17], generalized Randié¢’s definition for all connected graphs, as a
generalization of the Wiener index. It is defined as

1
WW(G) = 5W(G) + 3 2 fumicvia Au,v)
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The eccentric connectivity index of G, £°(G), was proposed by Sharma, Goswami and
Madan [25]. It is defined as £°(G) = 3_ ¢y () degq(v)e(v), where (v) is the largest
distance between v and any other vertex of G. The radius and diameter of G are defined as
the minimum and maximum eccentricity among vertices of G, respectively. We encourage
the interested reader to consult papers [3, 4, 8, 18, 23] for the chemical meaning and [29]
for mathematical properties of this new topological index.

Suppose G is a graph. The Zagreb indices of G have been introduced more than thirty
years ago by Gutman and Trinajesti¢ [10]. They are defined as:

Mi(G)= ) (degg(v)* M2(G)= Y degg(u)degg(v).

veV(G) w€e€E(G)

We refer to [2, 12, 16, 30, 28, 31] for historical background, computational techniques
and mathematical properties of the Zagreb indices. The Schultz index of G, MTI(G),
was introduced by Schultz in 1989, as the molecular topological index [24]. It is defined
by

MTI(G) = Z d(u,v)[deg(u) + deg(v)].
{u,v}CV(G)

To the best of our knowledge, the first paper on mathematical properties of this graph
invariant was published in 1994 by Ivan Gutman [9], who introduced a modification of
this index. This modification is named the Gutman index [9, 13] and defined by

Gut(G)= Y d(u,v)[deg(u) x deg(v)].
{u,v}CV(G)
We now assume that w € V(G) and e = wv, f = ab € E(G). Define ny(e) to be the
number of vertices lying closer to u than v and n,(e) is defined analogously. The Szeged
index of G is defined as follows:

Sz(G) = D nule)nle).

e=uvEE(G)

Notice that in computing vertex and edge Szeged indices of G, vertices equidistant from
both ends of the edge e = uv are not counted [11].

Let G be a non-abelian group and let Z(G) be the center of G. Associate a graph
I'(G) with G as follows: Take G \ Z(G) as the vertices of I'(G) and join two distinct
vertices x and y, whenever zy # yzx. The graph I'(G) is called the non-commuting graph
of G [20]. This is a graph with exactly |G| — |Z(G)| vertices and %(|G| — k(@) edges,
where k(G) denotes the number of conjugacy classes of G. The complement of a graph
I is a graph I' on the same vertices such that two vertices of T' are adjacent if and only if
they are not adjacent in I'. The complement graph I'(G) is called the commuting graph
of G. The best paper in this topic is a paper by Abdollahi, Akbari and Maimani [1].

In the next section, the non-commuting graphs of some well-known finite groups are
considered. In Section 3, the commuting and non-commuting graphs of finite groups are
investigated in general. We first consider a finite group G and present a condition under
which it is possible to decompose the commuting graph I'(G) into complete subgraphs.
Then we focus on the problem of computing distance-based topological indices of these
graphs. Some open questions are also presented.

Throughout this paper our notation is standard and taken mainly from the standard
book of graph theory and references [6, 15, 27]. The complete graph on n vertices is
denoted by K, and its complement by @,. For two graphs with disjoint vertex sets Vi
and V3 their union is the graph I' for which V(I') = V1 U V2 and E(T') = E1 U Es.
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2. Examples

Throughout this paper all groups are presumed to be finite and non-abelian. The aim
of this section is to compute the Wiener and Szeged indices of the groups D2y, SDan,
Tin, Usn, Van, A(n,0) and a non-abelian p-group P of order p>" which will be defined
later, » > 1 [14]. These groups are defined as follows:

Dap = (a,b|a" =b"=1,b""ab=1a""),

SDan = (a,b | a® =62 =1,b"tab=a"1),
Tin = {a,b | a® =1,a" =b*,b 'ab=1a""),
Usn = (a,b | a=v>=1,a""ba = b,
Van = (a,b | a® =b*=1,ba=a b b 'a=a"'b),
1 0 0
A(n,0) = a 1 0 s a,beF
b afd 1

where F' = GF(2") is a finite field of order 2" and 6 is an automorphism of F'. We start
with dihedral groups.

2.1. Example. Consider the dihedral group Day,.

If n is odd then |Z(D2n)| =1, Cp,, (a*) = {a), 1 <i <n — 1, and Cp,, (a’b) = (a'b),
0<i<n—1. Ifnis even then Z(Day,) = (a%), Cp,, (a’) = (a), 1 <i # 5 <n—1, and
Cp,, (a'b) = (a’b,a?), 0 < i < n — 1. By the above calculations the complement of the
non-commuting graph I'(D2y) is:

i) The union of complete graph K,_1 and empty graph 0,, when n is odd;
ii) The union of complete graph K, > and 5 copies of K2, when n is even.

In [5], Azad and Eliasi proved that for a finite non-abelian group G,
1
W(I(G)) = 5[(IG] = 1Z(G)D(G] = 212(G)| = 2) + |GI(k(G) — [Z(G)])],
where k(G) denotes the number of conjugacy classes in G. By this formula,

2_7Tn+6 niseven,

W('(D2n)) =
(I'(D2n)) >—Zn+2 nisodd

—N—

Nl nolon
S 3

The Szeged index of this graph can be calculated directly from the non-commuting graph
W(I'(D2n)). We have:

2n® —6n? +4n n is even,
SZ(F(DZn)) - {ng _ %nz + %n n is odd.
2.2. Example. In this example the Wiener and Szeged indices of the dicyclic group
Tyn is computed. Since Z(Tun) = {(a™), Cr,, (') = (a), 1 < i # n < 2n — 1, and
Cr,, (a'b) = (a'b,a™), 0 < i < 2n — 1. By these calculations, the complement of I'(T4y)
is the union of the complete graph Ks,_2 and n copies of K2. On the other hand,
I'(Tun) 2 T'(Dar). Therefore,

10n% — 14n 4+ 6 nis even,

W' (Tsn)) =
(T'(Tun)) {10n2—9n+2 nis odd,

16n® — 24n° + 8n n is even,

& —6n?+n n is odd.

Sz(I'(Tun)) = {
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In the following two examples, the Szeged and Wiener indices of I'(Us, ) and I'(Vsn)
are computed. These groups were introduced by James and Liebeck in their famous book
[15]. In this book, the conjugacy classes and character table of Vg, is computed, when
n is odd. For the case of even n, the conjugacy classes and character table of Vs, was
computed by Darafsheh and Poursalavati [7].

2.3. Example. Consider the group Us,, of order 6n. Clearly, Z(Us,) = (a?), Cu,, (a* 1)
— (@), Cup, (a*+18) = (a2)- ({a® 15| 0 < 5 < n—1}), Cu,, (a2 182) = (@) ({157 |
0 <s<n—1}) and Cyg, (a®b) = (a®) - ({a*b,a*b* | 0<s<n—-1},0<r<n-—1
By these calculations, the complement of I'(Usy ) is the union of the complete graph Koy,
and 3 copies of K,. Therefore,

W (L'(Usn)) = 16n> — 5n and Sz(I'(Us,)) = 15n*.

2.4. Example. To compute the Szeged and Wiener indices of the non-commuting graph
I'(Van), we distinguish two cases that n is odd or even.

We first assume that n is odd. Then Z(Vz,) = (b?), Cv, (a”) = Cyg, (a"b?) =
(a) - Z(Van), Cvq, (a*"b) = Cys, (a*"5%) = (a*"b) and Cvy, (a*"T1b) = Cyy, (a*T10°%) =
(a*T'b,b%). Therefore, the complement of I'(Vs,) is a union of the complete graph
on 4n — 2 vertices and a matching of size 2n. So, W(I'(Vs,)) = 40n® — 28n + 6 and
Sz(T'(Van)) = 64n? — 32n.

Next we assume that n is even. Then Z(Vsn) = (b?,a™), Cvy, (a”) = Cig, (a"b?) = (a)-
Z(Van), Cva,, (a*"b) = Cys, (a®7b%) = (a®"b)-Z(Vsy) and Cyg, (> T1b) = Cyg, (a* T10%) =
(a®*1b,b%,a™). Therefore, the complement of I'(Vz,,) is the union of a complete graph
on 4n — 4 vertices and n copies of the complete graph K4. Hence in this case, we have:
W (T (Veyn)) = 40n? — 48n + 20 and Sz(T'(Vs,)) = 128n(2n° +n + 1).

Following Issacs [14], we assume that F' = GF(p) and E = GF(p") are finite fields of
orders p and p", respectively. Suppose R = {ao + a1z + a2z? | a; € E}, where 2° = 0
and for each a € E, za = aPz. Then P = Pa(p,r) = {1 + cuxz + az2’ | a; € E} is a
p-subgroup of the group R* of units in R, of order p*>". In the aforementioned paper
it is proved that if p is a prime and r > 1 is a positive integer then the p-group P is
non-abelian of order p*” such that: (1) |Z(P)| = p"; (2) P/Z(P) is an elementary abelian
p-group; (3) for every non-central element z of P, Cp(x) = Z(P){z), see also [21, 19] for
details.

2.5. Example. In this example the Wiener and Szeged indices of P are computed. We
first calculate k(P). To do this, we assume that x is a non-central element of P. Then

"|Z(P x
|xP| =|P:Cp(z)| = |Z(pp)<m)| - é(i?< -

of %. Then (z) N Z(P) = (z”). Thus |(z?)| = % and so |z¥| = p"~!. To calculate
the number of conjugacy classes, we notice that P has exactly p” one element conjugacy

p;::fr = p(p” — 1) conjugacy classes of size greater than one. Therefore,

k(P)=p " +p" —p, W(P) = 5" = D)[p" (0" — 20" = 2) +p*" ).
2.6. Example. Consider the semi-dihedral group SDan. It is obvious that Z(SDan) =
(2" 7%), Cspyn(a') = (a),1 i #2772 <2771 =1, Csp,a (a'h) = {e,a’b,a®" ", a™*" b},
1 <4< 2" ' —1. From these calculations the complement of T'(SDgn) is a union of a
complete graph Kyn—1_, and 2”72 copies of K». The Wiener and Szeged indices of this
graph is computed as follows:

W(F(SDQ”)) _ 227L71 + 227L73 _ 7 % 27L71 + 67

Sz(D(SDan)) = 2™(2" 1 —2)(2" ' = 1).

. Suppose (xZ(P)) is an arbitrary subgroup

classes and
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2.7. Example. The group A(n, ) is a group of order 22" with the unit element U(0, 0).
It is easy to see that if 6 is non-trivial then Z(A(n,0)) = {U(0,b) | b € F'}. To simplify
our argument we assume that @ is the Frobenius automorphism of F, 0 : & > x.

Suppose that a # 0 and U(a,b) € A(n,0). Then Cy(n,9)(U(a,b)) = {U(r,s) | r =
0 or a}. Therefore, Ca(n,0)(U(ao,b0)) = Can,0)(U(a1,b1)) if and only if ap = a1. There-
fore, the complement of I'(A(n, 8)) contains 2™ —1 copies of the complete graph K2n. The
Wiener and Szeged indices of this graph is W (T'(A(n, 0)) = 2*" 71 —5x 23772 4 9 2272
and Sz(A(n,0)) = 2°"72(2"~! —1).

3. Main results

We say a group G has abelian centralizers, if for each non-central element z € G, Cg(x)
is abelian. Such a group is called an AC-group. By [1, Lemma 3.5], for an arbitrary field
F, the group GL(2,F) is an AC-group. In [22] Rocke proved that the following are
equivalent: (a) G has abelian centralizers; (b) if zy = yz, then Ce(z) = Cq(y) whenever
z,y € Z(G); (c) if zy = yx and xz = zz, then yz = zy whenever z ¢ Z(G); (d) if U and
B are subgroups of G and Z(G) < Cq(U) < Ca(B) < G then Cq(U) = Ce(B). In the
following lemma we apply the latter result to obtain the general case of Examples 2.1-2.7.

3.1. Proposition. Let G be a group. Then the commuting graph ['(G) is a union of
complete graphs if and only if G is an AC-group.

Proof. Suppose the commuting graph ['(G) is a union of complete graphs. Then by
definition of T'(G), all proper element centralizers are abelian and so G has abelian
centralizers.

Conversely, suppose that G is a group with abelian centralizers. We prove that the
intersection of two proper element centralizers is the center of G. To do this, we assume
that y,z € Z(G), Ca(y) # Ca(z) and z is a non-central element of Cg(y) N Ca(z).
Thus zy = yx and zz = zx and by condition (c) of [22, Lemma 3.2], yz = zy. Hence
by part (b) of the aforementioned theorem, Cg(y) = Cq(z) which is impossible. So
Ca(y) N Ca(z) = Z(G). Therefore, if G is a group with abelian centralizers then the
commuting graph ['(G) is a union of complete graphs. |

We notice that there is no finite group G such that I'(G) is a complete graph or a
union of two complete graphs. But it is possible to find a finite group G such that I'(G)
is a union of three complete graphs. By Example 2.1, the dihedral group of order 8 is
such an example and it can be easily seen that I'(Ds) is a union of three complete graphs
K>. It is far from true that each graph has this property. To verify this, it is enough to
note that the commuting graph T'(S4) is not a union of complete graphs. In the following
lemma a graph theoretical equivalence for a group G to be AC-group or equivalently for
T'(G) to be a union of complete graphs is obtained.

3.2. Proposition. Let G be a group. Then the commuting graph T'(G) is a union of
complete graphs Ky, p is prime, if and only if p =2 and G = Dg or Qs.

Proof. Suppose the commuting graph T'(G) is a union of complete graphs K, p is an odd
prime. We also assume that a is a non-central element of G. By definition, |Ca(a)| =
|Z(G)| + p and so |Z(G)] € {1, p}.

We first assume that |Z(G)| = 1. Then |Cg(a)| = p+1 and |a®| = %. If there are ¢

conjugacy classes of non-central elements then % +|Z(G)| = |G| and so (p+1—1)|G| =

p+ 1 = |Cg(a)|, which is impossible. If |Z(G)| = p then for each non-central element
a € G, |Cg(a)| = 2p. This implies that G is a group of order 2p or 2p>. In the first case, G
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is a dihedral group of order 2p and by Example 2.1, I'(G) is a union of a complete graphs
K,_1 and p isolated vertices, contradicting our assumption. Thus |G| = 2p?. From
elementary group theory we know that up to isomorphism there are three non-abelian
groups of order 2p® for an odd prime p. These are as follows:

Gi={ab|a” =b*=1;b""ab=a""),
Ge=(a,bc|la® == =1Lclac=a" ¢ be=b"" a0 ab = 1),
Gs = {(a,bc|a? =P = =10 "0 tab=0a""¢ lac=1;¢ "be =b"").

Since G cannot be a dihedral group, G = G2 or GG3. By a simple calculation, we can see
that G is centerless and the element centralizers of the non-central elements are {(a, b) and
(a'bic), 1 < i,j < p—1, which is impossible. Finally, Z(G3) = {(a), Cg,(a’b’) = {a,b) and
Ca(a't/c) = Z(G) - (tc), 1 < 4,5 < p—1. Again G has at least two element centralizers
of different orders, which leads to our final contradiction. Therefore, p = 2 and G = Ds
or Qs. O

Suppose that G is a finite group G such that the commuting graph I'(G) is a union of

complete raphs Kn n is not prime. Then CG a)l=n+|2Z G where a is a non-central
p g ) )

element of G. In this case, one can easily seen that |Cg(a) GT=—TZ(O)]

3.3. Question. Is there any classification of finite groups G such that the commuting
graph I'(G) is a union of complete graphs K, where n is not necessary prime.

From now on, we compute exact formulas for the Schultz, Gutman, hyper-Wiener,
Eccentric connectivity and Zagreb indices of I'(G). We begin with the hyper-Wiener
index of a non-commuting graph of a finite group G.

Before going into the calculation of hyper-Wiener index of an arbitrary non-abelian
group G, the hyper-Wiener index of the dihedral group D2, and the group Us,, introduced
in Section 2, are computed. If n is odd then WW(I'(D2,)) = 3(n — 1)? and if n is
even WW(I'(D2,)) = 3(n? — 3n + 3). The hyper-Wiener index of the group Us, is
WW (I (Usn)) = &n* — Ln.

3.4. Proposition. Suppose G is a non-abelian finite group. Then
G| —12(G)]

WW(L(G)) = 3( ;

) — GIIG] = k(@)
Proof. By a result of [1] the diameter of non-commuting graph is two and so,

WWE@) =5 S @)ty Y (dww)

{u,v}CV(T(G)) {w,v}CV(I(G))

=5 | > @wv)+ Y @uw)+ Y (duw)

weE(I'(Q)) uwv€E(T(Q)) weE(I'(Q))

+ > (dw)

uuGE(f(G))
=3|E(T(Q))| + |E(T(Q))|
_ 3<'G' ‘f“’”) ~[GI(1C] ~ K@),

proving our proposition. O
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Suppose n is an odd positive integer, then MTI(I'(D2,)) = n(n — 1)(7n — 8). If n
is even, then MTI(T'(D2x)) = n(n — 2)(7n — 10) and MTL(T'(Us,)) = 114n> — 36n?, in
general. In what follows a general formula for the MTI index of I'(G), G non-abelian, is
computed.

3.5. Proposition. Suppose G is a non-abelian finite group. Then

MTII(G)) = 4[ET(G)I(G] = 12(G)| = 1) = Mi(I(G)).

Proof. Suppose I'(G) has exactly n vertices. Then by [1, Proposition 2.1] and the defi-
nition of the Schultz index, we have:

MTI(I(G)) = > d(u,v)[deg(u) + deg(v)]
{u,v}CV(I(G))

Z [deg(u) + deg(v)] + 2 Z [deg(u) + deg(v)]

wveE(I'(G)) wveE(I(Q))
= D> (deg(w)?
ueV(I'(Q))
+2 Y [2(1G] - 12(G)] — 1) — (degr gy (u) + degr(e) ()]
wv€E(T(Q))

= Mi(T(G)) + 4(IG| = |Z(G)| = DIET(G))|
-2 Z (degf(c) (U))2
weV(I(Q))
= Mi(T(G)) +4(IG] = |Z(G)| = DIET(G))|
-2 > (1G] - 12(G)| - 1 - degrc (w)]®
weV(I(Q))
= Mi(T(G)) +4(IG| = |Z(G)| = D|E(T
—2(IGl - 1Z(G)D)IG - 12(G)| -1
+8(IG] = 1Z2(G)| = DIET(G))| — 2M1 (I'(G))
=4 ETG)IIG] - 12(G)] = 1) = My (I(G)).

(@))]
)2

This completes our argument. |

Consider the dihedral group D2, and the group Us, introduced in Section 2. The Za-
greb group indices of the non-commuting graph of these groups are computed as follows:

Table 1. The Zagreb Group Indices of I'(D2,) and I'(Usx)

n is odd Mi(T(D2n)) =n(n —1)(5n —4) | M2(T'(D2n)) = 2n(n — 1)*(2n — 1)
n is even M1 (T(Da2,)) = n(n —2)(5n —8) | M2(T'(Day,)) = 4n(n — 1)(n — 2)?
for each n | M (T'(Usn)) = 66n° M (T(Usn)) = 120n*.

3.6. Proposition. Suppose G is a non-abelian finite group. Then
Mi(I(G)) = 2G| E(T(@)] - |G (K(G) = |2(G)]) + |GI*B(G),
where B(G) = ﬁ DoV (r(G)) |Ca(x)|?.



522 M. Mirzargar, A.R. Ashrafi

Proof. By definition,
M(T(G) = > (deg(x))?

zEV(D(G))

= > (deg(z) + deg(y))

zy€E(T(G))

= Y. (GI-ICs(@)|+I|G| - [Cay))

zy€E(T(G))

=2IGIETC@G) - > (Ca@)|+[Cav))
zy€E(T(G))

=2GIEM(G))| - Y. deg()|Ca(x)|
zeV(I(G))

=2|G||E(T(G))| — |G (K(G) — 12(G)]) + |GI*B(G),

as desired. O

To compute an exact formula for Mi(I'(G)), we must calculate >° v ) |Ca(2)*.

Since B(G) = Zfi?)*‘z(c)‘ ‘71@7 where the z;’s are representatives of the non-central

conjugacy classes of G, -, c v (r(ay) Co(@)]” = |G LHG 17O ‘zlg;‘ = |GI?B(G).

3.7. Question. Is there any simple closed formula for }° v r(q) |Ca(x)]|??

The Gutman index of the non-commuting graph of Da, and Us, is computed as
follows:

Gut(I'(Dz2n)) = n(n — 1)(5n* — 8n 4 2); n is odd,
Gut([(D2n)) = n*(n — 2)(5n — 11); n is even,
Gut(I'(Usn)) = 204n* — 66n°.

3.8. Proposition. Suppose G is a non-abelian finite group. Then
Gut(I'(@)) = 4|E(L(@))]* = M2(T(G)) = Mi(T(G)).
Proof. 1t follows from [2] that M2(I'(G)) = > wwe B(r(ay) de8r (e (v) degr (g (v), and
My(T'(@)) = 2|E(I'(G)|> — M2(I'(G)) — £ M1(I'(G)). Therefore,
Gu(N(@) = Y d(u,v)ldeg(u) x deg(v)]
{u,v}CV(I(G))

= Y [deg(u) xdeg(w)]+2 > [deg(u) x deg(v)

weEB(T(Q)) weB(T(G))
= M>(I'(G)) + 2M>(I'(G))
= —Ma(D(G)) +4|E(L(G)]* = My (I(G)),
proving the result. |

Suppose u € G\ Z(G) is a vertex of I'(G). Then for the eccentricity of u we have:

() = {1 Vv e G\ Z(G) U {u}, uv # vu,

2  otherwise.
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It is clear that for odd n, £°(I'(D2n)) = 4n(n — 1), and £°(T'(Da2r)) = 6n(n — 2), when n
is even. Also, £°(T'(Usn)) = 36n>. In the following proposition a closed formula for the
eccentric connectivity index of I'(G), G non-abelian, is computed.

3.9. Proposition. Suppose G is a non-abelian finite group, then

£ (I(C)) = {g|c:|22 + |G| - 2|G|k(G) Fue G‘\ Z(G) s.t. (u) =1,
2|G|* - 2|Glk(G) otherwise.

Proof. We first prove that if u € G\ Z(G) and ¢(u) = 1 then u has order two, |Z(G)| =1
and Cg(u) = (u). To do this, we assume that O(u) # 2. Then u? and u® commute
with u and so u?,u? € Z(G). Suppose r and s are integers such that 2r 4+ 3s = 1. Then
u = (u*)"(u?)* € Z(G), contradicting our assumption. If Ce(u) = Z(G) | JuZ(G) then
|Ca(u)| = 2|Z(G)|, as desired. If not, there exists another coset yZ(G) of Ca(u) such
that y ¢ Z(G). By assumption yu # uy and so y ¢ Cg(u). Therefore |Ca(u)| = 2|Z(G)|.

On the other hand, e(u) = 1 implies that deg(u) = |G| — |Z(G)| — 1 = |G| — |Ca(u)].
Thus |Ce(u)| = |Z(G)| + 1 and it follows that |Z(G)| = 1.

Next we assume that there exists an element u € G\ Z(G) such that e(u) = 1. It
is clear that |u%| = ‘C‘GG;‘U)‘ = L1|G|. If there is an element = ¢ u® with £(z) = 1 then
G =u® U x%, which is impossible. Thus, all of such elements are in the same conjugacy
class of G.

If there exists u € G\ Z(G) with ¢(u) = 1 then we have:

Er@) =Y degrg(ue(u)

uweV(I'(G))

= Z degp(g)(u) +2 Z degr(g)(u)
ueV(I'(G)),e(u)=1 ueV(I'(G)),e(u)=2

= > (1G] = [Ca(u)]) +2 > (IG] = 1Ca(w)])
ueV(I'(G)),e(u)=1 ueV(I'(G)),e(u)=2

= Y (6= +2al(5l6 - 12@))

uweV(I'(Q@)),e(u)=1

-2 > |Cq (u)]

ueV(I'(G)),e(u)=2
1
= LaP - (61 + 6P - 612(C)
—2( S el - Y |ca<u>|)
weV(T(Q)) WEV(G),e(u)=1
3
= 36 + 161 - 261K (G).

as desired. Otherwise, for any v € G\ Z(G), e(u) = 2 and ¢¢(T(Q)) = 2|G|? — 2|G|k(G).
This completes our proof. O

3.10. Proposition. IfG is a non-abelian finite group then M2(T'(G)) = —|G|?|E(T'(G))|+
IGIML(T(G)) + 2 sy e mir(ay) [Ca(@)|Ca (y)].
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Proof. By Proposition 3.5, we have:

My(T(G) = Y deg(x)deg(y)
zye E(I(G))
= > (GI-1Cs=)(G] - |Caw)))
zy€E(I'(G))
=|GPIEC@G) -G > (Ca@)|+|Cay)])
zye E(I(G))
dem+ > |Ca(2)]|Ca(y)|
zyeE(I'(GQ))
= |GPIET@G) -G D deg(x)[Ca(x)|
zeV(I'(Q))
+ > Ce@)|ICa(y)l
zyeE(I'(Q))
= GPIET@) —IG7 > ICa@|+IG Y. [Co(x)f
zeV(I'(Q)) zeV(I'(GQ))
+ Y [Ce@)Ca(y)l
zy€E(I'(Q))

=|GPIET (@) ~ G (K(G) —|Z(G)]) + |GI(M(I(G))
= 2GIIE(D(G))] + |GI*(k(G) — |Z(G)])
+ > Ce@)Cay)l

zyeE(I'(G))

= —|GPIET@) +[GMLT@E) + Y [Ca)lCaly)

zye E(I'(GQ))

This completes our proof.

d

We have several groups that they have the same size and the same Wiener index.
For the first example, we consider non-abelian groups of order p®, p is prime. Then the
Wiener index is %(p6 +p5 — pt —3p> +2p% + 2p). For the second example, we have
groups of order 4p, which p = 3(mod4), the Wiener index is 10p? — 14p + 6. But it is
possible to find two groups of the same order and different Wiener index. To do this,
suppose p < g < r are prime numbers such that p|¢—1 and p|r — 1. Define G = Z, x T}, 4
and H = Z; x Ty, where Tp 4 and T, are non-abelian groups of order pg and pr,

r—1

respectively. Then G and H have exactly r(1 + %) and ¢(1 +
respectively. We now apply the main result of [5] to prove:

1
W(I(G)) =5 [p’q°r® — 3pgr® — 2pqr + ¢*r® — qr® + 2r* + 2],

1
W(I(H)) = 5 [p°¢*r® = 3pa’r — 2pgr + ¢*r® — ¢°r +2¢° + 2q] .

Now an easy calculation shows that |G| = |H| but W(I'(G)) < W(T'(H)).

We end this paper with the following conjecture:

— ) conjugacy classes,

3.11. Conjecture. Suppose n is a given positive integer. If for any two non-abelain
groups G and H of order n, W(T'(G)) = W(T'(H)) then n = p* or 4p, where p = 3 (

mod 4).
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