# THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS

Hui Dong\* and Bo Zhou\*†

Received 01:09:2011 : Accepted 15:11:2011

### Abstract

The revised edge Szeged index of a connected graph G is defined as

$$Sz_e^*(G) = \sum_{e=uv \in E(G)} \left( m_u(e|G) + \frac{m_0(e|G)}{2} \right) \left( m_v(e|G) + \frac{m_0(e|G)}{2} \right),$$

where E(G) is the edge set of G,  $m_u(e|G)$  is the number of edges closer to vertex u than to vertex v in G,  $m_v(e|G)$  is the number of edges closer to vertex v than to vertex u in G, and  $m_0(e|G)$  is the number of edges equidistant from both ends of e. We give a formula for the revised edge Szeged index of a bridge graph, from which the revised edge Szeged indices for several classes of graphs are calculated.

**Keywords:** Szeged index, Revised edge Szeged index, Revised Szeged index, Bridge graphs, Distance.

2000 AMS Classification: 05 C 12, 05 C 90.

## 1. Introduction

Topological indices are used in theoretical chemistry for the design of chemical compounds with given physicochemical properties or given pharmacologic and biological activities [10]. The Wiener index is one of the oldest and the most thoroughly studied topological index. Motivated by the original definition of the Wiener index of a tree, Gutman [3] introduced the Szeged index, which coincides with the Wiener index for a tree. It found applications in quantitative structure-property-activity-toxicity modeling, see [5]. There are some variants of the Szeged index. Randić [9] introduced the revised Szeged index, which shows to be a 'better descriptor for structure-property relationships for cyclic molecules'. Recently, the edge Szeged index and the revised edge Szeged index were proposed in [4] and [2], respectively.

<sup>\*</sup>Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China. E-mail: (H. Dong) donghui100@163.com (B. Zhou) zhoubo@scnu.edu.cn

<sup>&</sup>lt;sup>†</sup>Corresponding author.

Let G be a connected graph with vertex set V(G) and edge set E(G). For  $u, v \in V(G)$ ,  $d_G(u, v)$  denotes the distance between u and v in G.

Let  $e = uv \in E(G)$ ,  $w \in V(G)$ . The distance between e and w in G is defined as  $d_G(e, w) = \min\{d_G(u, w), d_G(v, w)\}$ . Let  $m_u(e|G)$  be the number of edges closer to vertex u than to vertex v in G and  $m_v(e|G)$  the number of edges closer to vertex v than to vertex u in G, i.e.,

$$m_u(e|G) = |\{f \in E(G) : d_G(f, u) < d_G(f, v)\}|,$$
  

$$m_v(e|G) = |\{f \in E(G) : d_G(f, v) < d_G(f, u)\}|.$$

The edge Szeged index of G is defined as [4]

$$Sz_e(G) = \sum_{e=uv \in E(G)} m_u(e|G)m_v(e|G).$$

Some basic properties of the edge Szeged index have been established, see [1, 4, 6, 11].

Let  $m_0(e|G)$  be the number of edges equidistant from both ends of  $e = uv \in E(G)$ , i.e.,

$$m_0(e|G) = |\{f \in E(G) : d_G(f, u) = d_G(f, v)\}|.$$

The revised edge Szeged index of G is defined in [2] as

$$Sz_e^*(G) = \sum_{e=uv \in E(G)} \left( m_u(e|G) + \frac{m_0(e|G)}{2} \right) \left( m_v(e|G) + \frac{m_0(e|G)}{2} \right).$$

Let  $\{G_i\}_{i=1}^d$  be a set of finite pairwise vertex-disjoint connected graphs with  $v_i \in V(G_i)$ . The bridge graph  $B(G_1, G_2, \ldots, G_d) = B(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d)$  of  $\{G_i\}_{i=1}^d$  with respect to the vertices  $\{v_i\}_{i=1}^d$  is the graph obtained from the graphs  $G_1, G_2, \ldots, G_d$  by connecting the vertices  $v_i$  and  $v_{i+1}$  by an edge for all  $i = 1, 2, \ldots, d-1$ .

Formulae for the Szeged index, edge Szeged index, revised Szeged index of bridge graphs have been given in [7, 13, 8], respectively. Here we give a formula for the revised edge Szeged index of a bridge graph, from which the revised edge Szeged indices for several classes of graphs are calculated.

#### 2. Results

For a connected graph G with  $w \in V(G)$ , let  $L_{G,w}$  and  $R_{G,w}$  be respectively the sets of edges e = uv in E(G) such that  $d_G(u, w) < d_G(v, w)$  and  $d_G(u, w) > d_G(v, w)$ , and  $Q_{G,w}$  the set of edges e = uv in E(G) such that  $d_G(u, w) = d_G(v, w)$ . To make this well-defined, we choose an arbitrary direction on the edges of G (which is fixed for all the following computations); the results do not depend on the direction chosen.

In a bridge graph  $B(G_1, G_2, ..., G_d)$ , for i = 1, 2, ..., d, let  $L_i = L_{G_i, v_i}$ ,  $R_i = R_{G_i, v_i}$  and  $Q_i = Q_{G_i, v_i}$ .

**2.1. Lemma.** [13] The edge Szeged index of the bridge graph  $G = B(G_1, G_2, ..., G_d)$  of  $\{G_i\}_{i=1}^d$  with respect to the vertices  $\{v_i\}_{i=1}^d$  is given by

$$Sz_{e}(G) = \sum_{i=1}^{d} Sz_{e}(G_{i})$$

$$+ \sum_{i=1}^{d} (|E(G)| - |E(G_{i})|) \left( \sum_{e=uv \in L_{i}} m_{v}(e|G_{i}) + \sum_{e=uv \in R_{i}} m_{u}(e|G_{i}) \right)$$

$$+ \sum_{i=1}^{d-1} \alpha_{i}(|E(G)| - \alpha_{i} - 1),$$

where  $\alpha_i = \sum_{j=1}^{i} |E(G_j)| + i - 1$  for all i = 1, 2, ..., d.

**2.2. Theorem.** The revised edge Szeged index of the bridge graph  $G = B(G_1, G_2, ..., G_d)$  of  $\{G_i\}_{i=1}^d$  with respect to the vertices  $\{v_i\}_{i=1}^d$  is given by

$$Sz_e^*(G) = \sum_{i=1}^d Sz_e^*(G_i) + \frac{1}{4} \sum_{i=1}^d (|E(G)|^2 - |E(G_i)|^2)|Q_i|$$
$$+ \sum_{i=1}^d (|E(G)| - |E(G_i)|)(l_i + r_i) + \sum_{i=1}^{d-1} \alpha_i (|E(G)| - \alpha_i - 1)$$
$$+ \frac{1}{2} (d-1) \left( |E(G)| - \frac{1}{2} \right),$$

where

$$l_{i} = \sum_{e=uv \in L_{i}} \left( m_{v}(e|G_{i}) + \frac{1}{2} m_{0}(e|G_{i}) \right),$$

$$r_{i} = \sum_{e=uv \in R_{i}} \left( m_{u}(e|G_{i}) + \frac{1}{2} m_{0}(e|G_{i}) \right),$$

$$\alpha_{i} = \sum_{j=1}^{i} |E(G_{j})| + i - 1$$

for all i = 1, 2, ..., d.

Proof. Let |E(G)| = m and  $|E(G_i)| = m_i$ . Obviously,  $m_u(e|G) + m_v(e|G) + m_0(e|G) = m$  and  $m_u(e|G_i) + m_v(e|G_i) + m_0(e|G_i) = m_i$ . Note that  $E(G_i) = Q_i \cup L_i \cup R_i$  for i = 1, 2, ..., d. From the definition of the revised edge Szeged index, we have

$$\begin{split} Sz_e^*(G) &= \sum_{e=uv \in E(G)} m_u(e|G) m_v(e|G) \\ &+ \sum_{e=uv \in E(G)} \left[ \frac{m_0(e|G)}{2} (m_u(e|G) + m_v(e|G)) + \frac{m_0^2(e|G)}{4} \right] \\ &= Sz_e(G) + \sum_{e=uv \in E(G)} \left[ \frac{m_0(e|G)}{2} (m - m_0(e|G)) + \frac{m_0^2(e|G)}{4} \right] \\ &= Sz_e(G) + \frac{1}{2} \sum_{e=uv \in E(G)} m_0(e|G) \left( m - \frac{m_0(e|G)}{2} \right) \end{split}$$

$$= Sz_{e}(G) + \frac{1}{2} \sum_{i=1}^{d} \sum_{e=uv \in Q_{i}} m_{0}(e|G) \left(m - \frac{m_{0}(e|G)}{2}\right)$$

$$+ \frac{1}{2} \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G) \left(m - \frac{m_{0}(e|G)}{2}\right)$$

$$+ \frac{1}{2} \sum_{i=1}^{d-1} m_{0}(v_{i}v_{i+1}|G) \left(m - \frac{m_{0}(v_{i}v_{i+1}|G)}{2}\right).$$

For i = 1, 2, ..., d, if  $e = uv \in Q_i$ , then all the edges in  $E(G) \setminus E(G_i)$  are equidistant from both ends of the edge e = uv, and thus  $m_0(e|G) = m_0(e|G_i) + m - m_i$ . Then

$$\begin{split} \sum_{i=1}^{d} \sum_{e=uv \in Q_i} m_0(e|G) \left( m - \frac{m_0(e|G)}{2} \right) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in Q_i} (m_0(e|G_i) + m - m_i) \left( m - \frac{m_0(e|G_i) + m - m_i}{2} \right) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in Q_i} m_0(e|G_i) \left( m_i - \frac{m_0(e|G_i)}{2} \right) \\ &+ \frac{1}{2} \sum_{i=1}^{d} \sum_{e=uv \in Q_i} (m^2 - m_i^2) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in Q_i} m_0(e|G_i) \left( m_i - \frac{m_0(e|G_i)}{2} \right) \\ &+ \frac{1}{2} \sum_{i=1}^{d} (m^2 - m_i^2) |Q_i|. \end{split}$$

For i = 1, 2, ..., d, if  $e = uv \in L_i \cup R_i$ , then there is no edge in  $E(G) \setminus E(G_i)$  which is equidistant from both ends of the edge e = uv, and thus  $m_0(e|G) = m_0(e|G_i)$ . Then

$$\begin{split} \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G) \left( m - \frac{m_{0}(e|G)}{2} \right) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G_{i}) \left( m - \frac{m_{0}(e|G_{i})}{2} \right) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G_{i}) \left( m_{i} - \frac{m_{0}(e|G_{i})}{2} \right) \\ &+ \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G_{i}) \left( m_{i} - \frac{m_{0}(e|G_{i})}{2} \right) \\ &= \sum_{i=1}^{d} \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G_{i}) \left( m_{i} - \frac{m_{0}(e|G_{i})}{2} \right) \\ &+ \sum_{i=1}^{d} (m - m_{i}) \sum_{e=uv \in L_{i} \cup R_{i}} m_{0}(e|G_{i}). \end{split}$$

For i = 1, 2, ..., d, it is obvious that  $m_0(v_i v_{i+1}|G) = 1$ . Thus

$$\sum_{i=1}^{d-1} m_0(v_i v_{i+1}|G) \left( m - \frac{m_0(v_i v_{i+1}|G)}{2} \right) = (d-1) \left( m - \frac{1}{2} \right).$$

It follows that

$$Sz_e^*(G) = Sz_e(G) + \frac{1}{2} \sum_{i=1}^d \sum_{e=uv \in E(G_i)} m_0(e|G_i) \left( m_i - \frac{m_0(e|G_i)}{2} \right)$$

$$+ \frac{1}{4} \sum_{i=1}^d (m^2 - m_i^2) |Q_i| + \frac{1}{2} \sum_{i=1}^d (m - m_i) \sum_{e=uv \in L_i \cup R_i} m_0(e|G_i)$$

$$+ \frac{1}{2} (d-1) \left( m - \frac{1}{2} \right).$$

By Lemma 2.1,

$$Sz_e^*(G)$$

$$\begin{split} &= \sum_{i=1}^{d} Sz_{e}(G_{i}) + \sum_{i=1}^{d} (m-m_{i}) \left( \sum_{e=uv \in L_{i}} m_{v}(e|G_{i}) + \sum_{e=uv \in R_{i}} m_{u}(e|G_{i}) \right) \\ &+ \sum_{i=1}^{d-1} \alpha_{i}(m-\alpha_{i}-1) + \frac{1}{2} \sum_{i=1}^{d} \sum_{e=uv \in E(G_{i})} m_{0}(e|G_{i}) \left( m_{i} - \frac{m_{0}(e|G_{i})}{2} \right) \\ &+ \frac{1}{4} \sum_{i=1}^{d} (m^{2} - m_{i}^{2})|Q_{i}| + \sum_{i=1}^{d} (m-m_{i}) \sum_{e=uv \in L_{i} \cup R_{i}} \frac{m_{0}(e|G_{i})}{2} \\ &+ \frac{1}{2} (d-1) \left( m - \frac{1}{2} \right) \\ &= \sum_{i=1}^{d} Sz_{e}^{*}(G_{i}) + \frac{1}{4} \sum_{i=1}^{d} (m^{2} - m_{i}^{2})|Q_{i}| + \sum_{i=1}^{d} (m-m_{i})(l_{i} + r_{i}) \\ &+ \sum_{i=1}^{d-1} \alpha_{i}(m-\alpha_{i}-1) + \frac{1}{2} (d-1) \left( m - \frac{1}{2} \right), \end{split}$$

as desired.

For a connected graph H with vertex w, let  $G_d(H, w)$  be the bridge graph

$$B(G_1, G_2, \dots, G_d) = B(G_1, G_2, \dots, G_d; v_1, v_2, \dots, v_d)$$

with  $G_1 = G_2 = \cdots = G_d = H$  and  $v_1 = v_2 = \cdots = v_d = w$ , i.e.,

$$G_d(H, w) = B(\underbrace{H, \dots, H}_{d \text{ times}}; \underbrace{w, \dots, w}_{d \text{ times}}).$$

**2.3. Corollary.** Let H be a connected graph with m edges. Then the revised edge Szeged index of the bridge graph  $G_d(H, w)$  is given by

$$Sz_e^*(G_d(H, w)) = dSz_e^*(H) + \frac{1}{4}d(d-1)(m+1)(dm+d+m-1)|Q_{H,w}| + d(d-1)(m+1)(l_H + r_H) + (d-1)\left(\frac{(m+1)d(md+m+d-2)}{6} + \frac{1}{4}\right),$$

where

$$\begin{split} l_{H} &= \sum_{e=uv \in L_{H,w}} \Big( m_{v}(e|H) + \frac{1}{2} m_{0}(e|H) \Big), \\ r_{H} &= \sum_{e=uv \in R_{H,w}} \Big( m_{u}(e|H) + \frac{1}{2} m_{0}(e|H) \Big). \end{split}$$

*Proof.* Since |E(H)| = m, we have  $|E(G_d(H, w))| = dm + d - 1$  and  $\alpha_i = \sum_{j=1}^i |E(H)| + i - 1 = (m+1)i - 1$ . Thus

$$\sum_{i=1}^{d-1} \alpha_i (|E(G_d(H, w))| - \alpha_i - 1)$$

$$= \sum_{i=1}^{d-1} [(m+1)i - 1][(dm+d-1) - ((m+1)i - 1) - 1]$$

$$= \sum_{i=1}^{d-1} [-(m+1)^2 i^2 + (m+1)^2 di - (m+1)d + 1]$$

$$= (d-1) \left( \frac{(m+1)d(md+m+d-5)}{6} + 1 \right).$$

By Theorem 2.1, it is easily seen that

$$Sz_{e}^{*}(G_{d}(H, w)) = \sum_{i=1}^{d} Sz_{e}^{*}(H) + \frac{1}{4} \sum_{i=1}^{d} (|E(G_{d}(H, w))|^{2} - |E(H)|^{2})|Q_{H,w}|$$

$$+ \sum_{i=1}^{d} (|E(G_{d}(H, w))| - |E(H)|)(l_{H} + r_{H})$$

$$+ \sum_{i=1}^{d-1} \alpha_{i}(|E(G_{d}(H, w))| - \alpha_{i} - 1)$$

$$+ \frac{1}{2}(d - 1) \left(|E(G_{d}(H, w))| - \frac{1}{2}\right)$$

$$= dSz_{e}^{*}(H) + \frac{1}{4} \sum_{i=1}^{d} ((dm + d - 1)^{2} - m^{2})|Q_{H,w}|$$

$$+ \sum_{i=1}^{d} (dm + d - 1 - m)(l_{H} + r_{H})$$

$$+ (d - 1) \left(\frac{(m + 1)d(md + m + d - 5)}{6} + 1\right)$$

$$+ \frac{1}{2}(d - 1) \left(dm + d - 1 - \frac{1}{2}\right)$$

$$= dSz_{e}^{*}(H) + \frac{1}{4}d(d - 1)(m + 1)(dm + d + m - 1)|Q_{H,w}|$$

$$+ d(d - 1)(m + 1)(l_{H} + r_{H})$$

$$+ (d - 1) \left(\frac{(m + 1)d(md + m + d - 2)}{6} + \frac{1}{4}\right),$$

as desired.

Let  $P_n = u_1 u_2 \dots u_n$  be the path on n vertices. Obviously,  $P_n = G_n(P_1, u_1)$ . By Corollary 2.3,

$$Sz_e^*(P_n) = (n-1)\left(\frac{n(n-2)}{6} + \frac{1}{4}\right) = \binom{n}{3} + \frac{1}{4}(n-1).$$

**2.4. Corollary.** The revised edge Szeged index of the bridge graph  $A_{d,n} = G_d(P_n, u_1)$  is given by

$$Sz_e^*(A_{d,n}) = d(3d-2)\binom{n}{3} + 2\binom{d}{2}\binom{n}{2} + n^2\binom{d+1}{3} - \frac{1}{4}(2nd^2 - 3nd + 1).$$

*Proof.* Note that  $Sz_e^*(P_n) = \binom{n}{3} + \frac{1}{4}(n-1)$  and

$$l_{P_n} + r_{P_n} = \sum_{e=uv \in L_{P_n, u_1}} \left( m_v(e|P_n) + \frac{1}{2} \right) + \sum_{e=uv \in R_{P_n, u_1}} \left( m_u(e|P_n) + \frac{1}{2} \right)$$
$$= \binom{n-1}{2} + \frac{1}{2}(n-1).$$

By Corollary 2.3, we have

$$\begin{split} Sz_e^*(A_{d,n}) &= dSz_e^*(P_n) + \frac{1}{4}d(d-1)n(d(n-1)+d+(n-1)-1) \cdot 0 \\ &+ d(d-1)n(l_{P_n} + r_{P_n}) + (d-1)\left(\frac{nd((n-1)d+(n-1)+d-2)}{6} + \frac{1}{4}\right) \\ &= d\left[\binom{n}{3} + \frac{1}{4}(n-1)\right] + d(d-1)n\left[\binom{n-1}{2} + \frac{1}{2}(n-1)\right] \\ &+ (d-1)\left[\frac{n^2d(d+1)}{6} - \frac{1}{4}(2nd-1)\right] \\ &= d\left[\binom{n}{3} + \frac{1}{4}(n-1)\right] + 2\binom{d}{2}\left[3\binom{n}{3} + \binom{n}{2}\right] \\ &+ n^2\binom{d+1}{3} - \frac{1}{4}(d-1)(2nd-1) \\ &= d(3d-2)\binom{n}{3} + 2\binom{d}{2}\binom{n}{2} + n^2\binom{d+1}{3} - \frac{1}{4}(2nd^2 - 3nd + 1), \end{split}$$

as desired.

Let  $C_n = u_1 u_2 \cdots u_n u_1$  be the cycle on n vertices.

**2.5. Corollary.** The revised edge Szeged index of the bridge graph  $T_{d,n} = G_d(C_n, u_1)$  is given by

$$Sz_e^*(T_{d,n}) = \begin{cases} \frac{1}{4}dn^3 + \frac{1}{4}d(d-1)(n+1)(dn+d+2n^2-n-1) & \text{if $n$ is odd,} \\ + (d-1)\Big(\frac{(n+1)d(nd+n+d-2)}{6} + \frac{1}{4}\Big) & \text{if $n$ is odd,} \\ \frac{1}{4}dn^3 + \frac{1}{2}dn^2(d-1)(n+1) & \text{if $n$ is even.} \\ + (d-1)\Big(\frac{(n+1)d(nd+n+d-2)}{6} + \frac{1}{4}\Big) & \text{if $n$ is even.} \end{cases}$$

*Proof.* By direct calculation, we have  $Sz_e^*(C_n) = \frac{n^3}{4}$ . If n is odd, then  $|Q_{C_n,u_1}| = 1$  and

$$l_{C_n} + r_{C_n} = \sum_{e=uv \in L_{C_n, u_1}} \left( m_v(e|C_n) + \frac{1}{2} \right) + \sum_{e=uv \in R_{C_n, u_1}} \left( m_u(e|C_n) + \frac{1}{2} \right)$$
$$= \frac{1}{2} n(n-1).$$

By Corollary 2.3, we have

$$Sz_e^*(T_{d,n}) = d \cdot \frac{n^3}{4} + \frac{1}{4}d(d-1)(n+1)(dn+d+n-1) \cdot 1$$
$$+ d(d-1)(n+1)\frac{1}{2}n(n-1)$$
$$+ (d-1)\left(\frac{(n+1)d(nd+n+d-2)}{6} + \frac{1}{4}\right)$$
$$= \frac{1}{4}dn^3 + \frac{1}{4}d(d-1)(n+1)(dn+d+2n^2-n-1)$$
$$+ (d-1)\left(\frac{(n+1)d(nd+n+d-2)}{6} + \frac{1}{4}\right).$$

If n is even, then  $|Q_{C_n,u_1}| = 0$ ,  $l_{C_n} + r_{C_n} = \frac{n^2}{2}$ , and arguing as above, we have the desired expression for  $Sz_e^*(T_{d,n})$ .

#### Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11071089).

#### References

- Cai, X. and Zhou, B. Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63, 133–144, 2010.
- [2] Dong, H., Zhou, B. and Trinajstić, N. A novel version of the edge-Szeged index, Croat. Chem. Acta 84, 543-545, 2011.
- [3] Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27, 9-15, 1994.
- [4] Gutman, I. and Ashrafi, A. R. The edge version of the Szeged index, Croat. Chem. Acta 81, 263–266, 2008.
- [5] Khadikar, P.V., Karmarkar, S., Agrawal, V.K., Singh, J., Shrivastava, A., Lukovits, I. and Diudea, M.V. Szeged index – Applications for drug modeling, Lett. Drug Design Disc. 2, 606–624, 2005.
- [6] Khalifeh, M. H., Yousefi-Azari, H., Ashrafi, A. R. and Gutman, I. The edge Szeged index of product graphs, Croat. Chem. Acta 81, 277–281, 2008.
- [7] Mansour, T. and Schork, M. The vertex PI index and Szeged index of bridge graphs, Discrete Appl. Math. 157, 1600–1606, 2009.
- [8] Mansour, T. and Trinajstić, N. The revised Szeged index of bridge graphs, to appear.
- [9] Randić, M. On generalization of Wiener index to cyclic structures, Acta Chim. Slov. 49, 483-496, 2002.
- [10] Trinajstić, N. Chemical Graph Theory, 2nd edn. (CRC Press, Boca Raton, 1992).
- [11] Vukičević, D. Note on the graphs with the greatest edge-Szeged index, MATCH Commun. Math. Comput. Chem. 61, 673–681, 2009.
- [12] Wiener, H. Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 7–20, 1947.
- [13] Xing, R. and Zhou, B. On the revised Szeged index of bridge graphs, Comptes Rendus Math. 349, 489–492, 2011.