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ÖZ 

Deneyin tasarımı, yeni bir süreç geliştirmek veya mevcut bir süreci geliştirmek için kilit bir rol oynar. Literatürde 

sürekli kalite iyileştirme için faktöriyel deneysel tasarımları kullanılmıştır. Bu makalede, tasarım faktörlerinin 

optimizasyonu için bir deney verisi analizi yapmak amacıyla faktöriyel deney tasarımına sahip yeni bir yöntem 

sunulmaktadır. Önerilen yöntem beş ana adıma sahiptir. İlk adım deney öncesi planlama ile ilgilidir. İkinci adım 

faktöriyel tasarıma sahip deneysel aşamadır. Üçüncü adım bir deneye ait verileri analiz eder. Daha sonra, tasarım 

faktörlerinin en uygun değerlerini elde etmek için faktöriyel tasarıma dayalı optimizasyon modeli ilk defa 

geliştirilmiştir. Son adım deneyden elde edilen sonuçları doğrulamak için sonuçlar ve tavsiyeler adımdır. Son 

olarak, güncel literatürdeki sayısal bir örnek için farklı hedef değerler kullanılarak karşılaştırma çalışmaları 

yapılmıştır. Ayrıca, önerilen faktöriyel tasarıma dayalı süreç optimizasyon modelinin belirtilen hedef değere göre 

daha fazla varyansı azaltabileceği sonucuna varılmıştır. 
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Factorial Design-Based Process Optimization for Continuous 

Quality Improvement 

 
ABSTRACT 

The design of the experiment plays a key role to develop a new process or improve an existing process. In the 

literature, factorial experimental designs are used for continuous quality improvement. This paper presents a novel 

methodology with a factorial experimental design in order to conduct an experiment data analysis for the 

optimization of design factors. The proposed methodology has five main steps. The first step is related to pre-

experimental planning. The second step is the experimental phase with a factorial design. The third step analyzes 

data for an experiment. Next, a factorial design-based optimization model is firstly developed to get the optimal 

settings of design factors. The last step is the conclusions and recommendations step in order to validate the 

conclusions from the experiment. Finally, comparison studies are performed using the different target values for a 

numerical example from the current literature. In addition, it was concluded that the proposed factorial design-

based process optimization model could reduce more variance based on the specified target value. 

Keywords- Quality Engineering, Factorial Experimental Design, Specified Target Value, Process Optimization 
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I. INTRODUCTORY REMARKS 

Factorial designs are widely used for many processes [1]. A factorial design is one of the experimental 

design techniques, and it has k design factors and each design factor has two coded levels, which are low coded 

and high coded levels. This type of factorial experimental design is known as a 2k factorial design. A 

comprehensive review of factorial designs was provided by Montgomery [1]. Besides, factorial design-based 

process optimization is to obtain optimum operating conditions of design factors by using a factorial design. 

In the literature, Vining and Myers [2] proposed the dual response model, which is to minimize the 

estimated process variance when the estimated process mean value is at the target value. They used response 

surface design for the design phase and the Lagrange multiplier method for the optimization method. Then Del 

Castillo and Montgomery [3] enhanced the dual response approach with a generalized reduced gradient method 

while considering response surface designs. Besides, Lin and Tu [4] proposed a mean-squared error (MSE) model 

while considering the process bias and variance at the same time. They used a standard subroutine in a nonlinear 

programming technique. Later, Copeland and Nelson [5] improved the MSE model using the desired distance for 

the process bias, and they demonstrated the Nelder-Mead simplex method. 

While considering multiple criteria optimization problems, Ames et al. [6] offered a quadratic loss 

function-based process optimization model for response surface models to find the optimal setting for design 

factors. Along the same lines, Borror [7] introduced an optimization model with a desirability function for the 

designed experiment. For flexibility, Kim and Lin [8] introduced a fuzzy optimization model to optimize a dual 

response system when incorporating membership functions. Besides, Kim and Cho [9] developed an integrated 

design optimization model to incorporate the tolerances on design parameters with tolerance-related costs. 

Moreover, Kim and Cho [10] introduced a priority-based optimization model using a nonlinear goal programming 

technique for the response surface approach. While considering unusual weights for the process variance and bias, 

Tang and Xu [11] proposed another form of the dual response model with the unified formulation. Besides, they 

used a goal programming approach to optimize the dual response system. 

Ding et al. [12] and Shin et al. [13] offered the weighted sum method with the MSE approach in the 

concept of multi-objective optimization while considering second-order polynomial approximation models. 

Koksoy [14] and Park et al. [15] studied the weighted MSE models by using fourth-order polynomial functions 

for the multi-objective optimization problems. In addition, Shaibu and Cho [16] developed an optimization model 

while considering the desired target value and the process variance using higher-order approximation models. 

They also developed dual response surface optimization models for each of the three classes of quality 

characteristics. Next, Costa [17] introduced a model by using each quality interest from the specified target values 

to minimize the objective function. Costa [17] also reviewed the optimization methods for dual response models 

using response surface designs. Then Park [18] applied to the bootstrap method to obtain joint confidence regions 

into the optimum operating conditions. Park [18] also introduced Bonferroni and multivariate normal 

approximation. Furthermore, Shin et al. [19] proposed an optimization model to obtain the optimal pharmaceutical 

formulation with the time series target profiles for a pharmaceutical process. 

Recent studies in this area were conducted by Chan and Ozdemir [20], Ozdemir and Cho [21, 22], Lu et 

al. [23], Chartterjee et al. [24], Ouyang et al. [25], Ozdemir [26], and Ozdemir and Cho [27] illustrated a wide 

spectrum of optimization models, including response surface optimization models, interval programming models, 

dual response approaches for process optimization, and design optimization models for non-standard experimental 

design regions.  

As shown in the current literature, there is no research attempt to develop a factorial design-based process 

optimization model to obtain optimum levels of design factors. Therefore, there are three main research 

contributions in this paper. First, the estimated response functions of process mean and variance are obtained by 

using the least-square method for a factorial design. Second, a factorial design-based process optimization model 

is firstly proposed to minimize the estimated process variance response function as possible while satisfying the 

three constraints. Finally, a numerical example from the current literature is given to optimize the design factors 

using the proposed factorial design-based process optimization model. Besides, comparison studies are performed 
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using different target values. It is also observed that the selection of the target value could change the optimum 

levels of design factors while minimizing the estimated process variance. 

The rest of this paper is organized as follows: First, the proposed methodology is presented in Section II 

with five steps. Then a numerical example is conducted in Section III. Comparison studies are also performed. 

Next, the discussion section is presented in Section IV. Finally, conclusions and further studies are drawn in 

Section V. 

II. PROPOSED METHODOLOGY 

The proposed methodology includes five steps, namely the pre-experimental planning step, the 

experimental step, the data analysis step, the optimization step, and the conclusions and recommendations step. 

Each of the steps is decribed in what follows. 

A. The Pre-Experimental Planning Step 

The first step of the proposed methodology is pre-experimental planning, and this step is related to how 

to increase the process of knowledge. Indeed, the process of knowledge is the key design factors that require further 

detailed analyses. The experimenter or researcher should choose design factors at two levels based on the 

experiences or prior knowledge about the product or process. Besides, design factors influence the product or 

process performance measure. This performance measure is a response variable. It is also noted that the response 

variable should be selected depending on key design factors for the process in this step. 

B. The Experimental Step 

A factorial design is chosen to experiment with process optimization in the experimental step. Besides, a 

number of experimental runs and the selection of a model order are important to the selection of experimental 

design. For the factorial design, the number of experimental runs is fewer and the first-order model with interaction 

terms is used. Therefore, the factorial design is a good choice for the experimenter or researcher. Notice that the 

factorial design is denoted geometrically as a cube or a square. 

C. The Data Analysis Step 

The least-square method is used to analyze data from a factorial design in this paper. For this particular 

purpose, the estimated process mean function is found in the following way:  
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the least-square method. x denotes the vector of the design factors of the experiment. In Equation (1), a and A 

represent the estimated regression coefficients.  

The estimated process variance function is expressed as follows: 
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where 11 22
ˆ ˆ ˆ... 0nn       due to the first-order and interaction terms, and ˆi  is the regression coefficient. In 

Equation (2), b and B represent the estimated regression coefficients.  

D. The Optimization Step 

The variance reduction is an important issue in quality engineering problems. Therefore, the objective 

function minimizes the estimated process variance function as follows: 

2ˆMinimize ( ) x  (3) 

The proposed process optimization model has three constraints. 

1. The process target related constraint: The estimated process mean is desired at the specified target 

value. This constraint is important to meet the customer’s satisfaction. This constraint is denoted as follows:  

ˆ( )  x  (4) 

where   represents the specified target value by the customer. 

2. Prevention of non-meaningful results: The estimated variance should not be a negative value. Thus, the 

constraint is 

2ˆ ( ) 0 x  (5) 

3. Bounds for each design factor: A factorial experimental design consists of -1 and +1 coded levels for 

each design factor. Thus, an optimal solution to design factors could be found between -1 and +1 coded levels. 

Notice that a design region is either a square or n-cube. The bounds are 

1 1 and 1,  2,  ...,  ix i n      (6) 

Table 1 shows the factorial design-based proposed process optimization model. 

Table 1. The proposed factorial design-based process optimization model 

Minimize 
2

0
ˆˆ ( ) T T   x x b x Bx  

Subject to  

I 0
ˆˆ( ) T T

        x x a x Ax  

II 
2

0
ˆˆ ( ) 0 0T T     x x b x Bx  

III 1 1 and 1,  2,  ...,  ix i n      

E. The Conclusions and Recommendations Step 

Once steps one to four have been completed, the experimenter or researcher coulda conclude from the 

results of the factorial experimental design and give some recommendations about the process. The verification 

study is recommended for different target values in order to validate the results of the factorial design. 

III.  NUMERICAL EXAMPLE 

A numerical example was used in this paper from Myers et al. [28]. Engineers at a semiconductor 

manufacturer conducted a 24 factorial design in a vertical oxidation furnace [28]. The aim of the experiment was 

to analyze the effects of the four design factors in oxide thickness [28]. The four design factors are specified as 

temperature (x1), time (x2), pressure (x3), and gas flow (x4). The experiment measured the oxide thickness on all 
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four wafers. Table 2 shows the data for the experiment. The design region is an n-cube because of the 24 factorial 

experimental design. In Table 2, the four columns (y1, y2, y3, and y4) are the oxide thickness measurements on each 

wafer, and the last two columns ( y  and s2) are the sample mean and sample variance of thickness measurements 

on the four wafers in each experimental run. Besides, the Maple [29] software was used for the data analysis and 

optimization steps. 

Table 2. The factorial experimental design for the oxide thickness experiment (please see Myers et al. [28]) 

Standard 

Order 

Randomization 

Order 

x1 

(Temperature) 

x2 

(Time) 

x3 

(Pressure) 

x4 

(Gas Flow) 
y1 y2 y3 y4 y  s2 

1 10  -1  -1  -1  -1 378 376 379 379 378 2.00 

2 7 +1  -1  -1  -1 415 416 416 417 416 0.67 

3 3  -1 +1  -1  -1 380 379 382 383 381 3.33 

4 9 +1 +1  -1  -1 450 446 449 447 448 3.33 

5 6  -1  -1 +1  -1 375 371 373 369 372 6.67 

6 2 +1  -1 +1  -1 391 390 388 391 390 2.00 

7 5  -1 +1 +1  -1 384 385 386 385 385 0.67 

8 4 +1 +1 +1  -1 426 433 430 431 430 8.67 

9 12  -1  -1  -1 +1 381 381 375 383 380 12.00 

10 16 +1  -1  -1 +1 416 420 412 412 415 14.67 

11 8  -1 +1  -1 +1 375 372 371 370 371 0.67 

12 1 +1 +1  -1 +1 445 448 443 448 446 6.00 

13 14  -1  -1 +1 +1 377 377 379 379 378 1.33 

14 15 +1  -1 +1 +1 391 391 386 400 392 34.00 

15 11  -1 +1 +1 +1 375 376 376 377 376 0.67 

16 13 +1 +1 +1 +1 430 430 428 428 429 1.33 

The estimated mean response function was found using Equation (1) as follows: 

1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4

ˆ ( ) 399.19 21.56 9.06 5.19 0.81 8.44 5.31 0.56

           +1.94 1.94 0.56

x x x x x x x x x x

x x x x x x

        

 

x
 (7) 

The estimated variance response function was found using Equation (2) as follows: 

1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4

ˆ ( ) 6.13 2.71 3.04 0.79 2.71 0.96 1.87 2.46

         1.04 3.62 0.29

x x x x x x x x x x

x x x x x x

        

  

x
 (8) 

The specified target value is 400 for the oxide thickness experiment. Table 3 shows the proposed factorial 

design-based process optimization model with Equations (7-8). The Maple [29] sequential quadratic programming 

solver was used to obtain the results of design factors in Tables 4-6. The sequential quadratic programming was 

used because of the interaction terms in Equations (7-8). 

Table 3. The proposed factorial design-based process optimization model for the oxide thickness experiment 

Minimize 
1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4

6.13 2.71 3.04 0.79 2.71 0.96 1.87 2.46

1.04 3.62 0.29

x x x x x x x x x x

x x x x x x

      

  
 

Subject to  

Constraint I 
1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4

399.19 21.56 9.06 5.19 0.81 8.44 5.31 0.56

+1.94 1.94 0.56 400

x x x x x x x x x x

x x x x x x

      

  
 

Constraint II 
1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4

6.13 2.71 3.04 0.79 2.71 0.96 1.87 2.46

1.04 3.62 0.29 0

x x x x x x x x x x

x x x x x x

      

   
 

Constraint III 1 1 and 1,  2,  3, 4ix i      
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The results of design factors are shown in Table 4 for the factorial experimental design where the specified 

target value is 400.  

Table 4. Results of design factors where 400   

Design factor Optimal coded level 

x1 (Temperature) -0.111 

x2 (Time) 1.000 

x3 (Pressure) 1.000 

x4 (Gas Flow) 1.000 

The estimated variance response function is obtained at 0.963 for the oxide thickness experiment. Tables 

5 and 6 show the results of design factors while specifying different target values. For example, the process 

variance is 1.082E-15 (almost zero) where the specified target value is 375. On the other hand, the process variance 

is 1.208 where the specified target value is 445. Thus, the choice of the specified target value is important to reduce 

the process variance and meet the customer’s expectation. 

Table 5. Results of design factors where 400   

Design factor 

Optimal coded 

level 

 for 375   

Optimal coded 

level 

for 380   

Optimal coded 

level 

for 385   

Optimal coded 

level 

for 390   

Optimal coded 

level 

for 395   

x1 (Temperature) -0.945 -0.864 -0.662 -0.477 -0.306 

x2 (Time) 0.975 0.508 0.702 0.840 0.977 

x3 (Pressure) -0.725 0.860 0.806 0.918 0.997 

x4 (Gas Flow) 1.000 1.000 0.999 0.999 0.975 

 Objective 

function value 
1.082E-15 4.317E-11 1.291E-13 9.992E-16 1.544E-12 

Table 6. Results of design factors where 400   

Design factor 

Optimal coded 

level 

for 405   

Optimal coded 

level 

for 415   

Optimal coded 

level 

for 425   

Optimal coded 

level  

for 435   

Optimal coded 

level  

for 445   

x1 (Temperature) 0.023 0.178 1.000 1.000 1.000 

x2 (Time) 1.000 1.000 -0.403 0.168 0.739 

x3 (Pressure) 0.426 -1.000 -1.000 -1.000 -1.000 

x4 (Gas Flow) 1.000 0.871 -1.000 -1.000 -1.000 

Objective function 

value 
2.064 3.161 0.454 0.831 1.208 

Notice that no feasible solution could be found for the proposed factorial design-based process 

optimization model where the specified target value is, for example, 500 or 370. This situation is a limitation of 

the proposed process optimization model. The achievement of the proposed process optimization model is based 

on the specified target value. 

IV. DISCUSSIONS 

R2 (coefficient of determination) is 99.68% for the estimated mean response function. Besides, the 

estimated mean response function is well-estimated based on the R2 value. Each level of the temperature factor 

affects  21.56 for the oxide thickness. This factor is important to satisfy the process target related constraint. The 

optimum levels of the temperature factor varied based on the specified target value. Then each level of the time 

factor affects  9.06 for the oxide thickness. This design factor is important as well. In general, the optimum levels 
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of the time factor were obtained at high levels. Next, pressure is an important factor to satisfy the process target 

related constraint. Each level of the pressure factor affects 5.19 for the oxide thickness. The optimum levels of 

the pressure design factors were usually obtained at high levels when 400  . On the other hand, the optimum 

levels of the pressure design factor were usually obtained at low levels when 400  . Besides, the gas flow 

design factor is not more important than other design factors. It is also noted that the interaction term of the 

temperature and time design factors is important. Each level of this interaction term also affects  8.44 for the 

oxide thickness. The optimum levels of the gas flow design factors were always obtained at high levels when 

400  . On the other hand, the optimum levels of the gas flow design factor were often obtained at low levels 

when 400  . Besides, the interaction term of the temperature and pressure design factors is important. Each 

level of this interaction term also affects 5.31 for the experiment. Next, the interaction term of the time and 

pressure design factors, and the interaction term of the time and gas flow design factors are important, and each 

level of these interaction terms affects  1.94 for the experiment. Other interaction terms are not significant for 

the oxide thickness. 

R2 is 71.36% for the estimated variance response function, and this value shows a good performance to 

estimate the process variance. Based on the main effects of the estimated variance response, the temperature, time, 

and gas flow design factors are significant to reduce the estimated process variance in the objective function. 

Besides, the interaction term of the temperature and pressure design factors, the interaction term of the temperature, 

and gas flow design factors, and the interaction term of the time and gas flow are significant to reduce the estimated 

process variance of the oxide thickness. It is also noticed that the process target related constraint affects the 

objective function of the proposed optimization model. The smallest estimated process variance value was 

obtained when 390  . 

V. CONCLUDING REMARKS AND FURTHER STUDIES 

Factorial designs are highly effective to analyze design factors for many process. For this particular 

purpose, a five-phased methodology is proposed in this paper for continuous quality improvement. For the 

experimental step, a two-level factorial experimental design is selected while considering the first-order and 

interaction terms. The process mean and variance functions are obtained with the experimental data from the two-

level factorial experimental design. Then a factorial design-based process optimization model is developed to 

obtain the optimal settings of design factors. In this paper, a numerical example is used from the current literature 

(please see Myers et al. [28]). The process variance was obtained as 1.082E-15 (almost zero) where the specified 

target value was 375. On the contrary, the process variance was found as 1.208 where the specified target value 

was 445. Therefore, the results of this example show that the proposed methodology is useful to reduce the process 

variance for the experiment. Note that the specified target value is an important parameter to find a feasible solution 

setting for the proposed process optimization model.  

There are three main limitations of this study. First of all, this paper just focused on the main and 

interaction effects of the regression model because two coded levels-based factorial designs analyze the main and 

interaction effects. For example, quadratic effects are not analyzed by using two coded levels-based factorial 

designs. Second, the proposed methodology works well for a response variable. For more than one variable, the 

proposed methodology is not effective to obtain optimum conditions. Finally, the results of design factors are 

based on the specified target value. 

For further studies, an extension of this paper could be to build a second-order model to analyze the data. 

For this particular purpose, a response surface design could be used for the proposed methodology. Another 

extension could be to focus on more than one response variable for some process optimization problems. In 

addition, the MSE model could be used in the optimization step in order to eliminate a limitation of the proposed 

process optimization model in this paper. 
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