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Deneyin tasarimi, yeni bir siire¢ gelistirmek veya mevcut bir siireci gelistirmek i¢in kilit bir rol oynar. Literatiirde
stirekli kalite iyilestirme i¢in faktoriyel deneysel tasarimlari kullanilmigtir. Bu makalede, tasarim faktorlerinin
optimizasyonu i¢in bir deney verisi analizi yapmak amaciyla faktoriyel deney tasarimina sahip yeni bir yontem
sunulmaktadir. Onerilen yontem bes ana adima sahiptir. ilk adim deney &ncesi planlama ile ilgilidir. ikinci adim
faktoriyel tasarima sahip deneysel asamadir. Ugiincii adim bir deneye ait verileri analiz eder. Daha sonra, tasarim
faktorlerinin en uygun degerlerini elde etmek igin faktoriyel tasarima dayali optimizasyon modeli ilk defa
gelistirilmistir. Son adim deneyden elde edilen sonuglari dogrulamak i¢in sonuglar ve tavsiyeler adimdir. Son
olarak, giincel literatiirdeki sayisal bir 6rnek i¢in farkli hedef degerler kullanilarak karsilastirma c¢aligmalari
yapilmistir. Ayrica, 6nerilen faktoriyel tasarima dayali siire¢ optimizasyon modelinin belirtilen hedef degere gore
daha fazla varyansi azaltabilecegi sonucuna varilmistir.
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Factorial Design-Based Process Optimization for Continuous
Quality Improvement

ABSTRACT

The design of the experiment plays a key role to develop a new process or improve an existing process. In the
literature, factorial experimental designs are used for continuous quality improvement. This paper presents a novel
methodology with a factorial experimental design in order to conduct an experiment data analysis for the
optimization of design factors. The proposed methodology has five main steps. The first step is related to pre-
experimental planning. The second step is the experimental phase with a factorial design. The third step analyzes
data for an experiment. Next, a factorial design-based optimization model is firstly developed to get the optimal
settings of design factors. The last step is the conclusions and recommendations step in order to validate the
conclusions from the experiment. Finally, comparison studies are performed using the different target values for a
numerical example from the current literature. In addition, it was concluded that the proposed factorial design-
based process optimization model could reduce more variance based on the specified target value.

Keywords- Quality Engineering, Factorial Experimental Design, Specified Target Value, Process Optimization
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I. INTRODUCTORY REMARKS

Factorial designs are widely used for many processes [1]. A factorial design is one of the experimental
design techniques, and it has k design factors and each design factor has two coded levels, which are low coded
and high coded levels. This type of factorial experimental design is known as a 2% factorial design. A
comprehensive review of factorial designs was provided by Montgomery [1]. Besides, factorial design-based
process optimization is to obtain optimum operating conditions of design factors by using a factorial design.

In the literature, Vining and Myers [2] proposed the dual response model, which is to minimize the
estimated process variance when the estimated process mean value is at the target value. They used response
surface design for the design phase and the Lagrange multiplier method for the optimization method. Then Del
Castillo and Montgomery [3] enhanced the dual response approach with a generalized reduced gradient method
while considering response surface designs. Besides, Lin and Tu [4] proposed a mean-squared error (MSE) model
while considering the process bias and variance at the same time. They used a standard subroutine in a nonlinear
programming technique. Later, Copeland and Nelson [5] improved the MSE model using the desired distance for
the process bias, and they demonstrated the Nelder-Mead simplex method.

While considering multiple criteria optimization problems, Ames et al. [6] offered a quadratic loss
function-based process optimization model for response surface models to find the optimal setting for design
factors. Along the same lines, Borror [7] introduced an optimization model with a desirability function for the
designed experiment. For flexibility, Kim and Lin [8] introduced a fuzzy optimization model to optimize a dual
response system when incorporating membership functions. Besides, Kim and Cho [9] developed an integrated
design optimization model to incorporate the tolerances on design parameters with tolerance-related costs.
Moreover, Kim and Cho [10] introduced a priority-based optimization model using a nonlinear goal programming
technique for the response surface approach. While considering unusual weights for the process variance and bias,
Tang and Xu [11] proposed another form of the dual response model with the unified formulation. Besides, they
used a goal programming approach to optimize the dual response system.

Ding et al. [12] and Shin et al. [13] offered the weighted sum method with the MSE approach in the
concept of multi-objective optimization while considering second-order polynomial approximation models.
Koksoy [14] and Park et al. [15] studied the weighted MSE models by using fourth-order polynomial functions
for the multi-objective optimization problems. In addition, Shaibu and Cho [16] developed an optimization model
while considering the desired target value and the process variance using higher-order approximation models.
They also developed dual response surface optimization models for each of the three classes of quality
characteristics. Next, Costa [17] introduced a model by using each quality interest from the specified target values
to minimize the objective function. Costa [17] also reviewed the optimization methods for dual response models
using response surface designs. Then Park [18] applied to the bootstrap method to obtain joint confidence regions
into the optimum operating conditions. Park [18] also introduced Bonferroni and multivariate normal
approximation. Furthermore, Shin et al. [19] proposed an optimization model to obtain the optimal pharmaceutical
formulation with the time series target profiles for a pharmaceutical process.

Recent studies in this area were conducted by Chan and Ozdemir [20], Ozdemir and Cho [21, 22], Lu et
al. [23], Chartterjee et al. [24], Ouyang et al. [25], Ozdemir [26], and Ozdemir and Cho [27] illustrated a wide
spectrum of optimization models, including response surface optimization models, interval programming models,
dual response approaches for process optimization, and design optimization models for non-standard experimental
design regions.

As shown in the current literature, there is no research attempt to develop a factorial design-based process
optimization model to obtain optimum levels of design factors. Therefore, there are three main research
contributions in this paper. First, the estimated response functions of process mean and variance are obtained by
using the least-square method for a factorial design. Second, a factorial design-based process optimization model
is firstly proposed to minimize the estimated process variance response function as possible while satisfying the
three constraints. Finally, a numerical example from the current literature is given to optimize the design factors
using the proposed factorial design-based process optimization model. Besides, comparison studies are performed
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using different target values. It is also observed that the selection of the target value could change the optimum
levels of design factors while minimizing the estimated process variance.

The rest of this paper is organized as follows: First, the proposed methodology is presented in Section Il
with five steps. Then a numerical example is conducted in Section 111. Comparison studies are also performed.
Next, the discussion section is presented in Section IV. Finally, conclusions and further studies are drawn in
Section V.

Il. PROPOSED METHODOLOGY

The proposed methodology includes five steps, namely the pre-experimental planning step, the
experimental step, the data analysis step, the optimization step, and the conclusions and recommendations step.
Each of the steps is decribed in what follows.

A. The Pre-Experimental Planning Step

The first step of the proposed methodology is pre-experimental planning, and this step is related to how
to increase the process of knowledge. Indeed, the process of knowledge is the key design factors that require further
detailed analyses. The experimenter or researcher should choose design factors at two levels based on the
experiences or prior knowledge about the product or process. Besides, design factors influence the product or
process performance measure. This performance measure is a response variable. It is also noted that the response
variable should be selected depending on key design factors for the process in this step.

B. The Experimental Step

A factorial design is chosen to experiment with process optimization in the experimental step. Besides, a
number of experimental runs and the selection of a model order are important to the selection of experimental
design. For the factorial design, the number of experimental runs is fewer and the first-order model with interaction
terms is used. Therefore, the factorial design is a good choice for the experimenter or researcher. Notice that the
factorial design is denoted geometrically as a cube or a square.

C. The Data Analysis Step

The least-square method is used to analyze data from a factorial design in this paper. For this particular
purpose, the estimated process mean function is found in the following way:

(24
% A b 6,12 .. 412
X a i )
A(X) =@, +x"a+x Ax wherex=| * |, a=| | and A= : 1)
. n dn1/2dn2/2 dnn
Xn al‘l
where &, = a,, =...=@&,, =0 due to the first-order and interaction terms, and ¢, is the regression coefficient in

the least-square method. x denotes the vector of the design factors of the experiment. In Equation (1), a and A
represent the estimated regression coefficients.

The estimated process variance function is expressed as follows:
X b

. X 3
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where ,311 = ,322 =..= Am =0 due to the first-order and interaction terms, and ﬁi is the regression coefficient. In
Equation (2), b and B represent the estimated regression coefficients.

D. The Optimization Step

The variance reduction is an important issue in quality engineering problems. Therefore, the objective
function minimizes the estimated process variance function as follows:

Minimize 67 (x) (3)
The proposed process optimization model has three constraints.

1. The process target related constraint: The estimated process mean is desired at the specified target
value. This constraint is important to meet the customer’s satisfaction. This constraint is denoted as follows:

A(X) = p, (4)
where g represents the specified target value by the customer.

2. Prevention of non-meaningful results: The estimated variance should not be a negative value. Thus, the
constraint is

63(x)=0 ®)
3. Bounds for each design factor: A factorial experimental design consists of -1 and +1 coded levels for

each design factor. Thus, an optimal solution to design factors could be found between -1 and +1 coded levels.
Notice that a design region is either a square or n-cube. The bounds are

-1<x <+landi=1 2, ..., n (6)

Table 1 shows the factorial design-based proposed process optimization model.

Table 1. The proposed factorial design-based process optimization model

Minimize 2(X) = B, +X"b+x"Bx
Subject to
| A(X)=p, = Gy +X a+X AX=p,

1" 32(x)20= B, +X b+XxBx=0

11 -1<x <+landi=1 2, .., n

E. The Conclusions and Recommendations Step

Once steps one to four have been completed, the experimenter or researcher coulda conclude from the
results of the factorial experimental design and give some recommendations about the process. The verification
study is recommended for different target values in order to validate the results of the factorial design.

1. NUMERICAL EXAMPLE

A numerical example was used in this paper from Myers et al. [28]. Engineers at a semiconductor
manufacturer conducted a 2* factorial design in a vertical oxidation furnace [28]. The aim of the experiment was
to analyze the effects of the four design factors in oxide thickness [28]. The four design factors are specified as
temperature (x1), time (x2), pressure (xs), and gas flow (x4). The experiment measured the oxide thickness on all
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four wafers. Table 2 shows the data for the experiment. The design region is an n-cube because of the 2* factorial
experimental design. In Table 2, the four columns (y1, Y, Y3, and y.) are the oxide thickness measurements on each
wafer, and the last two columns (y and s?) are the sample mean and sample variance of thickness measurements
on the four wafers in each experimental run. Besides, the Maple [29] software was used for the data analysis and
optimization steps.

Table 2. The factorial experimental design for the oxide thickness experiment (please see Myers et al. [28])

Standard Randomization X1 X2 X3 X4 v 2
Order Order (Temperature) (Time) (Pressure) (GasFlow) Y Y2 ¥ ¥ y S
1 10 -1 -1 -1 -1 378 376 379 379 378 2.00
2 7 +1 -1 -1 -1 415 416 416 417 416  0.67
3 3 -1 +1 -1 -1 380 379 382 383 381 333
4 9 +1 +1 -1 -1 450 446 449 447 448  3.33
5 6 -1 -1 +1 -1 375 371 373 369 372 6.67
6 2 +1 -1 +1 -1 391 390 388 391 390 2.00
7 5 -1 +1 +1 -1 384 385 386 385 385 0.67
8 4 +1 +1 +1 -1 426 433 430 431 430 8.67
9 12 -1 -1 -1 +1 381 381 375 383 380 12.00
10 16 +1 -1 -1 +1 416 420 412 412 415 14.67
11 8 -1 +1 -1 +1 375 372 371 370 371 0.67
12 1 +1 +1 -1 +1 445 448 443 448 446  6.00
13 14 -1 -1 +1 +1 377 377 379 379 378 1.33
14 15 +1 -1 +1 +1 391 391 386 400 392 34.00
15 11 -1 +1 +1 +1 375 376 376 377 376 0.67
16 13 +1 +1 +1 +1 430 430 428 428 429 1.33

The estimated mean response function was found using Equation (1) as follows:

A(X) =399.19 + 21.56x, +9.06x, —5.19x, —0.81x, +8.44x,X, —5.31x X, + 0.56 X,

7
+1.94x,%, —1.94x%,%, + 0.56X,X, )

The estimated variance response function was found using Equation (2) as follows:

6(x) =6.13+2.71x, —3.04%, +0.79x, + 2.71x, —0.96x,X, +1.87%,X; + 2.46X,X, ®)

—1.04x,X, —3.62X,X, —0.29X,X,

The specified target value is 400 for the oxide thickness experiment. Table 3 shows the proposed factorial
design-based process optimization model with Equations (7-8). The Maple [29] sequential quadratic programming
solver was used to obtain the results of design factors in Tables 4-6. The sequential quadratic programming was
used because of the interaction terms in Equations (7-8).

Table 3. The proposed factorial design-based process optimization model for the oxide thickness experiment

Minimize 6.13+2.71x, —3.04x, +0.79X, + 2.71x, — 0.96X,X, +1.87X,X, + 2.46XX,
—-1.04x,X; —3.62%,X, —0.29x%,X,

Subject to

Constraint | 399.19 + 21.56x, +9.06x, —5.19x, — 0.81x, +8.44x,X, —5.31xX, +0.56X,X,
+1.94x,%, —1.94X,x, +0.56x,X, = 400

Constraint 11 6.13+2.71x, —3.04x, +0.79X, + 2.71x, — 0.96X,X, +1.87XX, + 2.46X,X,
—1.04x,X; —3.62X,X, —0.29%,X, >0

Constraint 111 -1<x <+landi=1 2 3,4
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The results of design factors are shown in Table 4 for the factorial experimental design where the specified
target value is 400.

Table 4. Results of design factors where 2 =400

Design factor Optimal coded level
X1 (Temperature) -0.111
X (Time) 1.000
X3 (Pressure) 1.000
X4 (Gas Flow) 1.000

The estimated variance response function is obtained at 0.963 for the oxide thickness experiment. Tables
5 and 6 show the results of design factors while specifying different target values. For example, the process
variance is 1.082E-15 (almost zero) where the specified target value is 375. On the other hand, the process variance
is 1.208 where the specified target value is 445. Thus, the choice of the specified target value is important to reduce
the process variance and meet the customer’s expectation.

Table 5. Results of design factors where z <400

Optimal coded Optimal coded Optimal coded Optimal coded Optimal coded

Design factor level level level level level

for u =375 for u =380 for u =385 for =390 for p =395
X1 (Temperature) -0.945 -0.864 -0.662 -0.477 -0.306
X2 (Time) 0.975 0.508 0.702 0.840 0.977
X3 (Pressure) -0.725 0.860 0.806 0.918 0.997
X4 (Gas Flow) 1.000 1.000 0.999 0.999 0.975
Objective

1.082E-15 4.317E-11 1.291E-13 9.992E-16 1.544E-12

function value

Table 6. Results of design factors where 2 > 400

Optimal coded Optimal coded Optimal coded Optimal coded Optimal coded
Design factor level level level level level
for u, =405 for p =415 for u, =425 for p =435 for u, =445

x1 (Temperature) 0.023 0.178 1.000 1.000 1.000
Xz (Time) 1.000 1.000 -0.403 0.168 0.739
X3 (Pressure) 0.426 -1.000 -1.000 -1.000 -1.000
X4 (Gas Flow) 1.000 0.871 -1.000 -1.000 -1.000
Objective function 2.064 3.161 0.454 0.831 1.208

value

Notice that no feasible solution could be found for the proposed factorial design-based process
optimization model where the specified target value is, for example, 500 or 370. This situation is a limitation of
the proposed process optimization model. The achievement of the proposed process optimization model is based
on the specified target value.

IV. DISCUSSIONS

R? (coefficient of determination) is 99.68% for the estimated mean response function. Besides, the
estimated mean response function is well-estimated based on the R? value. Each level of the temperature factor
affects + 21.56 for the oxide thickness. This factor is important to satisfy the process target related constraint. The
optimum levels of the temperature factor varied based on the specified target value. Then each level of the time
factor affects + 9.06 for the oxide thickness. This design factor is important as well. In general, the optimum levels
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of the time factor were obtained at high levels. Next, pressure is an important factor to satisfy the process target
related constraint. Each level of the pressure factor affects F 5.19 for the oxide thickness. The optimum levels of
the pressure design factors were usually obtained at high levels when g < 400. On the other hand, the optimum

levels of the pressure design factor were usually obtained at low levels when x> 400 . Besides, the gas flow

design factor is not more important than other design factors. It is also noted that the interaction term of the
temperature and time design factors is important. Each level of this interaction term also affects + 8.44 for the
oxide thickness. The optimum levels of the gas flow design factors were always obtained at high levels when
M, <400. On the other hand, the optimum levels of the gas flow design factor were often obtained at low levels

when x> 400 . Besides, the interaction term of the temperature and pressure design factors is important. Each

level of this interaction term also affects ¥ 5.31 for the experiment. Next, the interaction term of the time and
pressure design factors, and the interaction term of the time and gas flow design factors are important, and each
level of these interaction terms affects + 1.94 for the experiment. Other interaction terms are not significant for
the oxide thickness.

R?is 71.36% for the estimated variance response function, and this value shows a good performance to
estimate the process variance. Based on the main effects of the estimated variance response, the temperature, time,
and gas flow design factors are significant to reduce the estimated process variance in the objective function.
Besides, the interaction term of the temperature and pressure design factors, the interaction term of the temperature,
and gas flow design factors, and the interaction term of the time and gas flow are significant to reduce the estimated
process variance of the oxide thickness. It is also noticed that the process target related constraint affects the
objective function of the proposed optimization model. The smallest estimated process variance value was
obtained when z =390.

V. CONCLUDING REMARKS AND FURTHER STUDIES

Factorial designs are highly effective to analyze design factors for many process. For this particular
purpose, a five-phased methodology is proposed in this paper for continuous quality improvement. For the
experimental step, a two-level factorial experimental design is selected while considering the first-order and
interaction terms. The process mean and variance functions are obtained with the experimental data from the two-
level factorial experimental design. Then a factorial design-based process optimization model is developed to
obtain the optimal settings of design factors. In this paper, a numerical example is used from the current literature
(please see Myers et al. [28]). The process variance was obtained as 1.082E-15 (almost zero) where the specified
target value was 375. On the contrary, the process variance was found as 1.208 where the specified target value
was 445. Therefore, the results of this example show that the proposed methodology is useful to reduce the process
variance for the experiment. Note that the specified target value is an important parameter to find a feasible solution
setting for the proposed process optimization model.

There are three main limitations of this study. First of all, this paper just focused on the main and
interaction effects of the regression model because two coded levels-based factorial designs analyze the main and
interaction effects. For example, quadratic effects are not analyzed by using two coded levels-based factorial
designs. Second, the proposed methodology works well for a response variable. For more than one variable, the
proposed methodology is not effective to obtain optimum conditions. Finally, the results of design factors are
based on the specified target value.

For further studies, an extension of this paper could be to build a second-order model to analyze the data.
For this particular purpose, a response surface design could be used for the proposed methodology. Another
extension could be to focus on more than one response variable for some process optimization problems. In
addition, the MSE model could be used in the optimization step in order to eliminate a limitation of the proposed
process optimization model in this paper.
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