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Abstract

We first touch upon a Philosophical Grounding of fuzzy theory ex-
pressed by Pierce and Zadeh. Then we review briefly basic and well
known fuzzy rule base models and their variations as well as our fuzzy
functions with LSE and their enhanced version. We propose a potential
future investigation for the basic structure of fuzzy function models gen-
erated with an additive effect of membership values and suggest future
research for a multiplicative affect of membership values.
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1. Philosophical grounding

It is important to understand an in-depth association of the essential concepts that
were treated by Charles S. Peirce and Lotfi A. Zadeh.

Peirce’s thesis may be represented as “indeterminacy and determinacy” of “symbols”.
This view can now be interpreted and expressed with the degree assignment to informa-
tion granules

Thus in general a symbol S is indeterminate iff (∃P ) ∼ (S is P or S is ∼ P ).

Hence, Locke’s famous idea of the triangle is stated as:

“It is not the case that a triangle in general is scalene or that is it not scalene”.
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Peirce’s discussion pre-supposes that every symbol is capable of determining an interpre-
tant symbol and that symbols are at least potentially general.

(S) (∃P ) (S is P OR S is ∼ P ) AND (S) (∃P ) ∼ (S is P OR S is ∼ P ).

From Zadeh’s “meaning representation” of “words” in Computing With Words, CWW,
Peirce’s representation is re-expressed as:

(S) (∃P ) (S is P OR S is ∼ P ) (µP (S) ∈ [0, 1]) AND

(S) (∃P ) ∼ (S is P OR S is ∼ P ) (1− µP (S)).

Here µ is determined by FCM (Bezdek, [2]) or IFC (Celikyilmaz and Turksen, [3]) as will
be discussed later in the sequel as:
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Beyond these essential starting points, it is important to recall that fuzzy system devel-
opments were enhanced by t-norms and t-conorms introduced by B. Schweitzer, A. Sklar
[10], and certain developments which were proposed by Turksen [13, 14, 15, 16, 17, 18,
19, 20, 21, 22].

2. Introduction

The most commonly known and applied fuzzy system models are “fuzzy rule bases”.
Such fuzzy rule bases are described by membership functions of the input fuzzy sets that
form the left hand sides and the output fuzzy sets that form the right hand sides. This
approach was initially proposed by Zadeh [26, 27]. There are two well known and basic
variations of this approach with various improvements and enhancements:

(a) The Sugeno-Yasukawa [11] approach where fuzzy sets of both the right and left
hand sides are determined either by experts or by fuzzy clustering algorithms
such as FCM (Bezdek, [2]).

(b) The Tagaki-Sugeno [12] approach where fuzzy sets of the left hand sides of a
fuzzy rule base are determined either by experts or by fuzzy clustering algorithms
such as FCM (Bezdek, [2]) and the right hand sides are functions determined by
function estimation methods.

But there have been new approaches that propose fuzzy regression function developments
in place of fuzzy rule bases. These are:

1) The Hathaway and Bezdek [5] approach, where the determination of a classical
regression is enhanced by the introduction of a diagonal membership matrix in
the determination of coefficients of a fuzzy regression model where the fuzzy
clustering algorithm, FCM (Bezdek [2]), is used to determine the number of
such fuzzy regressions required for an effective solution.

2) The Turksen [23] and Celikyilmaz-Turksen [3] approach, where a classical regres-
sion is enhanced by the introduction of membership values and their transfor-
mations to improve the regression constant, and hence the introduction of fuzzy
functions in place of fuzzy rule bases where a fuzzy clustering algorithm such as
FCM (Bezdek, [2]) or IFC (Celikyilmaz and Turksen, [3]) is used to determine
the number of such fuzzy regressions required for an affective solution.

Next we review these approaches and their essential elements with emphasis on our
“Fuzzy Functions”, fuzzy regression, models generated by membership values and their
transformations.
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3. Fuzzy rule base models

Let us first review the fuzzy rule base models in order to identify their unique struc-
tures and to point out how they differ from each other.

The most commonly applied fuzzy system models are fuzzy rule bases. Here, we only
deal with Multi-Input Single Output (MISO) systems. Generally such fuzzy system mod-
els represent relationships between the input and output variables which are expressed
as a collection of IF-THEN rules that utilize linguistic labels, which are represented with
fuzzy sets. The general fuzzy rule base structure which is known as the Zadeh- Fuzzy
Rule Base, Z-FRB, can be written as follows:

R :
c∗

ALSO
i=1

(IF antecedenti THEN consequenti),

where c∗ is the number of rules in a rule base either given by experts or it is determined
by a fuzzy clustering algorithm such as FCM, or IFC. The fuzzy rule base structures
determined by alternatives (a) and (b) stated above mainly differ in the representation
of the consequents in its structure. If the consequent is represented with fuzzy sets
then the fuzzy rule base can be categorized as alternative (a). This is the one initially
proposed by Zadeh [27] originally applied by Mamdani, et al., [7], and a modified version
is proposed by Sugeno and Yasukawa [11]. Whereas, if the consequents are represented
with linear equations of input variables, then the rule base structure is the alternative
(b) which we call the Takagi-Sugeno Fuzzy Rule Base 7. These models can be formalized
as follows.

In general, let nv be the number of selected input variables in the system. Then,
the multidimensional antecedent, x, can be defined as x = (x1, x2, . . . , xnv), where xj is

the jth input variable of the antecedent and the domain of x in X, can be defined as
X = X1 ×X1 × · · · ×Xnv , where Xj ⊆ ℜ is the domain of the variable xj . Similarly, the
domain of the output variable, y will be denoted as Y ⊆ ℜ. Then, the ith rule, Ri, and
rule base, R, in the structure of Sugeno and Yasukawa [11] can be defined as in (??) and
(??):

Ri : IF
nv

AND
j=1

(xj ∈ Xj isr Aij) THEN y ∈ Y isr Bi, ∀i = 1, . . . , c∗(3.1)

R :
c∗

ALSO
i=1

(IF
nv

AND
j=1

(xj ∈ Xj isr Aij) THEN y ∈ Y isr Bi),(3.2)

where Aij is the linguistic label, i.e., fuzzy subset, associated with the jth input variable
of the antecedent in the ith rule, Ri, with membership function µi(xj) : Xj → [0, 1], and
similarly Bi is the consequent linguistic label, i.e., consequent fuzzy subset, of the ith rule
with membership function µi(y) : Y → [0, 1], and c∗ is the number of rules in the model.
In this structure, the challenges for knowledge representation are: (i) to identify the
membership functions of fuzzy sets on the left and right hand sides of the rules and (ii)
to identify the most suitable t-norm and t-conorm combinations that represent in a one-
to-one correspondence the linguistic “AND” and “OR” for the combination of left hand
side fuzzy subsets together with the implication operator, “IMP”, that will carry the left
hand side membership degree, i.e., the degree of firing, to the right hand side consequent
fuzzy subset. As well, one needs to know and be able to apply fuzzy logic to carry out
approximate reasoning. It should be recalled that Mamdani [7] applied the Min operator
for both “AND and “IMP” which is a very special case whereas the Sugeno and Yasukawa
[11] model is more general. It is known that the linguistic “AND” and “OR” operators
cannot be represented in a one-to-one correspondence with a particular t-norm and a
t-conorm, respectively, as it is shown by Turksen [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
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Hence there must be a selection procedure to determine which t-norm or t-conorm is
more suitable for a particular system analysis. Furthermore, for the selected choice of
t-norm and t-conorm, one must decide on the use of FDCF and FCCF, Fuzzy Disjunctive
and Conjunctive Canonical Forms, which are to be used for the representation of rules
and for reasoning with them. However, such models fall into Interval-Valued Type 2
fuzzy systems analyses which are not dealt with in this paper. Finally, one has to carry
out defuzzification computations in all fuzzy rule base models. Furthermore the above
structure assumes non-interactivity between input variables (Zadeh, [27]). In fact, this
is the underlying assumption when the fuzzy subsets for the left and right hand sides are
obtained from experts by interview techniques. In order to eliminate the non-interactivity
assumption, Delgado et. al. [4], Babuska et. al. [1], and Uncu and Turksen [24] used
multi-dimensional Type 1 fuzzy subsets to represent the antecedent part of the rules.
In such investigations, generally a multi-dimensional fuzzy clustering technique, e.g.,
FCM or IFC is implemented to obtain multi-dimensional fuzzy subsets that capture the
interactivity (or joint affect) of input variables. Hence, the initial Zadeh‘s Fuzzy Rule
Base (Z-FRB) structure can be expressed as follows:

(3.3) R :
c∗

ALSO
i=1

(IF x ∈ X isr Ai THEN y ∈ Y isr Bi),

where the multi-dimensional antecedent fuzzy subset of the ith rule is Ai. It should be
noted that this multi-dimensional antecedent fuzzy subset determination eliminates the
search for the appropriate t-norm for the combination of antecedent fuzzy subsets with
“AND”.

Thus, in such analyses, the well known variations of Zadeh‘s (Z-FRB) approach in
terms of Sugeno-Yasukawa (SY-FRB) and Takagi-Sugeno (TS-FRB) Fuzzy Rule Base
structures are:

(3.4)
(SY − FRB)R :

c∗

ALSO
i=1

(IF x ∈ X isr Ai THEN y ∈ Y isr Bi),

(TS − FRB)R :
c∗

ALSO
i=1

(IF antecedenti THEN yi = aix
r + bi),

where, antecedenti, x ∈ X isr Ai, and ai = (ai,1, . . . , ai,nv) is the regression coefficient
vector associated with the ith rule together with bi which is the scalar associated with
the ith rule. For these special cases of Z-FRB, again each degree of firing, di, associated
with the ith rule, is determined directly from the corresponding ith multi-dimensional
antecedent fuzzy subset Ai and applied to the consequent fuzzy subset for the SY-FRB
or to the classical ordinary regression for the case of TS-FRB.

4. Fuzzy regression models

In historical order, there are basically two distinct versions of fuzzy regression models.
Namely,

(a) The Hathaway and Bezdek [5] approach where the determination of a classical
linear regression is enhanced by the introduction of a diagonal membership ma-
trix in the determination of the coefficients of a fuzzy regression model. This
work was later extended to a non-linear version by Hoppner and Klawonn [6].

(b) The Turksen [23] and Celikyilmaz-Turksen [3] approach, where a classical regres-
sion is enhanced by the introduction of membership values and their transfor-
mations to improve the regression constant and hence the introduction of fuzzy
functions in place of fuzzy rule bases.
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In both of these approaches, a fuzzy clustering algorithm is applied to determine the
number of such fuzzy regressions that are required for an effective solution. In case
(a) only FCM, Fuzzy C-Means, algorithm (Bezdek, [2]) is applied whereas in case (b)
either FCM (Bezdek, [2]) or IFC, Improved Fuzzy Clustering, algorithm (Celikyilmaz
and Turksen [3]) is applied in a number of case studies.

4.1. Fuzzy C-regression models, FCRM. Originally the Fuzzy C-Regression Model
(FCRM) of Hathaway and Bezdek, [5] was introduced to classify objects into similar
groups. FCRM yields simultaneous estimates of parameters for Fuzzy C-Regression
models, while fuzzy partitioning a given dataset. It ought to be recalled that FCM is
a point-wise clustering algorithm. Furthermore, FCM (Bezdek, [2]) clusters are hyper-
sphere shaped. FCRM determines cluster prototypes as functions instead of geometrical
objects. In particular, FCRM determines separate linear patterns, where each pattern
can be identified by a linear function. It is to be noted that the FCRM of Hathaway and
Bezdek [5] clusters are hyperplane-shaped.

4.1.1. Differences of FCM and FCRM. It is well known that the representatives of
clusters of FCM are cluster centers, υi, which are determined by the well known FCM
algorithm (Appendix) which can be stated as follows:

(4.1)

min J(U, V ) =
nd∑

k=1

c∑

i=1

(uik)
m(‖xk − vi‖)A,

s.t.0 ≤ uik ≤ 1, ∀ i, k,
c∑

i=1

uik = 1, ∀k,

0 ≤

nd∑

k=1

uik ≤ nd, ∀ i.

Here, J is the objective function to be minimized, ‖ · ‖A is a norm that specifies a
distance-based similarity between the data vector xk and a fuzzy cluster center vi. In
particular, A = I is the Euclidian Norm and A = C−1 is the Mahalonobis Norm, etc.

This constraint optimization model can be solved using a well-known method in math-
ematics, namely the Lagrange Multiplier method, and the model is converted into an un-
constraint optimization problem with one objective function. In order to get an equality
constraint problem, the primal constraint optimization problem is first converted into
an equivalent unconstraint problem with the help of unspecified parameters known as
Lagrange Multipliers, λ;

max W (U,V ) =
c∑

i=1

n∑

k=1

(µik)
md2(xk, vi)A−λ

(
c∑

i=1

µik − 1

)

.

According to the Lagrangian Method, the Lagrangian function must be minimized with
respect to primal parameters and maximized with respect to dual parameters. According
to the derivative of the Lagrangian function with respect to the original model parame-
ters, U and V should vanish. Hence, by taking the derivative of the objective function
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with respect to the cluster centers, V and membership values, U , the optimum member-
ship value calculation equation and clusters centers are given by:

µ
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
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)m
, ∀i = 1, . . . , c.

where υ
(t−1)
i represents the cluster center vector for cluster i obtained in the (t − 1)th

iteration.

It ought to be noted that the µ‘s are highly non-linear transformations of the x‘s,
and hence are considered independent of the x‘s. It is important to recall this when we
discuss the additive fuzzy functions that were introduced by Turksen [23] and effectively
applied by Celikyilmaz-Turksen [3].

Whereas the representatives of clusters in FCRM are hyper-planes, which are repre-
sented by:

yi = β0
i + β1

i x1 + · · ·+ βnv
i xnv

where the βi‘s are the regression coefficients of each function, i = 1, . . . , c.

The FCM algorithm calculates cluster centers by averaging each data vector weighted
with their membership values. FCRM calculates cluster representative functions by
a weighted least squares regression algorithm such as yk = fi(xk, βi), where xk =

[x1,k, . . . , xnv,k]
T ∈ ℜnv denotes the kth data object and βi ∈ ℜnv , i = 1, . . . , c. Perfor-

mance of these functions is generally measured by:

Eik(βi) = (yk − fi(xk, βi))
2.

The objective function is to minimize the total error of these approximated functions:

E (U, βi) =

c∑

i=1

n∑

k=1

(µik)
mEik (βi).

In FCRM, the µik‘s represent how close the extent values predicted by fi(xk, βi) are to
yk. It should be recalled that for FCM:
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Whereas with FCRM one gets:

µik =

[
c∑

j=1

(Eik/Ejk)
1

m−1

]−1

, ∀ i, j = 1, . . . , c < n.

FCRM is formulated to find hidden structures in a given dataset. Possible extensions of
FCRM implement non-linear functions to find hidden patterns.

It is developed with

min : E (U, βi) =
c∑

i=1

n∑

k=1

(µik)
mEik (βi),
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where βi = [XTUiX]−1XTUiy,

Xi =
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0 0 · · · µin


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4.1.2. Non-linear fuzzy regression. Hoppner and Klawonn [6] combined the algorithms
FCM of Bezdek, [2] and the FCRM of Hathaway and Bezdek [5] in one clustering schema,
to build a combined clustering structure. Their aim is to eliminate the counterintuitive
membership values. They modify the objective function of FCM by combining it with
FCRM.

Hence they determine membership values as:

µik =

[
c∑

j=1

d2ik −
(
mini=1, ..., c d

2
ik − η

)

d2jk − (mini=1, ..., c d2ik − η)

]−1

, 0 < η,

where η > 0 is a user defined constant. In Hoppner and Klawonn [6], each function
is interpreted as a rule in a Takagi-Sugeno [12] model. For this purpose, Hoppner and
Klawonn [6] introduced a new combined distance function, which is the combination of
both methods as follows:

d2ik

(
(xk, yk) ,

(
vi, β̂i

))
= ‖xk − vi(x)‖

2 +
(
yk − β̂T

i x̂k

)2
,

where x̂ represents a user defined polynomial, for instance, a two dimensional polynomial
can be formed with the following vector: (x1, x2) = (1, x1, x2, x1x2, x

2
1, x

2
2).

The coefficients are obtained as:

β̂i =

(
n∑

k=1

(µik)
m (ykx̂k)

)/ n∑

k=1

(µik)
m
(
x̂kx̂

T
k

)
, ∀ i = 1, . . . , c.

In the method proposed by Hathaway and Bezdek [5], first fuzzy clusters are determined
by the FCM method to define how many fuzzy regressions are to be constructed, i.e., one
for each cluster. There is also the method proposed by Hoppner and Klawonn [6], which
combines the FCM, Fuzzy C-Means, and FCRM algorithms in one clustering schema,
to build a combined clustering structure. Their main goal is to update the FCM fuzzy
clustering algorithm so that they can prevent the effect of harmonics by modifying the
objective function. It is to be noted that they not only deal with point-wise clustering
algorithms such as the “Fuzzy C-Means” (FCM) clustering algorithm, but as well, they
also deal with the “Fuzzy ‘C-Regression Model” clustering algorithm (FCRM). It is also
well-known that Hathaway and Bezdek, [5] proposed to build linear regression models.
Whereas one can build non-linear regression models with the Hoppner and Klawonn [6]
approach.

4.2. Fuzzy regression models with LSE, FRM-LSE. The generalization of LSE
for Fuzzy Regression Models, called FRM-LSE for short, requires that a fuzzy clustering
algorithm, such as FCM, or IFC be available to determine the interactive (joint) mem-
bership values of the input-output variables in each of the fuzzy clusters that can be
identified for a given training data set.

Let (Xk, Yk), k = 1, . . . , nd, be the set of observations in a training data set, such that
Xk = (xjk | j = 1, . . . , nv, k = 1, . . . , nd). First, one determines the optimal (m∗, c∗)
pair for a particular performance measure, i.e., a cluster validity index, with an iterative
search and an application of the FCM or IFC algorithm, where m is the level of fuzziness
(in our experiments we usually take m = 1.4, . . . , 2.6) (Ozkan and Turksen, [9]), and c is
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the number of clusters (in our experiments we usually take c = 2, . . . , 10). At this point,
one ought to recall the well known FCM algorithm is stated in (5) above.

With the application of the well known FCM algorithm is stated in (5) above, one
determines the optimal pair (m∗, c∗) is determined. One next identifies the cluster centers
for m = m∗ and c = 1, . . . , c∗ as:

(4.2) v
X|Y,j

m
∗

=
(
xc
1,j , xc

2,j , . . . , xc
nv,j , yc

j

)
.

From this, we identify the cluster centers of the “input space” again for m = m∗ and
c = 1, . . . , c∗ as:

(4.3) v
X,j

m
∗

=
(
xc
1,j , xc

2,j , . . . , xc
nv,j

)
.

Next, one computes the normalized membership values of each data sample in the training
data set with the use of the cluster center values determined in the previous step. There
are generally two steps in these calculations:

(a) First we determine the (local) optimum membership values uik‘s and then de-
termine µ′

iks that are above an α-cut in order to eliminate harmonics generated
by FCM as:

(4.4) uik =

(
c∑

j=1

(
‖xk − vX,i‖

‖xk − vX,j‖

) 2

m−1

)−1

, µik = {uik ≥ α} ,

where µik denotes the membership value of the kth, k = 1, . . . , nd, in the
ith rule, i = 1, . . . , c∗; xk denotes the kth vector and for all the input variables
j = 1, . . . , nv, in the input space. Once again, it must be emphasized that the
µ‘s are highly non-linear transformations of the x‘s.

(b) Next, we normalize them as:

(4.5) γij(xj) = µij(xj)

/ c∑

i′

= 1µi′j(xj).

These normalized membership values of xj , j = 1, . . . , nd in the ith rule, i = 1, . . . , c∗, the
γij(xj)

′s, in turn indicate the membership values that improve the regression constant
in our proposed scheme of function identification for the representation of the ith cluster.
Thus Γi = (γij |i = 1, . . . , c∗; j = 1, . . . , nd) are the membership values of the data sample

X in the ith cluster, i.e., the ith rule that causes this improvement in the predictive value
of the fuzzy regression model.

Hence we next determine a new augmented input matrix of X for each of the clusters,
which could take on several forms depending on which transformation of membership
values we want to or need to include in our system structure identification for our intended
system analyses. For the simplest form of representation, an example of a possible
augmented input matrix would be: X ′

i = [1, Γi, X],

Yi = βi0 + βi1Γi + βi2Xij .

Alternately, one could consider other augmented input matrices such as X ′′
i =

[
1, Γ2

i , X
]

or X ′′′
i =

[
1, Γ2

i ,Γ
m
i , exp (Γi) , X

]
, etc. for various transformations of Γi = (γij | i =

1, . . . , c∗; j = 1, . . . , nd). The choice depends on whether we want or need to include
just the membership values or some of their transformations as new input variables in
order to obtain the best representation of a systems behavior. A new augmented input
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matrix having a single input variable in the original input space when only membership
value itself is augmented to the dataset may look like this:

(4.6) X ′
ij = [1, Γi, Xij ] =





1 γi1 xi1

...
...

...
1 γind xind



 .

Up to this point, in the proposed system modeling approach, we have defined how the
augmented input matrix for each cluster could be formed using the FCM algorithm.
From this point forward, the estimation of the fuzzy functions takes place for each clus-
ter. Different approaches are followed in the estimation of the fuzzy functions using the
augmented matrices. Thus the function Yi = βi0 + βi1Γi + βi2Xij , that represents the
ith rule, corresponding to the ith interactive (joint) cluster in (Yi, Γi, Xj) space, would
be estimated with the FF-LSE approach as follows:

(4.7) β∗
i =

(
X

′T
ij X ′

ij

)−1 (
X ′T

ij Yi

)
,

where β∗
i = (β∗

i0, β∗
i1, β∗

i2) are the estimates and X ′
ij = [1, Γi, Xij ], provides the inverse

of the covariance matrix, if
(
X ′T

ij X
′
ij

)−1
, exists. Therefore the estimate of Yi would be

obtained as:

(4.8) Y ∗
i = β∗

i0 + β∗
i1Γi + β∗

i2Xij .

The overall output value is calculated using each output value one from each cluster and
weighting them with their corresponding membership values as follows:

(4.9) Y ∗
i =

∑c∗

i=1 γiY
∗
i∑c∗

i=1 γi
.

Within this framework, the general form of the shape of a cluster for the case of a
single input variable Xj and for the ith cluster can be conceptually captured by a second
order (cone) function when one introduces the square of the membership values into
the augmented input matrix in the space [U ×X × Y ], which can be illustrated with a
prototype shown in Figure 1.

Figure 1. A Fuzzy cluster in [U × X × Y ] space
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It ought to be noted for the sake of emphasis that the addition of membership values
and or their transformations in fact improves the predictive power of the fuzzy regression
equation, for example, in the simplest case:

Y ∗
i = β∗

i0 + β∗
i1Γi + β∗

i2Xij ,

where β∗
i = (β∗

i0, β∗
i1, β∗

i2) are the estimates and X ′
ij = [1, Γi, Xij ], provided the inverse(

X ′T
ij X

′
ij

)−1
of the covariance matrix exists. Therefore the estimate of Yi would be ob-

tained with the addition of the second coefficient associated with Γ in β∗
i = (β∗

i0, β
∗
i1, β

∗
i2)

as a result of the impact of the membership values included in such a regression. It should
be once more emphasized that such X ′

ij = [1, Γi, Xij ] improve the initial constant sym-
bolized by “1” of ordinary regression. Once more recall that the Gammas are independent
of the input x‘s, since they are highly non-linear transformations of the input variables!!!

In general, in more complex cases, one may require to include what we call Enhanced
Fuzzy Functions (Celikyilmaz, and Turksen, [3]) where the membership values represent
degrees of belongingness with additional predictors, which are various transformations of
membership values, for example:

hi (τi, ŵi) = ŵ0i + ŵ1iµi + ŵ2i(1 + exp (−µm
ik)),

where the β‘s are now represented by w‘s, where an exp transformation of member-
ship values are included as additional information to enhance the constant value of the
regression.

5. Experiments – Benchmark datasets

We have experimented with a good number of data sets as shown in Figure 2 below.

Figure 2. Benchmark Data Sets
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As well we have conducted various experiments to show which model provides better
results as compared to others with respect to various statistical assessments as shown
below:

The models we have experimented with are given below in Table 1.

Table 1. Set of Experiments

1 Artificial Neural Networks

2 Support Vector Machines for Regression [Gunn, 1999]

3 ANFIS- Adaptive Neuro-Fuzzy Inference System [Jang,1993]

4 Genetic Fuzzy System [Cordon et al., 2001]

5 DENFIS – Dynamically Evolving Neuro Fuzzy Inference System [Kasabov, 2002]

6 A Type 2 Fuzzy Logic System based on FRB [Uncu, Türkşen, 2007]

7 Discrete Interval Valued T2FFF, DIT2FF

8 Evolutionary Discrete Interval Valued Type 2 IEFF, EDIT2IFF

In the summary of results, given in Table 2 below, it is shown that models EDIT2IF and
DIT2FF provide reasonably “good” results.

Table 2 Summary of Results

 

6. Conclusions

We have first reviewed the well known variations of fuzzy rule bases. Then Fuzzy C
Regression models of Hathaway and Bezdek as well as of F. Hoppner, F. Klawonn, and
next the Fuzzy Regression Models with LSE of Turksen which were further developed by
Celikyilmaz and Turksen as alternative models to the fuzzy rule base approaches to fuzzy
system modeling. They can be more easily applied by mathematicians and statisticians
without knowing the essential mathematical tools of t-norms and t-conorms required for
building fuzzy rule base system models.

Furthermore in our applied system investigations, we found that the Fuzzy Regression
Models with LSE of Turksen and its further developments by Celikyilmaz and Turksen
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are better suited for industrial applications and provides better predictions as compared
to fuzzy rule based models.

Currently we are working on “Multiplicative Fuzzy Functions” structured as:

Y = a+ (µ+ µ2 + logµ)x.

In contrast to our previous works based on additive structures:

Y = a+ bµ+ cµ2 + dlogµ+ x.

That is various transformations of membership values µ are introduced as a multiplier
of the input variable x. We expect to publish our results in the near future!!

7. Appendix

The Fuzzy C-means Clustering Algorithm (FCM)

Given: data vectors, X = {x1, . . . ,xn}, number of clusters, c, degree of fuzzi-
ness, m, and termination constant, ǫ (maximum iteration number in this case).
Initialize the partition matrix, U , randomly.

Step 1: Find initial cluster centers using membership values of initial partition
matrix as inputs.

Step 2: Start iteration t = 1 · · ·max-iteration value;

Step 2.1. Calculate membership values µ
(t)
ik of each input data object k in cluster

i, using the membership value calculation, where xk are input data objects as

vectors and v
(t−1)
i are cluster centers from the (t− 1)th iteration,

Step 2.2. Calculate the cluster center v
(t)
i of each cluster i at iteration t, using

the cluster center function, where the inputs are the input data matrix, xk, and

the membership values of iteration t, µ
(t)
ik .

Step 2.3. Stop if the termination condition is satisfied, e.g.,
∣∣∣v(t)i − v

(t−1)
i

∣∣∣ ≤ ε.

Otherwise go to step 1.
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