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Abstract

The aim of this paper is to introduce the notion of derivations of sub-
traction algebras. We define a derivation of a subtraction algebra X
as a function d on X satisfying d(z — y) = (d(z) — y) A (z — d(y))
for all z,y € X. Then it is characterized as a function d satisfying
d(x —y) =d(z) —y for all z,y € X. Also we define a simple derivation
as a function d, on X satisfying do(z) = z—a for all z € X. Then every
simple derivation is a derivation and every derivation can be partially a
simple derivation on intervals. For any derivation d of a subtraction al-
gebra X, Ker(d) and Im(d) are ideals of X, and X/Ker(d) = Im(d) and
X/Im(d) = Ker(d). Finally, we show that every subtraction algebra X
is embedded in Im(d) x Ker(d) for any derivation d of X.

Keywords: Subtraction algebra, Derivation, Simple derivation, Non-expansive map,
Dual closure operator, Boolean algebra.
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1. Introduction

B. M. Schein [2] considered systems of the form (®;o0,\), where ® is a set of functions
closed under the composition “o” of functions (and hence (®; o) is a function semigroup)
and set theoretic subtraction “\” (and hence (®;\) is a subtraction algebra in the sense of
[1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [4] discussed a problem proposed by B.M. Schein
concerning the structure of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called atomic subtraction algebras.

The notion of derivation of lattices was introduced and studied in [3].
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In this paper, we define a derivation of a subtraction algebra and introduce the notion
of derivations. In Section 2, we introduce some basic results of subtraction algebras. In
Section 3, we define a derivation as a function d on X satisfying d(z—y) = (d(z)—y)A(z—
d(y)) for all z,y € X, and characterize it as a function d satisfying d(z — y) = d(z) — y
for all z,y € X. Also we define a simple derivation as a function d, on X satisfying
do(z) =z —a for all z € X, and we show that every simple derivation is a derivation and
conversely, every derivation is partially a simple derivation on intervals. In Section 4 we
show that for any derivation d of a subtraction algebra X, Ker(d) and Im(d) are ideals
of X and X/Ker(d) = Im(d) and X/Im(d) = Ker(d). Also the map p: z+ z —d(z) is a
derivation of X, hence the sequence of derivations and subtraction algebras :

0 — Im(d) —= X % Ker(d) — 0

is similar to a split exact sequence. Finally, we show that every subtraction algebra X is
embedded in Im(d) x Ker(d) for any derivation d of X.

2. Subtraction algebras

We first recall some basic concepts which are used to present the paper.

By a subtraction algebra we mean an algebra (X;—) with a single binary operation
“—” that satisfies the following identities: for any z,y,z € X,

(S1) z—(y — ) = x;

(82) 2 —(z—y) =y — (y —);

(83) (w—y)—z=(z—2) -y
The last identity permits us to omit parentheses in expressions of the form (z — y) — z.
The subtraction determines an order relation on X: a <b < a—b =0, where 0 =a —a
is an element that does not depend on the choice of a € X. The ordered set (X;<) is a
semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
aAb=a— (a—b); the complement of an element b € [0,a] is a — b; and if b, c € [0, a],
then

bve=0b'Ad) =a—((a—b)A(a—c)
=a—((a=b) = ((a-0b) - (a—0))).
In a subtraction algebra, the following are true:

(rl) (x—y)—y=z—y.

(p2) — 0=z and 0 —z = 0.

(p3) z —y <=z

(pd) z—(z—y) <y

P5) (z—y)—(y—z)=z—y.

(P6) z—(z—(z-y))=z—y.

®7) (z-y) -(z-y)<z-=

(p8) = <y if and only if x = y — w for some w € X.
(p9) z<yimpliessz —2<y—zand z—y < z—x forall z € X.
(p10) z,y < z impliesz —y =z A (z — y).

(p1l) (Ay)—(zAz) <z A(y—2).

(012) (z—y)— 2= (@ —2) — (y— 2).

Let X and Y be subtraction algebras. A mapping f from X to Y is called a homomor-
phism if f(z —y) = f(x) — f(y) for all z,y € X. Especially, f is monomorphism (resp.
epimorphism) if f is one-to-one (resp. onto) homomorphism, and f is an isomorphism if
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f is a monomorphism and epimorphism. In this case, we say X is isomorphic to Y, and
denote this by X 2 Y.

A function f of a semilattice (A-semilattice) X into itself is a dual closure if f is
monotone, non-expansive (i.e., f(z) <z for all z € X) and idempotent(i.e., f o f = f),
3. Derivations and simple derivations

3.1. Definition. Let X be a subtraction algebra. By a derivation of X we mean a
self-map d of X satisfying the identity d(z —y) = (d(x) —y) A (x — d(y)) for all z,y € X.

3.2. Example. (1) Let X = {0,a,b,1} in which “—~” is defined by

-0 a b 1
0|0 O O O
ala 0 a O
bbb b 0 0
111 b a O

It is easy to check that (X;—) is a subtraction algebra. Define a map d: X — X by

iy —
d(z) = 0 1 z=0, a,
b ifx=5b, 1.

Then d is a derivation of the subtraction algebra X.

Figure 1. The Hasse diagram of Example 3.2 (1)
1

0

(2) Let X = {0, a,b} be a subtraction algebra with the following Cayley table

Define a map d: X — X by
0 ifx=0,0,
da) =94,
b ifz=a.
Then it is easily checked that d is a derivation of subtraction algebra X.

3.3. Example. Let X be a subtraction algebra. We define a function d by d(z) = 0 for
all x € X. Then d is a derivation on X, which is called the zero derivation.

3.4. Example. Let d be the identity function on a subtraction algebra X. Then d is a
derivation on X, which is called the identity derivation.

3.5. Proposition. Let d be a derivation of a subtraction algebra X. Then d(0) = 0.
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Proof. Let d be a derivation of a subtraction algebra of X. Then
d(0) =d(0 —x) = (d(0) —z) A (0 —d(z)) = (d(0) —z) AO=0.
O

3.6. Proposition. Let d be a derivation of a subtraction algebra X. Then d(x—d(z)) =0
for every x € X.

Proof. Let d be a derivation of a subtraction algebra of X and let x € X. Then
d(x — d(z)) = (d(x) — d(2)) A (x — d(d(x))) = 0 A (x — d(d(z))) = 0.
d
3.7. Proposition. Let d be a derivation of a subtraction algebra X. Then we have
d(z)=d(z) Nz
Proof. Let d be a derivation of X. Then
d(z) =d(x —0) = (d(z) = 0) A (x — d(0)) =d(z) A (z — 0) = d(x) A z.
d

3.8. Corollary. Let d be a derivation of subtraction algebra X. Then we have d(z) < x
That is, d is a non-expansive map. |

3.9. Theorem. Let d be a derivation of a subtraction algebra X. If x <y for z,y € X,
then d(z) < d(y).

Proof. Let x <y for z,y € X. Then by (p8), x = y — w for some w € X. Hence we have
d(z) = d(y —w) = (d(y) —w) A (y — d(w)) < d(y) —w < d(y).
O

3.10. Theorem. Let d be a derivation of a subtraction algebra X. Then we have d* =
dod=d.

Proof. Let d be a derivation of X. Then by definition of the derivation d and Proposi-

tion 3.6, we have
() d(d(x)) = d(z A d(x))

d(z — (z — d(x)))

(d(fv) (z = d(@))) A (z — d(z — d(2)))

d

3.11. Corollary. Let d be a derivation of a subtraction algebra X. Then d is a dual
closure operator on X.

Proof. Clear from Corollary 3.8 and Theorems 3.9 and 3.10. O

3.12. Proposition. Let f is a non-expansive map on a subtraction algebra X, i.e.,
f@) <z forallze X. Then f(z) —y <z — f(y) forallz,y € X.

Proof. Suppose that f is a non-expansive map on X and z,y € X. Then f(z) < z
and f(y) <y. Hence f(z) —y <z —yand z —y <z — f(y) by (p9). It follows that
fl@)—y <z —fy) 0
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3.13. Theorem. Let d be a map on a subtraction algebra X. Then the following are
equivalent :

(1) d is a derivation of X;
(2) dlx —y) =d(z) —y forallz,y € X.

Proof. Suppose that d is a derivation of X. Then d is non-expansive by Corollary 3.8.
Hence for any z,y € X, d(z) —y < z — d(y) by Proposition 3.12, and
d(z —y) = (d(z) —y) A (z —d(y)) = d(z) -

Suppose that d is a map satisfying d(z — y) = d(z) — y for all z,y € X. Then
d(0) = d(0 — d(0)) = d(0) — d(0) = 0, hence we have

0=d(0) =d(z —z) =d(z) —

for any z € X. It follows that d(z) < z for any © € X. That is, d is non-expansive.
Hence by Proposition 3.12, d(z) —y < = — d(y) and

d(z —y) = d(z) —y = (d(z) —y) A (z — d(y))
for any z,y € X. a

3.14. Theorem. Let X be a subtraction algebra. The every derivation of X is an
homomorphism.

Proof. Suppose that d is a derivation of X and z,y € X. Then d(y) < y. It implies

d(z —y) =d(z) —y < d(z) — d(y)
by (p9). Also we have

(d(z) — d(y)) — (d(z) - y)
(

= (dd(z) — d(y)) — (d(z) —y) (by Theorem 3.10)
= (dd(z) — (d(x) —y)) —d(y) (by (S3))

d(d(z) — (d(z) —y)) — d(y) (by Theorem 3.13)
=d(y — (y —d(z))) —d(y) (by (52))
<d(y)—d(y) (by (p3), Theorem 3.9 and (p9))
=0

It follows that (d(z) — d(y)) — (d(z) —y) = 0 and d(z) — d(y) < d(z) —y = d(z — y).
Hence d(z) — d(y) = d(z — y). O

The converse of Theorem 3.14 is not true in general.

3.15. Example. Let X = {0,a,b,1} be the subtraction algebra of Example 3.2(1).
Define a map f: X — X by

0 ifx=0, a,
f@) = {1 ifr=0 1.
Then f is a endomorphism of X which is not a derivation because of f(b —a) = f(b) =
1#b=1—a= f(b) —a.

Let X be a subtraction algebra. Then, for each a € X, we will define a map dq : X —
X by

do(z) =2 —a

for all z € X.
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3.16. Proposition. Let X be a subtraction algebra. Then for each a € X, the map d,
is a derivation of X.

Proof. Suppose that d, is the map defined by d.(z) =  — a for each € X. Then for
any z,y € X, we have

da(z—y)=(z—y)—a=(r—a)—y=dul(z) -y
by (S3). Hence d, is a derivation of X by Theorem 3.13. |
We will call the derivation d, of Proposition 3.16 a simple derivation.

3.17. Proposition. Let d be a derivation of a subtraction algebra X. Then for each
x € X, there exists a unique & € [0, x] such that d(z) =z — & and d(&) = 0.

Proof. Suppose that d is a derivation of X and € X. Then d(z) < z since d is
non-expansive.

Let & =  — d(z). Then & € [0, ] and d(&) = 0 by Proposition 3.6, and we have
r—F=z—(z—d))=zANd(z)=d(z).

Ifr—2=d(x) =2 —w for some w’ € [0, x], then

g—w' =(xAg)—w
=(@—(z-2)—u
= (z—w') = (z— ) (by (83))

It follows that £ < w’. Similarly, we can show that w’ < #. Hence 2 = w’, and 2 is the
unique element in [0, z] such that d(z) =z — Z. O

3.18. Lemma. Let d be a derivation of a subtraction algebra X. Then Ker(d) = {& |
z € X}

Proof. 1t is clear that {# | z € X} C Ker(d) by Theorem 3.17.

If x € Ker(d), then x = x — 0 =  — d(z) = &. It implies Ker(d) C {Z | z € X }. O
3.19. Theorem. Let d be a derivation of a subtraction algebra X. The for each interval
[0,a] in X,

d(z) = da(x)
for all x € [0, a], that is, the restriction d|jo,q) : [0,a] = X of d is a simple derivation da,

where G € [0, a] is the unique element of Theorem 3.17.

Proof. Suppose that d is a derivation of X and a € X. Then by Theorem 3.17 there is
a unique a € [0, a] such that d(a) = a — @, and for any = € [0, a] we have
diz)=dlanz)=da—(a—z))=d(a) — (a—z)=(a—a) — (a —x)
=(a—(a—2z)—da=(aNx)—ad=z—a.
Hence d(z) =z — a = da(z) for all z € [0, a]. O

3.20. Corollary. Let X be a subtraction algebra with greatest element 1. Then every
derivation d of X is a simple derivation dj.
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Proof. Suppose that 1 € X and d is a derivation of X. Then X = [0,1] and by Theo-
rem 3.19,
d(z) =z —1=d;(x)
for all z € [0,1] = X. Hence d is the simple derivation dj. |
There can be a derivation on a subtraction algebra which is not simple.

3.21. Example. Let X = {0,a,b,c, e, f} be a subtraction algebra with “—” defined by

— 10 a b ¢ e f
o|j0 O O O O O
ala 0 a a 0 a
bbb b 0 b 0 O
clec ¢ ¢ 0 ¢ 0
ele b a e 0 a
flf f ¢ b ¢ 0

Figure 2. The Hasse diagram of Example 3.21
e f

Define a map d: X — X by

d(z) = 0 %fsz, a, c,

b ifx=be,f.

Then d is a derivation of X which is not simple, because there is no x € X satisfying
either d(e) =b=e—z or d(f) = b= f —z. For the interval A = [0,¢e] and B = [0, f],
é=e—d(e) =e—b=a and f = c. Hence the restrictions d|4 and d|p are simple, being
given by

dla(z)=z—a=d(z) (x € A)and d|g(z) =z —c=d(z) (z € B),

respectively.

4. Derivations and ideals of subtraction algebras

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies
(I1) 0 eI,
(12) for any z,y € X,y € I and x —y € I implies z € I.
For an ideal I of a subtraction algebra X, it is clear that x < y and y € I imply =z €
for any z,y € X.

4.1. Proposition. Let d be a derivation of a subtraction algebra X. Then Kerd = {z €
X | d(z) = 0} is an ideal of X.
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Proof. Let y € Kerd and z € X with z — y € Kerd. Then d(y) = 0 implies
d(x) = d(x) = 0 =d(z) —d(y) = d(z —y) = 0.
Hence x € Kerd. ]

4.2. Proposition. Let d be a derivation of a subtraction algebra X. If Kerd = {0}, then
d is the identity derivation.

Proof. Let © € X. Then d(z) < z, and x — d(z) € Kerd = {0} by Proposition 3.6. It
implies  — d(z) = 0 and =z < d(x). Hence d(z) = z. O

Let X be a subtraction algebra and A a non-empty subset of X. Then we will write
A*={zeX|zANa=0forall ac A}

4.3. Proposition. Let X be a subtraction algebra and A non-empty subset of X. Then
A* is an ideal of X.

Proof. Let y € A* and x —y € A" forany x € X. Then yAa=0and (z —y)Aa=0
for all a € A. By (pl1), we have
zAa=(zxNa)—0=(xAa)—(yAa)<(z—y)Aa=0

for all a € A. Tt implies z Aa = 0 for all a € A, and z € A*. Hence A* is an ideal of

X. O
In particular, for any singleton subset A = {a} of a subtraction algebra X, {a}* =

A" ={z € X |z ANa=0}is an ideal of X.

4.4. Proposition. Let X be a subtraction algebra and d,, a simple derivation withy € X.

Then dy(z) = z if and only if v € {y}*.

Proof. Suppose that z,y € X and dy(z) =z. Then z Ay =2 — (z —y) = z — dy(z) =

z —x =0. Hence z € {y}".

Conversely, suppose that z € {y}*. Theny— (y—z) =z — (z—y) = Ay = 0. Hence
we have

dy(x) =T -y
=(z—-y)—(y—z) (by (p5))
=(@—-(y—2))—(y—(y—=)) (by (p12))
=z—-0 (by(S1))
=x. O

4.5. Corollary. Let X be a subtraction algebra and d, a simple derivation with respect
toy € X. Then dy(X) = {y}*, that is, Im(dy) is an ideal of X.

Proof. Let z € dy(X). Then x = dy(z) for some z € X, and by Theorem 3.10
v =dy(2) = dy(dy(2)) = dy ().

It implies © € {y}" by Proposition 4.4. Hence dy(X) C {y}*. Also it is clear that
{y}* € dy,(X) from Proposition 4.4. O

4.6. Proposition. Let d be a derivation of a subtraction algebra X. If I is an ideal of
X, then we have d(I) C I.

Proof. For all z € I, we have d(z) < z, and d(z) = 2 —w for some w € X by (p8). Hence
by the definition of an ideal, we have d(z) € I. O
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4.7. Theorem. Let d be a derivation of a subtraction algebra X. Then d(X) = Im(d)
is an ideal of X.

Proof. Let y € d(X) and x —y € d(X) with z € X. Thend(y) =y andd(z —y) =2 —y

by Theorem 3.10, there exists & € [0, z] satisfying d(z) = = — 2 and d(&) = 0, and

dz(z) = d(z) for all z € [0, z] by Theorems 3.17 and 3.19. Since z — y < z, we have
de(x —y)=d(xz—y)=z—y.

It implies x — y € {Z}" by Proposition 4.4, i.e., (x —y) A& = 0. Since & < x, we have

T=yANZT
=y—(y—4%)
=y —(d(y) — %)
=y—d(y—1)
=y — (d(y) —d(z)) (by Theorem 3.14)
=y —(d(y) - 0)
=y—-y=0.
It implies = — 0 =2 — & = d(x) € d(X), and so d(X) is an ideal of X. O

Let X be a subtraction algebra and I an ideal of X. If ~; is the binary relation on
X given by

z~ryifandonlyife —yelandy—z€l,

then ~7r is a congruence relation and the quotient set X/ is a subtraction algebra with
the binary operation defined by

[z] = [y] =[x — 9]
for all [z], [y] € X/I, where [z] is an equivalence class of x with respect to ~;.

4.8. Theorem. Let d be a derivation of a subtraction algebra X. Then there exists
a monomorphism d : X/Ker(d) — X such that d([z]) = d(z). Hence X/Ker(d) is

isomorphic to Im(d) = Im(d).

Proof. Suppose that d is a derivation on X. Then d is a homomorphism of X by Theo-
rem 3.14.
Define a map d : X/Ker(d) — X by d([z]) = d(z) for all [z] € X/Ker(d). If [z] = [y],
then @ ~ger(q) y implies © — y,y — 2 € Ker(d). Hence we have
d(z) — d(y) = d(z — y) = 0 and d(y) — d(z) = d(z — y) = 0.

It follow that d(z) < d(y) and d(y) < d(z), that is, d([z]) = d(z) = d(y) = d([y])-
Therefore d is well-defined.



166 Y. H. Yon, K. H. Kim

Let [z], [y] € X/Ker(d). Then we have
d([z] = [y]) = d([z — y]) = d(z — y) = d() — d(y) = d([z]) — d([y]).

Hence d is a homomorphism.

To show that d is a monomorphism, let d(x) = d(y). Then d(z —y) = d(x) — d(y) = 0
and d(y — x) = d(y) —d(z) = 0. Hence z —y,y — € Ker(d). It follows that = ~ker(a) ¥s
and [z] = [y]. Therefore d is a monomorphism. O

4.9. Theorem. Let X be a subtraction algebra and d a derivation of X. If p: X - X
is the map defined by

wx) =2 ==z —d(z)
for all x € X, then p is a derivation with Ker(p) = Im(d).

Proof. Suppose that p: X — X is the map defined by u(z) =& =z —d(z) for all z € X.
Since & = & — d(z) is unique for each x € X, u is well-defined.

Let z,y € X. The
px—y)=(z—y) —dxz—y)
=(z—y) - (d(z) —y)
=(z—d(z) -y (by (p12))
=) —y.
Hence p is a derivation.

If d(z) € Im(d), then p(d(x)) = d(xz) — d(z) = 0, and d(z) € Ker(u), hence Im(d) C
Ker(p). If z € Ker(u), then 0 = p(z) =z —d(z),andz =2 —-0=z— (z —d(z)) =z A
d(z) = d(x) € Im(d), and so Ker(u) C Im(d). Hence it follows that Ker(u) = Im(d). O

4.10. Corollary. Let X be a subtraction algebra and d a derivation of X. Then the
corestriction u° : X — Ker(d) of 1 is an epimorphism.

Proof. By Theorem 4.9, p: X — X is a derivation, hence p is a homomorphism, and it
is clear that Im(u) = Ker(d) by Lemma 3.18. O

4.11. Theorem. Let X be a subtraction algebra and d a derivation of X. If i :
X/Im(d) — X is the map defined by

i([z]) = p(z)
for all [z] € X/Im(d), then i is a monomorphism. In particular, X/Im(d) = Ker(d).
Proof. Suppose that i : X/Im(d) — X is the map defined by

A([x]) = p(x)
for all [z] € X/Im(d). If [x] = [y], then & ~yp(q) y, which implies z — y,y — x € Im(d),
hence d(z —y) =z —y and d(y — z) = y — =. It follows that
A=) = a([y) = p(@) — p(y) = p(z —y) = (= —y) — d(z - y) =0,
and fi([y]) — 2([z]) = 0 in a similar way. Hence fi([z]) = A([y]), and f is well-defined.
Let [z], [y] € X/Im(d). Then we have
izl = [y) = alz — y]) = w(z —y) = p(z) — ply) = adl) — aly),

and f is a homomorphism.
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To show that fi is a monomorphism, let i([x]) = i([y]). Then p(z) = u(y), and
0= p(z) = puly) = wx —y) = (z —y) —d(z —y),
0=ply) —pz) = ply —2) = (y — z) —d(y — ),

hence z —y < d(z —y) and y —x < d(y — ). Since d is non-expansive, t —y = d(z —y) €
Im(d) and y — 2 = d(y — x) € Im(d). Therefore, & ~y(q) y. This implies [z] = [y]. Hence

[ is a monomorphism.

It is clear that Im(f) = Im(p), and Im(u) = Ker(d) by Corollary 4.10. Hence
X/Im(d) = Ker(d). O

Now consider the sequence

0 — Im(d) —= X %% Ker(d) — 0,

of homomorphisms of subtraction algebras, where i is the inclusion map. We note that
it is similar to a split exact sequence, since 4 is a monomorphism, ;° is an epimorphism
and Ker(p°) = Im(i) by Corollary 4.10 and Theorem 4.9.

4.12. Proposition. Let d be a derivation of a subtraction algebra X. Then for each
z € X, x=d(z)V & with d(z) € Im(d) and & € Ker(d).

Proof. Let X be a subtraction algebra and z € X. Then the interval [0, z] is a Boolean
algebra with respect to the induced partial order and & = x — d(x) is the complement of
d(z) in [0, z]. Hence d(z) V& = d(z) V (z — d(z)) = =. O

Let d be a derivation of a subtraction algebra X. Then Im(d) and Ker(d) are sub-
traction subalgebras. Hence Im(d) x Ker(d) is also a subtraction algebra with the binary
operation “—" defined by

(1,51) = (22, 92) = (21 — 2,51 — y2)
for all (z1,y1), (z2,y2) € Im(d) x Ker(d).
4.13. Theorem. Let d be a derivation of a subtraction algebra X. If ¢ = (d, ) : X —
Im(d) x Ker(d) is the map defined by
¢(z) = (d(z), p(x))
for all x € X, then ¢ is a monomorphism.

Proof. Suppose that ¢ = (d, i) : X — Im(d) x Ker(d) is the map defined by ¢(z) =
(d(z), p(z)) for all € X. Then for any z,y € X we have

¢(z —y) = (d(z —y), ulx —y))

= (d(z) — d(y), u(z) — u(y))

= (d(z), u(x)) — (d(y), u(y))

= o(x) — o(y).

If ¢(x) = ¢(y), then (d(x), u(z)) = (d(y), u(y)), and by Proposition 4.12,
v=d(x)Vi=d)Vu)=dy)Vuy) =dy)Vi=y.

Hence ¢ is a monomorphism. O
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