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Abstract

The purpose of this paper is to investigate the metric connection of

the synectic metric g and to compute the components E{-‘,CB of the

curvature tensor R of the metric connection of the synectic metric ®g

in the tangent bundle T (M) of the Riemannian manifold (My).
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1. Introduction

Let M, be an n-dimensional differentiable manifold of class C*° and Tp (M) the
tangent space at a point P of My, that is, the set of all tangent vectors of M, at P.
Then the set

T (M) = U Tp (M,)

is, by definition, the tangent bundle over the manifold (M) [2]. We denote by % (M)
the set of all tensor fields of type (p,q) in M, and by 7 : T (M,) — M, the naturel
projection over M,,.

For U C M,, (z",y") are local coordinates in a neighborhood =~ " (U) C T (My). If
{U’,mh'} is another coordinate neighborhood in M, containing the point P = 7 (}5)
(PeU and PeTp (M,,)), then 7~ (U’) contains P and the induced coordinates of P with
respect to 7! (U’) will be given by (xh/, yh/), where

" =2 (z),

7
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" (z) being differentiable functions (of class C*°). Putting " = Yy, 2" =y, we
write 27 = 2’ (z).

The Jacobian is given by the matrix

/ n!
8$P oz - 0
— Oz
axp 82zh’/ i azh’/ ’
oah ozt Y oxh

Let M, be a Riemannian manifold with metric ¢ whose components in a coordinate
neighborhood U are g;;. In the neighborhood 7~* (U) of T'(M,,), U being a neighborhood
of M,,, we put

Sy = dy” + I'lda’
with respect to the induced coordinates (xh, yh) inm ! (U) C T (My), where rh = ij?i.
Suppose that there is given the following Riemannian metric

(1) Sgcgdmcde = a]-idmjdmi + 2gjidxj5yi

in the tangent bundle in T (M) over a Riemannian manifold M, with metric g, where
aj; are components of a symmetric tensor field of type (0,2) in M,. We call this metric
the synectic metric. The synectic metric g = g +" @ has components [3]

~ i + 095 gji
5 Sy (gen) = (M H O 9,
(2) 9="9cs i 0
where Ogj; = mgasgji.

Let M, be a Riemannian manifold with metric g, whose local components are gj;.
Suppose that we are given a Riemannian metric g in 7' (M,) having local expression

§Cdecde = 2gj¢d:vj6yi
with respect to the induced coordinates (XA), ie., (xh, yh), where
oy" = dy" +T7da’, T =y

and F?i are the Christoffel symbols formed with g;;. We call this metric the metric II. g
has components

~ \_ (99g;i gji)
Gem) = (%0 %Y.

The metric connection V of the metric II is the unique connection which satisfies
Vegsa =0
.. . A L . s
and has non-trivial torsion tensor T'¢p, which is skew-symmetric in the indices C' and
B. The connection V satisfies

= ~ =A =A A
VCQBA =0 and FCB — FBC = TCB-

Then the metric connection V of the metric IT has components TJXB such that

=h =h o =h _ 1h
Uj=T5%=T5= Fiu

—h  —=h —=h —=h
Fz:f‘jgzrﬁzrﬁzo,
—h

I = 8F;’¢ — ykRkjih

with respect to the induced coordinates in T (M, ), where I'}; are the components of V
in M, [4].
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2. Riemannian connection of °g

The components of the Riemannian connection determined by the metric ¥g are given
by

1.
(3) St = igKM (8JSQMI +0r%gsm — O SgJI) ,

where g%M are the contravariant components of the metric ©g with respect to the induced
coordinates in T (My):

_ 0 i L -
(4) SgCB - (g“ x?asg‘%i _ aji) ’ atl = g]tajsgsZ
where g7* denote the contravariant components of g in M, [4], i.e.,
_ 0 I+J
5 s MJ _ sJ _ )
(5) gimg i ——
Then, taking account (2) and (4), we have
STk k STk k STk k STk
- { ok =Ty, ST =1, Srh=rk, “rh=0

Stk _STk _Spk _ Stk _ .t k k

with respect to the induced coordinates in T (My), Ffi being the Christoffel symbols

constructed with g;i, Hj; = 39"° (Vjasi + Via;s — Vsagi) is a tensor of type (1,2) and

1 I
Vsaji = 0saji — Iijar — Tya .

Hence, from (6) we have:

2.1. Remark. If Va = 0, then °T =° T, where T is the Riemannian connection of g
(4].
2.2. Remark. If aj; = gj;;, then Sp=°¢r.

Thus we have

2.3. Theorem. °T' =° I'+V H, where V H is the vertical lift of H € Ty (M,,). O

3. The Metric connection with respect to the synectic metric Sg

Let V be a connection which satisfies
(m V=0,
and has torsion, where “g is the synectic metric g =% g +" a in T (M,,).

The connection V has the non-trivial torsion tensor TEB, which is skew-symmetric in
the indices C' and B. We denote this connection by V and its components by I'G 5. Then
the connection V satisfies

(8) €Sg=0and IS5 —T64 =T55.

On solving (8) with respect to I'G 5, we find [1]

9) T\p + Uks =T,

where °T'G 5 are the Christoffel symbols constructed with the metric Sg,
(10) Uapc = % (TCAB +Tepa + TABC)

and

(11) Uasc = Udp®gne, Tasc =Tap®gne.
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If we put
(12) T} = Riuy",
all other fé‘B not related to Fffl being assumed to be zero, then we get a tensor field fé‘B
of type (1,2) in T (M) which is skew-symmetric in the indices A and B. We take this
TC 5 as the tors1on tensor and determine a metric connection in 7' (M, ) with respect to
the metric g.
Since

Tjin = Rjien v*,  Rjirn = R7:k Gnns
we have for TCAB + TCBA + TABC

fjih + fhji + iﬁhij = (Rjikh + Rijke + Rhikj) y

= —2Rk;iny",

from which

Ujin = (TJm + Thji + Thij) = —Ryjiny",

N | =

that is,

(13) UL =—RlLa",

all the other U}y being zero. Thus, substituting (13) and (6) in (9) we have
T _Fh _Fh =TI,

(14) T = Fh = rh =T,
F?Z = xtatl“?z + H}s — y" Rijin,

with respect to the induced coordinates, F?i being the Christoffel symbols formed with

gji, where H}; = 1¢" (V;asi + Viajs — Vsaji). Thus we have:

3.1. Remark. If Va =0, then the metric connection V in the tangent bundle T (My)
with respect to the metric ©g coincides with the metric connection V with the metric
©g. That is,

vV=V.
3.2. Remark. If a;; = gﬂ7 then the metric connection V in the tangent bundle T (My)

with respect to the metric ©g coincides with the metric connection V with the metric
€g. That is,

v=V.
Thus we have

3.3. Theorem. V=V +V H, where H]]-“i = %gks (Vjasi + Viajs — Vsajs). O

4. The Curvature tensor of the Metric connection V
Components of the curvature tensor of the metric connection are given by
(15) Rityr = 0kl — 0T iy + Tir DSy =TT,
where fﬁll are the components of the metric connection V with respect to the metric Jg.

Taking into account (14)—(15), we have

(16) %g]l - R}kl]z = E}kl;z = ék]; - Rkﬂ
RZji = 8Rka +y" (VJ nki — VkRn]z) + Vk?H;li — V,;Hp;,
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all the others not related to these being zero, with respect to the induced coordinates.
The contracted curvature tensor of the metric connection % has components ]?ic B =
RE_ 5 such that
SE SE SE SE
(17) REji :Rji7 REzz :07 REJEZO’ REﬁ:O
because of (16), where Rj; = R}, denote the components of the Ricci tensor of the

Riemannian manifold M,,. Thus we have

4.1. Theorem. The tangent bundle T (M, ) with the metric connection V has a vanishing
contracted curvature tensor if and only if M, has a vanishing Ricci tensor. |

For the scalar curvature of T (M, ) with the metric connection, we have
(18) R=g"®Rep=0

by means of (4) and (17), where §Z denote the contravariant components of the metric
Sg. Thus we have

4.2. Theorem. The tangent bundle T (M) with the metric connection of the synectic
metric g has vanishing scalar curvature. |
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