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Abstract

In this paper, we sharpen and generalize Carlson’s double inequality
for the arc cosine function.
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1. Introduction and main results

In [1, p. 700, (1.14)] and [8, p. 246, 3.4.30], it was listed that

(1.1)
6(1− x)1/2

2
√
2 + (1 + x)1/2

< arccos x <
3
√
4 (1− x)1/2

(1 + x)1/6
, 0 ≤ x < 1.

The first aim of this paper is to sharpen and generalize the right-hand side inequality
in (1.1) as follows.
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1.1. Theorem. For real numbers a and b, let

(1.2) fa,b(x) =
(1 + x)b

(1− x)a
arccos x

on the open unit interval (0, 1).

(1) If and only if

(1.3) (a, b) ∈
{

b ≤ 2

π
− a

}

∩
{

a ≤ 1

2

}

,

the function fa,b(x) is strictly decreasing;

(2) If

(1.4)

(a, b) ∈
{

2

π
− a ≤ b ≤ a− 4

π2

}

∪
{

1

2
≤ a ≤ b+

1

3

}

∪
{

1

3
< a− b <

4

π2
, a+ b ≥ 2(a− b)3/2

√

4(a− b)− 1

}

,

the function fa,b(x) is strictly increasing;

(3) If

(1.5) (a, b) ∈
{

1

3
< a− b <

4

π2

}

∩
{

2

π
− b < a ≤ 1

2

}

,

the function fa,b(x) has a unique maximum;

(4) If

(1.6) (a, b) ∈
{

1

3
< a− b <

4

π2

}

∩
{

1

2
< a ≤ 2

π
− b

}

,

the function fa,b(x) has a unique minimum;

(5) If

(1.7)

(a, b) ∈
{

1

3
< a− b <

4

π2

}

∩
{

2

π
< a+ b <

2(a− b)3/2
√

4(a− b)− 1

}

∩
{

a >
1

2

}

,

the function fa,b(x) has a unique maximum and a unique minimum in sequence;

(6) A necessary condition for the function fa,b(x) to be strictly increasing is

(1.8) (a, b) ∈
{

b ≥ 2

π
− a

}

∩
{

a ≥ 1

2

}

.

As direct consequences of the monotonicity of the function fa,b(x), the following in-
equalities may be deduced.

1.2. Theorem. For x ∈ (0, 1), the double inequality

(1.9)
π

2
· (1− x)1/2

(1 + x)b
< arccos x < 2b+1/2 · (1− x)1/2

(1 + x)b

holds provided that b ≥ 1
6
.

The right-hand side inequality in (1.9) is valid if and only if b ≥ 1
6
.

The reversed version of (1.9) is valid provided that b ≤ 2
π
− 1

2
.

The reversed version of the left-hand side inequality in (1.9) is valid if and only if

b ≤ 2
π
− 1

2
.
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If (a, b) satisfies (1.5), 16ab(b− a) + (a+ b)2 > 0 and

(1.10) x1 =
(a+ b)(2b− 2a+ 1)−

√

16ab(b− a) + (a+ b)2

2(a− b)2
> 0,

then

(1.11)

min

{

2b+1/2,
π

2

}

(1− x)a

(1 + x)b
, a =

1

2

0, a <
1

2















≤ arccos x

≤
(1 + x1)

b+1/2(1− x1)
1/2−a

a+ b+ (a− b)x1
·
(1− x)a

(1 + x)b
.

If (a, b) satisfies (1.6), 16ab(b− a) + (a+ b)2 > 0 and

(1.12) x2 =
(a+ b)(2b− 2a+ 1) +

√

16ab(b− a) + (a+ b)2

2(a− b)2
∈ (0, 1),

then

(1.13) arccos x ≥
(1 + x2)

b+1/2(1− x2)
1/2−a

a+ b+ (a− b)x2
·
(1− x)a

(1 + x)b
.

The second aim of this paper is to sharpen and generalize the left-hand side inequality
in (1.1) as follows.

1.3. Theorem. For x ∈ (0, 1), the function

(1.14) F1/2,1/2,2
√

2 (x) =
2
√
2 + (1 + x)1/2

(1− x)1/2
arccos x

is strictly decreasing. Consequently, the double inequality

(1.15)
6(1− x)1/2

2
√
2 + (1 + x)1/2

< arccos x <

(

1/2 +
√
2
)

π(1− x)1/2

2
√
2 + (1 + x)1/2

holds on (0, 1) and the constants 6 and
(

1
2
+

√
2
)

π in (1.15) are the best possible.

2. Remarks

Before proving our theorems, we list several remarks on them.

2.1. Remark. From Theorem 1.2, we obtain

(2.1)
π(1− x)1/2

2(1 + x)1/6
< arccos x <

3
√
4 (1− x)1/2

(1 + x)1/6

and

(2.2)
41/π(1− x)1/2

(1 + x)(4−π)/2π
< arccos x <

π(1− x)1/2

2(1 + x)(4−π)/2π

for x ∈ (0, 1).

Except that the right-hand side inequality in (2.1) and the left-hand side inequality
in (1.15) are the same as the corresponding ones in (1.1) and that the left-hand side
inequality in (1.1) is better than the corresponding one in (2.2), other corresponding
inequalities in (1.1), (1.15), (2.1) and (2.2) are not included in one another.
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2.2. Remark. Setting arccos x = t in (2.1) and (2.2) yields

(2.3) cos t <

(

sin t

t

)3

<
32

π3
cos t

and

(2.4)

(

2π+2

ππ

)1/(4−π)

cos t <

(

sin t

t

)π/(4−π)

< cos t

for 0 < t < π
4
. They may be rearranged as

(2.5)

(

sin t

t

)π/(4−π)

< cos t <

(

sin t

t

)3

and

(2.6)
π3

32

(

sin t

t

)3

< cos t <

(

ππ

2π+2

)1/(4−π)(
sin t

t

)π/(4−π)

for 0 < t < π
4
. These two inequalities are not included in one another.

For more information connected with the above two inequalities, please refer to [10],
[15, Sections 7.5 and 7.6], and closely related references therein.

2.3. Remark. The approach used to prove our theorems in the next section can be
utilized to establish similar bounds for some inverse trigonometric functions (see [6, 11,
13, 14, 16, 17]) and is simpler than those methods used in [4, 7, 18]. In other words,
although the techniques used in this paper are nothing more than calculus this may be
all that is needed to get good results.

2.4. Remark. Motivated by the papers [5, 6, 16], some inequalities of Carlson type were
also sharpened and improved in [2, 9].

2.5. Remark. It is noted that there are some applications in [3] of this type of inequality
obtained in [7].

2.6. Remark. This paper is a slightly revised version of the preprint [5] and a sisterly
article of [6] and its preprint [12].

3. Proofs of the theorems

Now we are in a position to verify our theorems.

Proof of Theorem 1.1. Straightforward differentiation yields

(3.1)

f ′
a,b(x) =

(1 + x)b−1

(1− x)a+1
(arccos x)

[

a+ b+ (a− b)x−
√
1− x2

arccos x

]

,
(1 + x)b−1

(1− x)a+1
(arccos x)ga,b(x)

with

g′a,b(x) = a− b− 1

(arccos x)2
+

x√
1− x2 arccos x

,
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g′′a,b(x) =
(arccos x)2 + x

√
1− x2 arccos x+ 2x2 − 2

(1− x2)3/2(arccos x)3

,
h(x)

(1− x2)3/2(arccos x)3
,

h′(x) =
(1 + 2x2)√
1− x2

[

3x
√
1− x2

1 + 2x2
− arccos x

]

,
(1 + 2x2)√

1− x2
q(x),

q′(x) =
4(1− x2)3/2

(1 + 2x2)2
.

It is clear that q′(x) is positive, and so q(x) is increasing on [0, 1). By virtue of q(1) = 0,
we obtain that q(x) < 0 on [0, 1), which is equivalent to h′(x) < 0 and h(x) is decreasing
on [0, 1). Due to h(1) = 0, it follows that h(x) > 0 and g′′a,b(x) > 0 on [0, 1), and so the

function g′a,b(x) is increasing on [0, 1). It is easy to obtain that limx→0+ g′a,b(x) = a−b− 4
π2

and limx→1− g′a,b(x) = a− b− 1
3
. Hence,

(1) if a− b ≥ 4
π2 , then g′a,b(x) > 0 and ga,b(x) is increasing on (0, 1);

(2) if a− b ≤ 1
3
, then g′a,b(x) < 0 and ga,b(x) is decreasing on (0, 1);

(3) if 1
3

< a − b < 4
π2 , then g′a,b(x) has a unique zero and ga,b(x) has a unique

minimum on (0, 1).

Direct calculation gives

(3.2) ga,b(0) = a+ b− 2

π

and

(3.3) lim
x→1−

ga,b(x) = 2a− 1.

Therefore,

(1) if a − b ≥ 4
π2 and a + b ≥ 2

π
, then ga,b(x) and f ′

a,b(x) are positive, and so the
function fa,b(x) is increasing on (0, 1);

(2) if a − b ≥ 4
π2 and 2a ≤ 1, then ga,b(x) and f ′

a,b(x) are negative, and so the
function fa,b(x) is decreasing on (0, 1);

(3) if a − b ≤ 1
3
and a + b ≤ 2

π
, then ga,b(x) and f ′

a,b(x) are negative, and so the
function fa,b(x) is decreasing on (0, 1);

(4) if a−b ≤ 1
3
and 2a ≥ 1, then ga,b(x) and f ′

a,b(x) are positive, and so the function
fa,b(x) is increasing on (0, 1);

(5) if 1
3
< a − b < 4

π2 , a + b ≤ 2
π

and a ≤ 1
2
, then ga,b(x) and f ′

a,b(x) are negative,
and so the function fa,b(x) is decreasing on (0, 1);

(6) if 1
3
< a− b < 4

π2 , a+ b > 2
π
and a ≤ 1

2
, then ga,b(x) and f ′

a,b(x) have a unique
zero on (0, 1), which is a unique maximum point of fa,b(x) on (0, 1);

(7) if 1
3
< a− b < 4

π2 , a+ b ≤ 2
π
and a > 1

2
, then ga,b(x) and f ′

a,b(x) have a unique
zero on (0, 1), which is a unique minimum point of fa,b(x) on (0, 1);

(8) if 1
3
< a− b < 4

π2 , the minimum point x0 ∈ (0, 1) of ga,b(x) satisfies

1

arccos x0
=

x0 +
√

x2
0 + 4(a− b)(1− x2

0)

2
√

1− x2
0



206 J. -L. Zhao, C. -F. Wei, B. -N. Guo, F. Qi

and the minimum of ga,b(x) equals

ga,b(x0) = a+ b+
(

a− b−
1

2

)

x0 −
1

2

√

x2
0 + 4(a− b)(1− x2

0)

≥ a+ b−
2(a− b)3/2

√

4(a− b)− 1
,

which means that

(a) when 1
3
< a − b < 4

π2 and a + b ≥ 2(a−b)3/2√
4(a−b)−1

, the functions ga,b(x) and

f ′
a,b(x) are non-negative, and so the function fa,b(x) is strictly increasing
on (0, 1);

(b) when 1
3
< a−b < 4

π2 , a+b > 2
π
, a > 1

2
and a+b < 2(a−b)3/2√

4(a−b)−1
, the functions

ga,b(x) and f ′
a,b(x) have two zeros which are in sequence the maximum and

minimum of the function fa,b(x) on (0, 1).

As a result, the sufficiency for the function fa,b(x) to be monotonic on (0, 1) is proved.

Conversely, if the function fa,b(x) is strictly decreasing, then the function ga,b(x) must
be negative on (0, 1), so the quantities in (3.2) and (3.3) are non-positive. Hence, the
condition in (1.3) is also necessary.

By similar arguments to the above, the necessary condition (1.8) follows immediately.
The proof of Theorem 1.1 is thus proved. �

Proof of Theorem 1.2. It is easy to see that limx→0+ fa,b(x) =
π
2
and

lim
x→1−

fa,b(x) = 2b lim
x→1−

arccos x

(1− x)a
=











2b+1/2, a = 1
2
;

0, a < 1
2
;

∞, a > 1
2
.

From Theorem 1.1, it follows that the function f1/2,b(x) is strictly increasing (or strictly

decreasing respectively) on (0, 1) if b ≥ 1
6
(or if and only if b ≤ 2

π
− 1

2
respectively).

Consequently, if b ≥ 1
6
, then

(3.4)
π

2
= lim

x→0+
f1/2,b(x) < f1/2,b(x) < lim

x→1−
f1/2,b(x) = 2b+1/2

on (0, 1), which can be rearranged as the inequality (1.9); if b ≤ 2
π
− 1

2
, the inequality (3.4),

and so the inequality (1.9), reverses.

The right-hand side inequality in (1.9) may be rewritten as

b >
ln arccos x− [ln(1− x) + (ln 2)]/2

ln 2− ln(1 + x)

→ (1 + x)

[

1√
1− x2 arccos x

−
1

2(1− x)

]

→
2(x− 1) +

√
1− x2 arccos x

(x− 1)
√
1− x2 arccos x

→ x arccos x/
√
1− x2 − 1

(x− 1)
[

1 + (1 + 2x) arccos x/
√
1− x2

]

→
x arccos x/

√
1− x2 − 1

4(x− 1)

→
1

6
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as x → 1−. Therefore, the condition b ≥ 1
6
is also a necessary condition such that the

right-hand side inequality in (1.9) is valid.

The reversed version of the left-hand side inequality in (1.9) may be rearranged as

b <
lnπ − ln 2 + [ln(1− x)]/2− ln arccos x

ln(1 + x)
→ 2

π
− 1

2

as x → 0+. Hence, the necessity of 2
π
− 1

2
is proved.

By the equation (3.1) in the proof of Theorem 1.1, it follows that the extreme points
ξ ∈ (0, 1) of the function fa,b(x) satisfy ga,b(ξ) = 0, that is,

arccos ξ =

√

1− ξ2

a+ b+ (a− b)ξ
,

so the extremes of fa,b(x) equal

fa,b(ξ) =
(1 + ξ)b+1/2

(1− ξ)a−1/2[a+ b+ (a− b)ξ]
, g(ξ)

and

g′(x) ,
(x+ 1)b−1/2h(x)

[a+ b+ (a− b)x]2(1− x)a+1/2
,

where

h(x) =
(

a− b)2x2 + (a+ b)(2a− 2b − 1)x+ (a+ b)2 − a+ b

has two zero points x1 and x2 which are also the zeros of the function g′(x) and the
extreme points of g(x) for x ∈ (0, 1).

When 16ab(b− a)+ (a+ b)2 > 0 and x1,2 ∈ (0, 1), the point x1 is the maximum point
and x2 is the minimum point of g(x), so we have the inequality

(3.5)
(1 + x2)

b+1/2(1− x2)
1/2−a

a+ b+ (a− b)x2
≤ fa,b(ξ) ≤

(1 + x1)
b+1/2(1− x1)

1/2−a

a+ b+ (a− b)x1
.

When 16ab(b − a) + (a+ b)2 > 0 such that x1 ≤ 0 and x2 ∈ (0, 1), the function g(x)
has only one minimum and the left-hand side inequality in (3.5) is valid.

When 16ab(b − a) + (a+ b)2 > 0 such that x1 ∈ (0, 1) and x2 ≥ 1, the function g(x)
has only one maximum and the right-hand side inequality in (3.5) is valid.

When 16ab(b − a) + (a + b)2 > 0 such that x2 ≤ 0 or x1 ≥ 1, the function g(x) is
strictly increasing on (0, 1); since limx→0+ g(x) = 1

a+b
and

lim
x→1−

g(x) =











2b+1/2, a = 1
2
,

0, a < 1
2
,

∞, a > 1
2
,

we find

(3.6)
1

a+ b
≤ fa,b(ξ) ≤











2b+1/2, a = 1
2
,

0, a < 1
2
,

∞, a > 1
2
.

When 16ab(b − a) + (a + b)2 > 0 such that x1 ≤ 0 and x2 ≥ 1, the function g(x) is
strictly decreasing on (0, 1), and so the inequality (3.6) reverses.

When 16ab(b− a)+ (a+ b)2 ≤ 0, the function g(x) is strictly increasing on (0, 1), and
so the inequality (3.6) holds.

Under the condition (1.5),
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(1) If 16ab(b− a) + (a+ b)2 > 0 and x1 > 0, then

min

{

2b+1/2,
π

2

}

, a =
1

2

0, a <
1

2















≤
(1 + x)b

(1− x)a
arccos x

≤ fa,b(ξ) ≤
(1 + x1)

b+1/2(1− x1)
1/2−a

a+ b+ (a− b)x1
;

(2) If either 16ab(b− a) + (a+ b)2 > 0 such that x2 ≤ 0 or x1 ≥ 1 or 16ab(b− a) +
(a+ b)2 ≤ 0, then

min

{

2b+1/2,
π

2

}

, a =
1

2

0, a <
1

2















≤ (1 + x)b

(1− x)a
arccos x

≤ fa,b(ξ) ≤

{

2b+1/2, a = 1
2
,

0, a < 1
2
.

Under the condition (1.6), if 16ab(b − a) + (a+ b)2 > 0 and x2 ∈ (0, 1), then

(1 + x)b

(1− x)a
arccos x ≥ fa,b(ξ) ≥

(1 + x2)
b+1/2(1− x2)

1/2−a

a+ b+ (a− b)x2
.

Straightforward simplification completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. Direct computation yields

dF1/2,1/2,2
√

2 (x)

dx
=

[

1 +
√

2(x+ 1)
]√

1− x2

(1 + x)(x− 1)2

×

[

arccos x−
(√

1 + x + 2
√
2
)√

1− x

1 +
√

2(x+ 1)

]

,

[

1 +
√

2(x+ 1)
]√

1− x2

(1 + x)(x− 1)2
G(x),

and

G′(x) =
(x− 1)

√

2(1 + x)
[√

1 + x −
√
2
]

2
√

(1 + x)(1− x2)
[

1 +
√

2(1 + x)
]2

> 0.

Thus, the function G(x) is strictly increasing on (0, 1). Since limx→1− G(x) = 0, the
function G(x) is negative on (0, 1), which means that the derivative F ′

1/2,1/2,2
√

2
(x) is

negative and that the function F1/2,1/2,2
√

2 (x) is strictly decreasing on (0, 1). Further,
from

lim
x→0+

F1/2,1/2,2
√

2 (x) =

(

1

2
+

√
2

)

π

and limx→1− F1/2,1/2,2
√

2 (x) = 6, the double inequality (1.15) and its best possibility
follow. Theorem 1.3 is thus proved. �
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