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Abstract

In the present paper we have defined a new space called a BA-cone
metric space by taking a Banach algebra instead of a Banach space.
Some common fixed point theorems involving rational expressions have
been proved and some consequences obtained in these spaces. Also we
have extended this work to four mappings with a weak commutativity
property in BA-cone metric spaces.
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1. Introduction

Fixed point theory plays a basic role in applications of various branches of mathemat-
ics, from elementary calculus and linear algebra to topology and analysis. Fixed point
theory is not restricted to mathematics and this theory has many applications in other
disciplines. This theory is closely related to game theory, military, economics, statistics
and medicine.

Much work has been done involving fixed points using the Banach contraction prin-
ciple. This principle has been extended to other kinds of contraction principle, such as
contractive conditions involving product, rational expressions and many others. The Ba-
nach contraction principle with rational expressions have been extended and some fixed
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and common fixed point theorems obtained in [4-5]. In [3], common fixed points for a
pair of self mappings satisfying a rational expression have been obtained.

Quiet recently; Huang and Zhang [6] generalized the notion of metric space by replac-
ing the real numbers by an ordered Banach space, thereby defining cone metric spaces.
They have investigated convergence in cone metric spaces, introduced completeness of
cone metric spaces, and proved a Banach contraction mapping theorem, and some other
fixed point theorems involving contractive type mappings in cone metric spaces using
the normality condition. Later, various authors have proved some common fixed point
theorems with normal and non-normal cones in these spaces.

The aim of this paper is to extend the result in [3] to BA-cone metric spaces which we
have defined using a Banach algebra instead of a Banach space. We get some consequences
related to some special properties of mappings.

2. Basic facts and definitions

We give some facts and definitions which we need in the sequel.

Let B be a real Banach space and K a subset of B. Then K is called a cone if and
only if

1. K is closed, nonempty and K 6= {0},
2. a, b ∈ R, a, b ≥ 0, x, y ∈ K =⇒ ax+ by ∈ K,
3. x ∈ K and −x ∈ K =⇒ x = 0.

If we take a Banach algebra instead of Banach space, then we say that K is a BA-cone.

Given a cone K ⊂ B, we define a partial ordering ≤ with respect to K by x ≤ y if
and only if y − x ∈ K. We write x < y if x ≤ y but x 6= y; x ≪ y if y − x ∈ intK, where
intK is the interior of K. The cone K is called normal if there is a number M > 0 such
that for all x, y ∈ B,

(2.1) 0 ≤ x ≤ y implies ‖x‖ ≤ M ‖y‖ .

2.1. Definition. [6] Let X be nonempty set, B a real Banach space and K ⊂ B a cone.
Suppose the mapping d : X ×X → B satisfies

d1. 0 < d (x, y) for all x, y ∈ X and d (x, y) = 0 if and only if x = y;
d2. d (x, y) = d (y, x) for all x, y ∈ X;
d3. d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. It is obvious
that the concept of a cone metric space is more general than that of a metric space.

If we replace the Banach space with a Banach algebra in Definition 2.1 [6] then we
obtain a new space which is called a BA-cone metric space.

2.2. Example. Let B = R2, K = {(x, y) : x, y ≥ 0}, X = R and let d : X × X → B

be defined by d (x, y) = (|x− y| , α |x− y|), where α ≥ 0 is a constant. Then (X, d) is a
BA-cone metric space since B is a real commutative Banach algebra.

2.3. Example. Let C2
R ([0, 1]) be the space of all real functions on [0, 1] whose second

derivative is continuous. We recall that for a, b > 0, the space C2
R ([0, 1]) with the norm

‖f‖ = ‖f‖
∞

+ a
∥

∥f
′
∥

∥

∞
+ b

∥

∥f
′′
∥

∥

∞

is a Banach space, where ‖f‖
∞

= sup
t∈[0,1]

|f (t)|. This space is a Banach algebra if and

only if 2b ≤ a2, see [17, page 272].
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If we take X = B = C2
R ([0, 1]) with the above norm and K = {u ∈ B : u ≥ 0},

then (X, d) becomes a cone metric space where d (x, y) =

(

sup
t∈[0,1]

|x (t)− y (t)|

)

f (t) and

f : [0, 1] → R, f (t) = et. But if we take 2b > a2 then B is not Banach Algebra, hence
(X, d) is not a BA-cone metric space.

2.4. Definition. Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X.
If for every c ∈ B with 0 ≪ c,

1. there is N ∈ N such that for all n > N, d (xn, x) ≪ c then {xn} is said to be
convergent,

2. there is N ∈ N such that for all n,m > N , d (xn, xm) ≪ c, then {xn} is called a
Cauchy sequence in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X. It is known that {xn} converges to x ∈ X if and only if d (xn, x) → 0
as n → ∞.

2.5. Remark. [8] Let us recall that if X is a normal cone, x ∈ K, a ∈ R, a ∈ [0, 1) and
x ≤ ax, then x = 0.

Let f : X → X and x0 ∈ X. The function f is continuous at x0 if for any sequence
xn → x0 we have f (xn) → f (x0).

Throughout the paper, we take B to be a Banach commutative division algebra. Recall
that, a division algebra is an algebra with identity e, in which every non-zero element is
a unit, where the identity is a non-zero element such that xe = ex = x for all x and in
any algebra with identity e, an element which has an inverse is called a unit, i.e. x is a
unit if and only if there exists an inverse y such that xy = yx = e. We write y = x−1

and observe that x−1 is unique when it exists [15].

Also, throughout we will use a cone which has non empty interior (i.e. intK 6= ∅).
Therefore the uniqueness of the limit for a convergence sequence will be guaranteed.

3. Main results

In the following theorem we carry [3, Theorem 1] over to BA-cone metric spaces.

3.1. Theorem. Let (X, d) be a BA-complete cone metric space, K a BA-normal cone

with normal constant M . Suppose the mappings S and T are two self maps of X such

that S and T satisfy the inequality

(3.1) d (Sx, Ty) ≤ α
d (x, Sx) d (x, Ty) + [d (x, y)]2 + d (x, Sx) d (x, y)

d (x, Sx) + d (x, y) + d (x, Ty)

for all x, y in X with x 6= y, 0 < α < 1 and d (x, Sx) + d (x, y) + d (x, Ty) 6= 0. Then S

and T have a common fixed point. Further if d (x, Sx) + d (x, y) + d (x, Ty) = 0 implies

d (Sx, Ty) = 0, then S and T have a unique common fixed point.

Proof. Let an x0 be arbitrary point of X, and define {xn} by

x2n+2 = Tx2n+1,

x2n+1 = Sx2n, n = 0, 1, 2, . . . .
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Let d (x,Sx) + d (x, y) + d (x, Ty) 6= 0. Then using (3.1),

d (x2n+1, x2n+2)

= d (Sx2n, Tx2n+1)

≤ α

{

d (x2n, Sx2n) d (x2n, Tx2n+1) + [d (x2n, x2n+1)]
2

d (x2n, Sx2n) + d (x2n, x2n+1) + d (x2n, Tx2n+1)

+
d (x2n, Sx2n) d (x2n, x2n+1)

d (x2n, Sx2n) + d (x2n, x2n+1) + d (x2n, Tx2n+1)

}

= α

{

d (x2n, x2n+1) d (x2n, x2n+2) + [d (x2n, x2n+1)]
2

d (x2n, x2n+1) + d (x2n, x2n+1) + d (x2n, x2n+2)

+
d (x2n, x2n+1) d (x2n, x2n+1)

d (x2n, x2n+1) + d (x2n, x2n+1) + d (x2n, x2n+2)

}

= d (x2n, x2n+1)

{

α
d (x2n, x2n+2) + d (x2n, x2n+1) + d (x2n, x2n+1)

d (x2n, x2n+2) + d (x2n, x2n+1) + d (x2n, x2n+1)

}

.

Hence,

d (x2n+1, x2n+2) ≤ αd (x2n, x2n+1) .

Similarly;

d (x2n, x2n+1) = d (Sx2n, Tx2n−1)

≤ α

{

d (x2n, Sx2n) d (x2n, Tx2n−1) + [d (x2n, x2n−1)]
2

d (x2n, Sx2n) + d (x2n, x2n−1) + d (x2n, Tx2n−1)

+
d (x2n, Sx2n) d (x2n, x2n−1)

d (x2n, Sx2n) + d (x2n, x2n−1) + d (x2n, Tx2n−1)

}

.

Hence,

d (x2n, x2n+1) ≤ α d (x2n−1, x2n) .

By this way, if we continue, we get

d (x2n+1, x2n+2) ≤ αd (x2n, x2n+1) ≤ α
2
d (x2n−1, x2n) ≤ · · · ≤ α

2n+1
d (x0, x1) .

It is obvious that the following inequality holds for m > n.

d (xn, xn+m) ≤
m
∑

i=1

d (xn+i−1, xn+i)

≤
m
∑

i=1

α
n+i−1

d (x0, x1)

≤
αn

1− α
d (x0, x1) .

By (2.1),

‖d (xn, xn+m)‖ ≤ M
αn

1− α
‖d (x0, x1)‖ ,

which implies that d (xn, xn+m) → 0 as n → ∞. Hence, {xn} is a Cauchy sequence, so
by the completeness of X this sequence must be convergent in X. Let z be the limit of
{xn}, i.e. xn → z as n → ∞.
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Now if we assume z 6= Tz, then d (z, T z) > 0. If we use the triangle inequality and
Inequality (3.1) we have

d (z, T z)

≤ d (z, x2n+1) + d (x2n+1, T z)

= d (z, x2n+1) + d (Sx2n, T z)

≤ d (z, x2n+1)

+ α
d (x2n, Sx2n) d (x2n, T z) + [d (x2n, z)]

2 + d (x2n, Sx2n) d (x2n, z)

d (x2n, Sx2n) + d (x2n, z) + d (x2n, T z)

≤ d (z, x2n+1)

+ α
d (x2n, x2n+1) d (x2n, T z) + [d (x2n, z)]

2 + d (x2n, x2n+1) d (x2n, z)

d (x2n, x2n+1) + d (x2n, z) + d (x2n, T z)
,

so using the condition of a normal cone;

‖d (z, T z)‖

≤ M

{

‖d (z, x2n+1)‖

+ α

∥

∥

∥

∥

d (x2n, x2n+1) d (x2n, T z) + [d (x2n, z)]
2 + d (x2n, x2n+1) d (x2n, z)

d (x2n, x2n+1) + d (x2n, z) + d (x2n, T z)

∥

∥

∥

∥

}

As n → ∞, we have

‖d (z, T z)‖ ≤ 0,

which is a contradiction. Hence, we get z = Tz; i.e. z is a fixed point of T .

Similarly; let us suppose that z 6= Sz, and d (z, Sz) > 0.

d (z, Sz) ≤ d (z, x2n+2) + d (x2n+2, Sz)

= d (z, x2n+2) + d (Sz, Tx2n+1)

≤ d (z, x2n+2)

+ α
d (z, Sz) d (z, Tx2n+1) + [d (z, x2n+1)]

2 + d (z, Sz) d (z, x2n+1)

d (z, Sz) + d (z, x2n+1) + d (z, Tx2n+1)

= d (z, x2n+2)

+ α
d (z, Sz) d (z, x2n+2) + [d (z, x2n+1)]

2 + d (z, Sz) d (z, x2n+1)

d (z, Sz) + d (z, x2n+1) + d (z, x2n+2)
,

so by (2.1),

‖d (z, Sz)‖

≤ M {‖d (z, x2n+2)‖

+α

∥

∥

∥

∥

d (z, Sz) d (z, x2n+2) + [d (z, x2n+1)]
2 + d (z, Sz) d (z, x2n+1)

d (z, Sz) + d (z, x2n+1) + d (z, x2n+2)

∥

∥

∥

∥

}

.

Hence,

‖d (z, Sz)‖ ≤ 0,

a contradiction. Therefore d (z, Sz) = 0 and so z = Sz, i.e. z is a fixed point of S.

Hence we find that z is a common fixed point of S and T .

For the uniqueness of z, let us suppose that d (x, Sx)+ d (x, y)+ d (x, Ty) = 0 implies
d (Sx, Ty) = 0 and that w is another fixed point of T in X. Then,

d (z, Sz) + d (z, w) + d (z, Tw) = 0 implies d (Sz, Tw) = 0.
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Therefore, we get

d (z, w) = d (Sz, Tw) = 0,

which implies that z = w, and this is the desired consequence. �

If S is a map which has a fixed point z, then z is a fixed point of Sn for every n ∈ N

too. However, the converse need not to be true. Jeong and Rhoades [9] discussed this
situation and gave examples for metric spaces, while Abbas and Rhoades [1] examined
this for cone metric spaces. If a map satisfies F (S) = F (Sn) for each n ∈ N then it is
said to have property P . If F (Sn) ∩ F (Tn) = F (S) ∩ F (T ) then we say that S and T

have property Q.

We examine the property Q for those mappings which satisfy Inequality (3.1).

3.2. Theorem. Let (X, d) be a BA-complete cone metric space and K a BA-normal

cone with normal constant M . Suppose the self mappings S and T in X satisfy (3.1).
Then S and T have property Q.

Proof. By the above theorem, we know that S and T have a common fixed point in X.
Let z ∈ F (Sn) ∩ F (Tn). Then;

d (z, T z) = d
(

S
n
z, T

n+1
z
)

= d
(

S
(

S
n−1

z
)

, T (Tn
z)
)

≤ α

{

d
(

Sn−1z, Snz
)

d
(

Sn−1z, Tn+1z
)

+
[

d
(

Sn−1z, Tnz
)]2

d (Sn−1z, Snz) + d (Sn−1z, Tnz) + d (Sn−1z, Tn+1z)

+
d
(

Sn−1z, Snz
)

d
(

Sn−1z, Tnz
)

d (Sn−1z, Snz) + d (Sn−1z, Tnz) + d (Sn−1z, Tn+1z)

}

≤ α

{

d
(

Sn−1z, z
)

d
(

Sn−1z, T z
)

+
[

d
(

Sn−1z, z
)]2

d (Sn−1z, z) + d (Sn−1z, z) + d (Sn−1z, T z)

+
d
(

Sn−1z, z
)

d
(

Sn−1z, z
)

d (Sn−1z, z) + d (Sn−1z, z) + d (Sn−1z, T z)

}

,

and,

d
(

S
n
z, T

n+1
z
)

≤ α
d
(

Sn−1z, z
) [

d
(

Sn−1z, T z
)

+ 2d
(

Sn−1z, z
)]

[d (Sn−1z, T z) + 2d (Sn−1z, z)]

= αd
(

S
n−1

z, T
n
z
)

Similarly;

d
(

S
n
z, T

n+1
z
)

≤ αd
(

S
n−1

z, T
n
z
)

= d
(

S
(

S
n−2

z
)

, T
(

T
n−1

z
))

≤ α

{

d
(

Sn−2z, Sn−1z
)

d
(

Sn−2z, Tnz
)

+
[

d
(

Sn−2z, Tn−1z
)]2

d (Sn−2z, Sn−1z) + d (Sn−2z, Tn−1z) + d (Sn−2z, Tnz)

+
d
(

Sn−2z, Sn−1z
)

d
(

Sn−2z, Tn−1z
)

d (Sn−2z, Sn−1z) + d (Sn−2z, Tn−1z) + d (Sn−2z, Tnz)

}

= α

{

d
(

Sn−2z, Sn−1z
)

d
(

Sn−2z, Tnz
)

+
[

d
(

Sn−2z, Sn−1z
)]2

d (Sn−2z, Sn−1z) + d (Sn−2z, Sn−1z) + d (Sn−2z, Tnz)

+
d
(

Sn−2z, Sn−1z
)

d
(

Sn−2z, Sn−1z
)

d (Sn−2z, Sn−1z) + d (Sn−2z, Sn−1z) + d (Sn−2z, Tnz)

}

,
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and,

d
(

S
n−1

z, T
n
z
)

≤ α
d
(

Sn−2z, Sn−1z
) [

d
(

Sn−2z, Tnz
)

+ 2d
(

Sn−2z, Sn−1z
)]

[d (Sn−2z, Tnz) + 2d (Sn−2z, Sn−1z)]

= αd
(

S
n−2

z, T
n−1

z
)

.

In this way we get that

d
(

S
n
z, T

n+1
z
)

≤ αd
(

S
n−1

z, T
n
z
)

≤ α
2
d
(

S
n−2

z, T
n−1

z
)

≤ · · · ≤ α
n
d (z, T z) ,

d (z, T z) ≤ α
n
d (z, T z) ,

and using (2.1) this inequality implies that

‖d (z, T z)‖ ≤ Mα
n ‖d (z, T z)‖

as n → ∞, ‖d (z, T z)‖ = 0; so z = Tz. By using Theorem 3.1 we get z = Sz, and
consequently S and T have the property Q. �

3.3. Theorem. Let T be a self mapping of a BA-complete cone metric space (X, d) with
BA-normal cone K having normal constant M , which satisfies the inequality

(3.2) d (Tx, Ty) ≤ α
d (x, Tx) d (x, Ty) + [d (x, y)]2 + d (x, Tx) d (x, y)

d (x, Tx) + d (x, y) + d (x, Ty)

for all x, y in X with x 6= y, 0 < α < 1 and d (x, Tx) + d (x, y) + d (x, Ty) 6= 0. Then T

has a fixed point. Further, if d (x, Tx) + d (x, y) + d (x, Ty) = 0 implies d (Tx, Ty) = 0,
then T has a unique fixed point.

Proof. If we take S = T in Theorem 3.1 we obtain the proof. �

3.4. Theorem. Let (X, d) be a BA-complete cone metric space and K a BA-normal

cone with normal constant M . Suppose the self mapping T in X satisfies (3.2). Then T

has the property P .

Proof. Let z ∈ F (Tn). Then

d (z, T z) = d
(

T
n
z, T

n+1
z
)

≤ α

[

d
(

Tn−1z, Tnz
)

d
(

Tn−1z, Tn+1z
)

+
[

d
(

Tn−1z, Tnz
)]2

d (Tn−1z, Tnz) + d (Tn−1z, Tnz) + d (Tn−1z, Tn+1z)

+
d
(

Tn−1z, Tnz
)

d
(

Tn−1z, Tnz
)

d (Tn−1z, Tnz) + d (Tn−1z, Tnz) + d (Tn−1z, Tn+1z)

]

≤ α

[

d
(

Tn−1z, z
)

d
(

Tn−1z, T z
)

+
[

d
(

Tn−1z, z
)]2

d (Tn−1z, z) + d (Tn−1z, z) + d (Tn−1z, T z)

+
d
(

Tn−1z, z
)

d
(

Tn−1z, z
)

d (Tn−1z, z) + d (Tn−1z, z) + d (Tn−1z, T z)

]

≤ αd
(

T
n−1

z, z
)

[

d
(

Tn−1z, T z
)

+ d
(

Tn−1z, z
)

+ d
(

Tn−1z, z
)

d (Tn−1z, z) + d (Tn−1z, z) + d (Tn−1z, T z)

]

,

and

d
(

T
n
z, T

n+1
z
)

≤ αd
(

T
n−1

z, T
n
z
)

.
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Similarly,

d
(

T
n−1

z, T
n
z
)

= d
(

T
(

T
n−2

z
)

, T
(

T
n−1

z
))

≤ α

[

d
(

Tn−2z, Tn−1z
)

d
(

Tn−2z, Tnz
)

+
[

d
(

Tn−2z, Tn−1z
)]2

d (Tn−2z, Tn−1z) + d (Tn−2z, Tn−1z) + d (Tn−2z, Tnz)

+
d
(

Tn−2z, Tn−1z
)

d
(

Tn−2z, Tn−1z
)

d (Tn−2z, Tn−1z) + d (Tn−2z, Tn−1z) + d (Tn−2z, Tnz)

]

≤ αd
(

T
n−2

z, T
n−1

z
)

,

so

d
(

T
n
z, T

n+1
z
)

≤ αd
(

T
n−1

z, T
n
z
)

≤ α
2
d
(

T
n−2

z, T
n−1

z
)

≤ · · · ≤ α
n
d (z, T z) ,

and

d (z, T z) ≤ α
n
d (z, T z) .

If we use Inequality (2.1),

‖d (z, T z)‖ ≤ Mα
n ‖d (z, T z)‖ .

The right hand side of the above inequality tends to zero as n → ∞, ‖d (z, T z)‖ = 0, i.e.
z = Tz. We conclude that a mapping which satisfies the (3.2) has property P . �

Finally, we give a new theorem for four mappings. To prove the theorem we need
definitions which were given for metric spaces in [11] and [18].

3.5. Definition. Two self mappings S and T of a cone metric space (X, d) are said to
be weakly commuting if the following is satisfied for all x ∈ X;

d (STx, TSx) ≤ d (Sx, Tx) .

3.6. Definition. Let S and T be self mappings of a cone metric space (X, d) with a
normal cone K. Then {S, T} are said to be compatible if

lim
n→∞

d (STxn, TSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ Txn = limn→∞ Sxn = w for some
w in X.

3.7. Theorem. Let (X, d) be a BA-complete cone metric space and K its BA-normal

cone with normal constant M , and let {S, I} and {T, J} be weakly commuting pairs of

self mappings satisfying the following:

(1) T (X) ⊂ I (X), S (X) ⊂ J (X).
(2) For all x, y in X; either

(3.3)

d (Sx, Ty)

≤ α

{

d (Ix, Sx) d (Ix, Ty) + [d (Ix, Jy)]2 + d (Ix, Sx) d (Ix, Jy)

d (Ix, Sx) + d (Ix, Jy) + d (Ix, Ty)

}

+ βd (Ix, Jy)

if d (Ix, Sx) + d (Ix, Jy) + d (Ix, Ty) 6= 0, where α+ β < 1 and β < 1, or

d (Sx, Ty) = 0

if d (Ix, Sx) + d (Ix, Jy) + d (Ix, Ty) = 0.

If any of S, T, I or J is continuous then S, T, I and J have a unique common fixed point

z. Furthermore, z is the unique common fixed point of S and I as well as of T and J.
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Proof. Take x0 as an arbitrary point of X. Since S (X) ⊂ J (X) we can find a point
x1 in X such that Sx0 = Jx1. Also, since T (X) ⊂ I (X) we can choose a point x2

with Tx1 = Ix2. In general; for the point x2n we can pick up a point x2n+1 such that
Sx2n = Jx2n+1, and then a point x2n+2 with Tx2n+1 = Ix2n+2 for n = 0, 1, . . ..

Let us form D2n = d (Sx2n, Tx2n+1) and D2n+1 = d (Sx2n+2, Tx2n+1).

Suppose D2n = d (Sx2n, Tx2n+1) 6= 0 and D2n+1 = d (Sx2n+2, Tx2n+1) 6= 0 for
n = 1, . . .. Then if we employ Inequality (3.3) we have

D2n+1 = d (Sx2n+2, Tx2n+1)

≤ α

{

d (Ix2n+2, Sx2n+2) d (Ix2n+2, Tx2n+1) + [d (Ix2n+2, Jx2n+1)]
2

d (Ix2n+2, Sx2n+2) + d (Ix2n+2, Jx2n+1) + d (Ix2n+2, Tx2n+1)

+
d (Ix2n+2, Sx2n+2) d (Ix2n+2, Jx2n+1)

d (Ix2n+2, Sx2n+2) + d (Ix2n+2, Jx2n+1) + d (Ix2n+2, Tx2n+1)

}

+ βd (Ix2n+2, Jx2n+1)

= α

{

d (Tx2n+1, Sx2n+2) d (Tx2n+1, Tx2n+1) + [d (Tx2n+1, Sx2n)]
2

d (Tx2n+1, Sx2n+2) + d (Tx2n+1, Sx2n) + d (Tx2n+1, Tx2n+1)

+
d (Tx2n+1, Sx2n+2) d (Tx2n+1, Sx2n)

d (Tx2n+1, Sx2n+2) + d (Tx2n+1, Sx2n) + d (Tx2n+1, Tx2n+1)

}

+ β d (Tx2n+1, Sx2n)

= α
d (Tx2n+1, Sx2n) [d (Tx2n+1, Sx2n) + d (Tx2n+1, Sx2n+2)]

[d (Tx2n+1, Sx2n) + d (Tx2n+1, Sx2n+2)]

≤ (α+ β) d (Tx2n+1, Sx2n) ,

which implies that

D2n+1 ≤ λD2n ≤ λ
2
D2n−1 ≤ · · · ≤ λ

2n+1
D0,

where λ = α+ β < 1. Using (2.1),

‖D2n+1‖ ≤ Mλ
2n+1 ‖D0‖ .

In this inequality, ‖D2n+1‖ → 0 as n → ∞, so d (Sx2n+2, Tx2n+1) → 0 as n → ∞. We
get the following sequence

(3.4) {Sx0, Tx1, Sx2, Tx3, . . . , Sx2n, Tx2n+1, . . .}

which is a Cauchy sequence in the complete cone metric space (X, d), and therefore
converges a limit point z ∈ X. Therefore the sequences

{Sx2n} = {Jx2n+1}

{Tx2n−1} = {Ix2n}

which are subsequences of (3.4) and hence also converge to the same point z ∈ X.

Let assume that I is continuous so that the sequences
{

I2x2n

}

and {ISx2n} converge
to the same point Iz. We know that S and I are weakly commuting so we have;

d (SIx2n, ISx2n) ≤ d (Ix2n, Sx2n) ,

and using (2.1)

‖d (SIx2n, ISx2n)‖ ≤ M ‖d (Ix2n, Sx2n)‖

as n → ∞. Hence the sequence {SIx2n} converges to the point Iz.
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If we employ the triangle property and Inequality (3.3), we get

d (Iz, z) ≤ d (Iz, SIx2n) + d (SIx2n, Tx2n+1) + d (Tx2n+1, z)

≤ d (Iz, SIx2n)

+ α

{

d
(

I2x2n, SIx2n

)

d
(

I2x2n, Tx2n+1

)

+
[

d
(

I2x2n, Jx2n+1

)]2

d (I2x2n, SIx2n) + d (I2x2n, Jx2n+1) + d (I2x2n, Tx2n+1)

+
d
(

I2x2n, SIx2n

)

d
(

I2x2n, Jx2n+1

)

d (I2x2n, SIx2n) + d (I2x2n, Jx2n+1) + d (I2x2n, Tx2n+1)

}

+ βd
(

I
2
x2n, Jx2n+1

)

+ d (Tx2n+1, z) ,

which with Inequality (2.1) gives

‖d (Iz, z)‖ ≤ M {‖d (Iz, SIx2n)‖

+

∥

∥

∥

∥

∥

α
d
(

I2x2n, SIx2n

)

d
(

I2x2n, Tx2n+1

)

+
[

d
(

I2x2n, Jx2n+1

)]2

d (I2x2n, SIx2n) + d (I2x2n, Jx2n+1) + d (I2x2n, Tx2n+1)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

d
(

I2x2n, SIx2n

)

d
(

I2x2n, Jx2n+1

)

d (I2x2n, SIx2n) + d (I2x2n, Jx2n+1) + d (I2x2n, Tx2n+1)

∥

∥

∥

∥

∥

+β
∥

∥d
(

I
2
x2n, Jx2n+1

)∥

∥+ ‖d (Tx2n+1, z)‖
}

= M

{

α
‖d (Iz, z) d (Iz, z)‖

2 ‖d (Iz, z)‖

}

,

so

‖d (Iz, z)‖ ≤ M
(α

2
+ β

)

‖d (Iz, z)‖ .

Hence ‖d (Iz, z)‖ = 0, and Iz = z. We want to show that Sz = z, too. Using the same
inequalities, we have

d (Sz, z)

≤ d (Sz, Tx2n+1) + d (Tx2n+1, z)

≤ α

{

d (Iz, Sz) d (Iz, Tx2n+1) + [d (Iz, Jx2n+1)]
2 + d (Iz, Sz) d (Iz, Jx2n+1)

d (Iz, Sz) + d (Iz, Jx2n+1) + d (Iz, Tx2n+1)

}

+ βd (Iz, Jx2n+1) + d (Tx2n+1, z) ,

and again if (2.1) is used;

‖d (Sz, z)‖

≤ M

{∥

∥

∥

∥

α

{

d (Iz, Sz) d (Iz, Tx2n+1) + [d (Iz, Jx2n+1)]
2 + d (Iz, Sz) d (Iz, Jx2n+1)

d (Iz, Sz) + d (Iz, Jx2n+1) + d (Iz, Tx2n+1)

}∥

∥

∥

∥

+ β ‖d (Iz, Jx2n+1)‖+ ‖d (Tx2n+1, z)‖

}

and, as n tends to infinity,

= M

{

α
d (z, Sz) d (z, z) + [d (z, z)]2 + d (z, Sz) d (z, z)

d (z, Sz) + d (z, z) + d (z, z)
+ βd (z, z) + d (z, z)

}

.

Then, ‖d (Sz, z)‖ = 0 and hence Sz = z.
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We have seen that Sz = z, and we know that S (X) ⊂ J (X) so we can always find a
point w such that Jw = z. Thus,

d (z, Tw) = d (Sz, Tw)

≤ α

{

d (Iz, Sz) d (Iz, Tw) + [d (Iz, Jw)]2 + d (Iz, Sz) d (Iz, Jw)

d (Iz, Sz) + d (Iz, Jw) + d (Iz, Tw)

}

+ βd (Iz, Jw) ,

so that d (z, Tw) = 0, Tw = z.

Since T and J weakly commute

d (Tz, Jz) = d (TJw, JTw) ≤ d (Jw, Tw) = d (z, z) = 0,

which gives Tz = Jz, and so

d (z, T z) = d (Sz, T z)

≤ α

{

d (Iz, Sz) d (Iz, T z) + [d (Iz, Jz)]2 + d (Iz, Sz) d (Iz, Jz)

d (Iz, Sz) + d (Iz, Jz) + d (Iz, T z)

}

+ βd (Iz, Jz) ,

which gives

d (z, T z) ≤
(

α

2
+ β

)

d (z, T z) .

By using Remark 2.5 we get that z = Tz, consequently this yields Tz = Jz = z.

Thereby we have proved that the mappings S, T, I and J have a common fixed point.

The proof is the same if one of the mappings S, T, J is continuous instead of I .

To show that z is unique, let u be another common fixed point of S and I . Then

d (u, z) = d (Su, T z)

≤ α

{

d (Iu, Su) d (Iu, T z) + [d (Iu, Jz)]2 + d (Iu, Su) d (Iu, Jz)

d (Iu, Su) + d (Iu, Jz) + d (Iu, T z)

}

+ β d (Iu, Jz) ,

so

d (u, z) ≤
(α

2
+ β

)

d (u, z) .

Using Remark 2.5 again we get u = z. In the same way it can be show that z is the
unique fixed point for the mappings T and J . �

3.8. Remark. Weakly commuting mappings are obviously compatible, but the con-
verse need not to be true. So, the condition weak commutativity can be replaced with
compatibility with the same assumptions in the theorem.

Acknowledgements

We would like to express our gratitude to the reviewer for his/her careful reading and
valuable suggestions which improved the presentation of the paper.
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