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Abstract

For a (molecular) graph, the first Zagreb index M1 is equal to the sum
of the squares of the degrees of the vertices, and the second Zagreb
index M2 is equal to the sum of the products of the degrees of pairs of
adjacent vertices. It is well-known that for connected or disconnected
graphs,

M2/m ≥ M1/n

does not hold always. In K.C. Das (On comparing Zagreb indices of
graphs, MATCH Commun. Math. Comput. Chem. 63, 433–440,
2010), it has been shown that the above relation holds for a special
kind of graph. Here we continue our search for special kinds of graph
for which the above relation holds.

Keywords: First Zagreb index, Second Zagreb index, Cartesian product, Threshold
graph.
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1. Introduction

Let G = (V,E) be a simple graph with the vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G), |E(G)| = m. Also let G be a complement graph of G. For vi ∈ V (G), di
is the degree of the vertex vi of G, i = 1, 2, . . . , n. The minimum vertex degree is denoted
by δ(G) and the maximum by ∆(G). The average of the degrees of the vertices adjacent
to vertex vi is denoted by µi.
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The first Zagreb index M1(G) and the second Zagreb index M2(G) of graph G (see
[3, 8, 9, 11, 12, 13, 18, 19, 20, 21, 24, 30, 31] and the references therein) are among the
oldest and the most famous topological indices and they are defined as:

M1(G) =
∑

vi∈V (G)

d2i

and

M2(G) =
∑

vivj∈E(G)

di dj .

The AutoGraphiX system ([1], [4]-[5]) proposed the following conjecture:

(1.1) M2(G)/m ≥ M1(G)/n.

Hansen and Vukičević [14] proved that (1.1) is true for all chemical graphs and does
not hold for general graphs. Vukičević and Graovac [27] proved that (1.1) holds for
all trees, and gave a counter example for bicyclic graphs. Sun and Chen [22] showed
that (1.1) holds for graphs with a small difference between the maximum and minimum
vertex degrees. Also (1.1) holds for all unicyclic graphs [29] and for all bicyclic graphs,
except one class [23], and generalizations of this claim to the variable Zagreb indices were
analyzed in [15, 25, 26, 28, 29]. In [16], it has been shown that for every positive integer k,
there exists a connected graph such that m−n = k and (1.1) does not hold. Some recent
results on the Zagreb indices are reported in [6], [10], [32]-[35], where also references to the
previous mathematical research in this area can be found. These indices reflect the extent
of branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular
structure-descriptors [2, 24]. The connected and disconnected counter examples of the
relation (1.1) are given in [14, 22].

In [7], it has been shown that (1.1) holds for a special kind of graph. Here we continue
our search for those special kinds of graph which satisfy (1.1).

2. Conjecture on comparing Zagreb indices of graphs

In this section we present some results related to the conjecture (1.1) of graphs.

The cartesian product G × H of graphs G and H has the vertex set V (G × H) =
V (G)× V (H) and (a, x)(b, y) is an edge of G×H if a = b and xy ∈ E(H), or ab ∈ E(G)
and x = y. If G1, G2, . . . , Gn are graphs then we denote G1

⊗

· · ·
⊗

Gn by
⊗n

i=1 Gi. In
the case where G1 = G2 = · · · = Gn = G, we denote

⊗n

i=1 Gi by Gn.

2.1. Lemma. [17] Let G1, G2, . . . , Gn be graphs with Vi = V (Gi) and Ei = E(Gi),
1 ≤ i ≤ n, and V = V (

⊗n

i=1 Gi). Then

M1

( n
⊗

i=1

Gi

)

= |V |
n
∑

i=1

M1(Gi)

|Vi|
+ 4|V |

n
∑

i6=j,i,j=1

|Ei||Ej |

|Vi||Vj |
. �

2.2. Lemma. [17] Let G1, G2, . . . , Gn be graphs with Vi = V (Gi) and Ei = E(Gi),
1 ≤ i ≤ n, V = V (

⊗n

i=1 Gi) and E = E(
⊗n

i=1 Gi). Then

M2

( n
⊗

i=1

Gi

)

= |V |
n
∑

i=1

(

M2(Gi)

|Vi|
+ 3M1(Gi)

(

|E|

|Vi|
−

|V ||Ei|

|Vi|2

))

+ 4|V |
n
∑

i,j,k=1;i6=j,i6=k,j 6=k

|Ei||Ej ||Ek|

|Vi||Vj ||Vk|
. �

2.3. Theorem. Let G1 and G2 be two simple graphs with ni = |V (Gi)| and mi =
|E(Gi)|, i = 1, 2. If (1.1) holds for G1 and G2, then it also holds for G1 ×G2.
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Proof. Let n∗ and m∗ be the number of vertices and edges, respectively, in G1 × G2.
Then n∗ = n1n2 and m∗ = n1m2 + n2m1. By Lemma 2.1 and Lemma 2.2, we get

(2.1) M1(G1 ×G2) = n1M1(G2) + n2M1(G1) + 4m1m2.

and

(2.2) M2(G1 ×G2) = n1M2(G2) + n2M2(G1) + 3m2M1(G1) + 3m1M1(G2).

Since (1.1) holds for G1 and G2, we have

(2.3) n1M2(G1) ≥ m1M1(G1) and n2M2(G2) ≥ m2M1(G2).

By (2.2), we have

n∗M2(G1 ×G2)

= n2
1n2M2(G2) + n1n

2
2M2(G1) + 3n1n2m2M1(G1) + 3n1n2m1M1(G2)

≥ n2
1m2M1(G2) + n2

2m1M1(G1) + n1n2m2M1(G1) + n1n2m1M1(G2)

+ 8n2m
2
1m2 + 8n1m1m

2
2 as n1M1(G1) ≥ 4m2

1,

n2M1(G2) ≥ 4m2
2 and by (2.3)

= (n1m2 + n2m1)M1(G1 ×G2) + 4n2m
2
1m2 + 4n1m1m

2
2 by (2.1)

> m∗M2(G1 ×G2).

Hence the theorem. �

2.4. Theorem. Let G be a simple graph with n vertices and m edges. Then (1.1) holds
for G×G.

Proof. From (2.1) and (2.2), we get

(2.4) M1(G×G) = 2nM1(G) + 4m2

and

(2.5) M2(G×G) = 2nM2(G) + 6mM1(G).

By (2.5), we have

n2M2(G×G) = 2n3M2(G) + 6n2mM1(G)

> 6n2mM1(G)

≥ 4n2mM1(G) + 8nm3 as nM1(G) ≥ 4m2

= 2nmM1(G ×G) by (2.4).

Hence the theorem. �

Let G be a graph with vertex set V and edge set E. Let V be a copy of V , V =
{x : x ∈ V }. Then we denote by G′ the graph with vertex set V ∪ V and edge set
E′ = E ∪ {xy : xy /∈ E}.

2.5. Theorem. Let G be a simple graph of n vertices and m edges. Then G′ must satisfy
(1.1).

Proof. Let n′ and m′ be the number of vertices and edges in G′. Then n′ = 2n and
m′ =

∑n

i=1(n− 1− di) +m = n(n− 1)−m.
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Let d′i, i = 1, 2, . . . , 2n be the degree sequence in G′. Then d′i = n− 1, i = 1, 2, . . . , n,
and d′i = n− di − 1, i = n+ 1, n+ 2, . . . , 2n. Now,

M2(G
′) =

∑

vivj∈E′

d′id
′
j

=
∑

vivj∈E′, vi,vj∈V

(n− 1)2 +
∑

vivj∈E′, vi∈V,vj∈V

(n− 1)(n− dj − 1)

=
(

n(n− 1) −m
)

(n− 1)2 − (n− 1)
∑

vivj∈E′

dj

=
(

n(n− 1) −m
)

(n− 1)2 − (n− 1)
n
∑

j=1

(n− 1− dj)dj

= n(n− 1)3 − 3m(n− 1)2 + (n− 1)M1(G)(2.6)

and

(2.7)
M1(G

′) =

2n
∑

i=1

d′ 2
i =

n
∑

i=1

(n− 1)2 +

2n
∑

i=n+1

(n− di − 1)2

= 2n(n− 1)2 − 4m(n− 1) +M1(G).

We have to show that

M2(G
′)

m′
≥

M1(G
′)

n′
,

that is,

2n2(n− 1)3 − 6mn(n− 1)2 + 2n(n− 1)M1(G)

≥
(

2n(n− 1)2 − 4m(n− 1) +M1(G)
)

(n(n− 1)−m) by (2.6) and (2.7),

that is,

n(n− 1)M1(G) +mM1(G)− 4m2n+ 4m2 ≥ 0,

that is,

mM1(G) ≥ 0 as nM1(G) ≥ 4m2,

which, evidently, is always obeyed. Hence the theorem. �

Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs with ni = |V (Gi)| and
mi = |E(Gi)|, i = 1, 2. Then the tensor product G1✷G2 of graphs G1 and G2 is a graph
such that the vertex set of G1✷G2 is the Cartesian product V (G1)×V (G2), and any two
vertices (v′i, v′′j ) and (v′p, v′′q ) are adjacent in G1✷G2 if and only if v′′j is adjacent with
v′′q and v′i is adjacent with v′p. Then we have |V (G1✷G2)| = n1n2.

Denote by di,j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, the degree of the vertex (v′i, v′′j ) of G1✷G2.
Then di,j = d′i · d

′′
j , where d′i is the degree of the vertex v′i of G1 and d′′j is the degree of

the vertex v′′j of G2. Then we have

2|E(G1✷G2)| =
∑

1≤i≤n1,1≤j≤n2

di,j =

n1
∑

i=1

d′i

n2
∑

j=1

d′′j = 4m1m2,

that is,

|E(G1✷G2)| = 2m1m2.

2.6. Theorem. If (1.1) holds for G1 and G2, then it also holds for G1✷G2.
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Proof. Let n̂ and m̂ be the number of vertices and number of edges in G1✷G2. Then
n̂ = n1n2 and m̂ = 2m1m2. Denote by µ′

i the average degree of the adjacent vertices of
vertex v′i in G1, i = 1, 2, . . . , n1 and also denote by µ′′

j the average degree of the adjacent
vertices of vertex v′′j in G2, j = 1, 2, . . . , n2. Now,

µ′
iµ

′′
j =

∑

v′
k
∼v′

i
d′k

d′i
·

∑

v′′
r ∼v′′

j
d′′r

d′′j

=

∑

v′
k
∼v′

i

∑

v′′
r ∼v′′

j
d′kd

′′
r

d′id
′′
j

= µi,j ,

where µi,j is the average degree of the adjacent vertices of vertex (v′i, v
′′
j ) in G1✷G2. We

have

M2(G1✷G2) =
1

2

∑

1≤i≤n1,1≤j≤n2

d2i,jµi,j

=
1

2

∑

1≤i≤n1,1≤j≤n2

d′ 2
i d′′ 2

j µ′
iµ

′′
j

=
1

2

n1
∑

i=1

d′ 2
i µ′

i

n2
∑

j=1

d′′ 2
j µ′′

j

= 2M2(G1)M2(G2)(2.8)

and

(2.9) M1(G1✷G2) =
∑

1≤i≤n1,1≤j≤n2

d2i,j =

n1
∑

i=1

d′ 2
i

n2
∑

j=1

d′′ 2
j = M1(G1)M1(G2).

Since (1.1) holds for G1 and G2, we have

(2.10) n1M2(G1)−m1M1(G1) ≥ 0 and n2M2(G2)−m2M1(G2) ≥ 0,

that is,

n1n2M2(G1)M2(G2)−m1m2M1(G1)M1(G2) ≥ 0,

that is,

n̂M2(G1✷G2)− m̂M1(G1✷G2) ≥ 0.

Hence the theorem. �

2.7. Remark. If (1.1) does not hold for G1 and G2, then it does not hold for G1✷G2.

A threshold graph is a graph that can be constructed from a one-vertex graph by
repeated applications of the following two operations:

• Addition of a single isolated vertex to the graph.
• Addition of a single dominating vertex to the graph, i.e., a single vertex that is

connected to all other vertices.

For example, the graph of Figure 1 is a threshold graph. It can be constructed by be-
ginning with a single-vertex graph (vertex), and then adding vertices ({•}) as isolated
vertices and vertices ({◦}) as dominating vertices, in the order in which they are num-
bered.
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Figure 1. An example of a threshold graph.

2.8. Theorem. If G is a threshold graph, then (1.1) holds for G.

Proof. Let G be a threshold graph with n vertices and m edges. We apply induction on
n. If n = 1, the result is trivial. Suppose now that (1.1) holds for all threshold graphs
with vertex number less than n. By the definition of threshold graph, there is an isolated
vertex or a dominating vertex in G, say vn. Set G′ = G − vn. First we assume that vn
is the isolated vertex in G. Then by the induction hypothesis, (1.1) holds for G′. Hence
it is easy to see that (1.1) holds for G also.

Next we assume that vn is the dominating vertex in G. Let n′ and m′ be the number
of vertices and edges in G′. Then n′ = n− 1 and m′ = m− n+ 1.

Let d′i, i = 1, 2, . . . , n − 1 be the degree sequence in G′. Then di = d′i + 1, i =
1, 2, . . . , n− 1. Now, we have

(2.11) M1(G) = M1(G
′) + n′(n′ + 1) + 2

n−1
∑

i=1

d′i = M1(G
′) + n′(n′ + 1) + 4m′

and

(2.12)
M2(G) =

∑

vivj∈E(G′)

(d′i + 1)(d′j + 1) + n′

n−1
∑

i=1

(d′i + 1)

= M2(G
′) +M1(G

′) +m′ + n′(2m′ + n′).

We have to show that

M2(G)

m
≥

M1(G)

n
,

that is,

(n′ + 1)
(

M2(G
′) +M1(G

′) +m′ + n′(2m′ + n′)
)

≥ (m′ + n′)
(

M1(G
′) + n′(n′ + 1) + 4m′

)

by (2.11) and (2.12),

that is,

(2.13) n′M2(G
′)−m′M1(G

′) +M2(G
′) +M1(G

′) +m′n′2 +m′ − 4m′2 − 2m′n′ ≥ 0.

By the induction hypothesis and using n′M1(G
′) ≥ 4m′2, we get

(2.14) M2(G
′) +M1(G

′) ≥

(

m′

n′
+ 1

)

M1(G
′) ≥

(

m′

n′
+ 1

)

4m′2

n′
.
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Again by the induction hypothesis and using (2.14), we get

n′M2(G
′)−m′M1(G

′) +M2(G
′) +M1(G

′) +m′n′2 +m′ − 4m′2 − 2m′n′

≥
4m′2(m′ + n′)

n′2
+m′n′2 +m′ − 4m′2 − 2m′n′

= m′

(

n′(n′ − 1)− 2m′

n′

)2

≥ 0.(2.15)

Hence the theorem. �

A complete split graph CS(n, q), q ≤ n, is a graph on n vertices consisting of a clique
on q vertices and a stable set on the remaining n− q vertices in which each vertex of the
clique is adjacent to each vertex of the stable set.

A pineapple PA(n, q), q ≤ n, is a graph on n vertices consisting of a clique on q
vertices and a stable set on the remaining n − q vertices in which each vertex of the
stable set is adjacent to the same, unique vertex of the clique.

Since both the complete split graph CS(n, q) (q ≤ n) and pineapple graph PA(n, q)
(q ≤ n) are threshold graphs, we get the following result.

2.9. Corollary. Let G be a split graph CS(n, q) (q ≤ n) or a pineapple graph PA(n, q)
(q ≤ n) of n vertices. Then G must satisfy (1.1).
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