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Abstract

Fixed point theorems for a pair of mappings which satisfy the condi-
tion of being generalized weakly contractive in complete ordered metric
spaces are derived. At the end of the paper, applications of the previous
results to new fixed point results of integral type are also shown.
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1. Introduction and preliminaries

There are a lot of generalizations of the Banach contraction mapping principle in the
literature. One of the most interesting of them is the result of Khan et al. [14]. They
addressed a new category of fixed point problems for a single self-map with the help of
a control function which they called an altering distance function.

A function ϕ : [0,∞) → [0,∞) is called an altering distance function if ϕ is continuous,
nondecreasing and ϕ(0) = 0 holds.

Khan et al. [14] gave the following result.
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1.1. Theorem. Let (X, d) be a complete metric space, let ϕ be an altering distance

function, and let T : X → X be a self-mapping which satisfies the following inequality:

ϕ(d(Tx,Ty)) ≤ cϕ(d(x, y))

for all x, y ∈ X and for some 0 < c < 1. Then T has a unique fixed point. �

In fact Khan et al. proved a more general theorem of which the above result is a
corollary. Another generalization of the contraction principle was suggested by Alber and
Guerre-Delabriere [2] in Hilbert Spaces by introducing the concept of weakly contractive
mappings.

A self-mapping T on a metric space X is called weakly contractive if for each x, y ∈ X,

(1.1) d(Tx,Ty) ≤ d(x, y)− φ(d(x, y)),

where φ : [0,∞) → [0,∞) is positive on (0,∞) and φ(0) = 0.

Rhoades [21] showed that most results of [2] are still true for any Banach space. Also
Rhoades [21] proved the following very interesting fixed point theorem which contains
contractions as the special case φ(t) = (1− k)t.

1.2. Theorem. Let (X, d) be a complete metric space. If T : X → X is a weakly contrac-

tive mapping, and in addition φ is a continuous and nondecreasing function, then T has

a unique fixed point. �

In fact, Alber and Guerre-Delabriere [2] assumed an additional condition on φ which
is limt→∞φ(t) = ∞. But Rhoades [21] obtained the result noted in Theorem 1.2 without
using this particular assumption. Also, the weak contractions are closely related to the
maps of Boyd and Wong [9] and to the Reich type ones [20]. Namely, if φ is a lower
semi-continuous function from the right then ψ(t) = t−φ(t) is an upper semi-continuous
function from the right, and moreover, (1.1) turns into d(Tx,Ty) ≤ ψ(d(x, y)). Therefore

the weak contraction is of Boyd and Wong type. And if we define β(t) = 1 − φ(t)
t

for
t > 0 and β(0) = 0, then (1.1) is replaced by d(Tx,Ty) ≤ β(d(x, y))d(x, y). Therefore
the weak contraction becomes a Reich type one.

Recently, the following generalized result has given by Dutta and Choudhoury [11],
combining Theorem 1.1 and Theorem 1.2.

1.3. Theorem. Let (X, d) be a complete metric space and let T : X → X be a self-mapping

satisfying the inequality

ϕ(d(Tx,Ty)) ≤ ϕ(d(x, y))− φ(d(x, y))

for all x, y ∈ X, where ϕ,φ : [0,∞) → [0,∞) are both continuous and nondecreasing

functions with ϕ(t) = 0 = φ(t) if and only if t = 0. Then T has a unique fixed point. �

Also, Zhang and Song [22] have given the following generalized version of Theorem 1.2.

1.4. Theorem. Let (X, d) be a complete metric space and let T,S : X → X be two

mappings such that for each x, y ∈ X,

d(Tx, Sy) ≤ Φ(x, y)− φ(Φ(x, y)),

where φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) > 0 for t > 0
and φ(0) = 0,

Φ(x, y) = max{d(x, y), d(x,Tx), d(y,Sy),
1

2
[d(y,Tx) + d(x, Sy)]}.

Then there exists a unique point z ∈ X such that z = Tz = Sz. �

Also, Abbas and Khan [3] gave an extension of Theorem 1.3 as follows:
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1.5. Theorem. Let (X, d) be a complete metric space and T, S : X → X a self mapping

satisfying

ϕ(d(Tx,Ty)) ≤ ϕ(d(Sx,Sy))− φ(d(Sx,Sy)),

where φ, ϕ : [0,∞) → [0,∞) are both continuous and monotone decreasing functions with

φ(t) = 0 = ϕ(t) if and only if t = 0. Then T and S have a unique fixed point. �

In recent years, many results have appeared in the literature related to fixed point
theorems in complete metric spaces endowed with a partial ordering, �, see [1], [4]–[8],
[10], [15]–[19]. Most of them are a hybrid of two fundamental principle: the Banach con-
traction theorem and the weak contractive condition. Indeed, they deal with a monotone
(either order-preserving or order-reversing) mapping satisfying, with some restriction,
a classical contractive condition, and such that for some x0 ∈ X, either x0 � Tx0 or
Tx0 � x0, where T is a self-map on a metric space. The first result in this direction
was given by Ran and Reurings [19, Theorem 2.1] who presented applications to matrix
equations. Subsequently, Nieto and Rodŕiguez-López [15] extended the result of Ran
and Reurings [19] for nondecreasing mappings and applied it to obtain a unique solution
for a first order ordinary differential equation with periodic boundary conditions.

Further, Harjani and Sadarangani [12] proved the ordered version of Theorem 1.2,
Amini-Harandi and Emami [5] proved the ordered version of Rich type fixed point theo-
rems and Harjani and Sadarangani [13] proved an ordered version of Theorem 1.3.

Here an attempt has been made to give a generalized ordered version of Theorem 1.4
and 1.5. We will do this using the concept of relatively non-decreasing mapping men-
tioned by Ciric et al [10].

2. Main results

To state the theorem, we need the following definition, which is given in [10].

2.1. Definition. [10] Suppose (X,�) is a partially ordered set and S,T : X → X are
mappings of X into itself. One says T is S-non-decreasing if for x, y ∈ X,

(2.1) S(x) � S(y) implies T(x) � T(y).

The following theorem is a generalized version of Harjani Sadarangani [13, Theo-
rems 2.1 and 2.2].

2.2. Theorem. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let T, S : X → X be such that

T(X) ⊂ S(X), T is a S-non-decreasing mapping such that

(2.2) ϕ(d(Tx,Ty)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y)) for Sy � Sx,

where

Θ(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty), 1
2
[d(Sy,Tx) + d(Sx,Ty)]

}

and ϕ, φ : [0,∞) → [0,∞), ϕ is a continuous non-decreasing function, φ a lower semi-

continuous function and ϕ(t) = 0 = φ(t) if and only if t = 0. Also suppose, there exists

x0 ∈ X with Sx0 � Tx0. If

T and S are continuous,

or

(2.3)

S(X) is a closed subspace of X, and
{

whenever {Sxn} ⊂ X is a nondecreasing sequence with Sxn → Sz in S(X),

then Sxn � Sz for all n and Sz � S(S(z))
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hold then T and S have a coincidence point.

Further, if T and S commute at their coincidence points then T and S have a common

fixed point.

Proof. If Tx0 = Sx0, then we have the coincidence point. Suppose Tx0 6= Sx0 for the
given x0 ∈ X. Now since Sx0 � Tx0 and T(X) ⊂ S(X), we can choose x1 ∈ X so that
S(x1) = T(x0). Again, from T(X) ⊂ S(X), we can find x2 ∈ X so that S(x2) = T(x1).
Continuing this process we find a sequence {xn} in X such that

(2.4) Sxn+1 = Txn for all n ≥ 0.

Since S(x0) � T(x0) and T(x0) = S(x1), we have S(x0) � S(x1). Then from (2.1),

T(x0) � T(x1).

Thus, by (2.4), S(x1) � S(x2). Again from (2.1),

T(x1) � T(x2),

that is, S(x1) � S(x2). Continuing, we obtain

T(x0) � T(x1) � T(x2) � · · · � T(xn) � T(xn+1) · · · .

If there exists n0 ∈ {1, 2, · · · } such that Θ(xn0
, xn0−1) = 0 then it is clear that S(xn0−1) =

T(xn0
) = Txn0−1 and so T and S have a coincidence at x = xn0−1, and so we have finished

the proof. Now we can suppose

(2.5) Θ(xn, xn−1) > 0

for all n ≥ 1.

First we will prove that limn→∞ d(Txn+1, Txn) = 0. From (2.4), we have for n ≥ 1,

Θ(xn, xn−1) = max
{

d(Sxn, Sxn−1), d(Sxn,Txn), d(Sxn−1,Txn−1),

1
2
[d(Sxn−1,Txn) + d(Sxn,Txn−1)]

}

= max
{

d(Txn−1,Txn−2), d(Txn−1,Txn),
1
2
d(Txn−2,Txn)

}

≤ max{d(Txn−1,Txn−2), d(Txn−1, Txn)}.

Now we claim that

(2.6) d(Txn+1,Txn) ≤ d(Txn,Txn−1)

for all n ≥ 1. Suppose this is not true, that is, there exists n0 ≥ 1 such that

d(T(xn0+1),T(xn0
)) > d(T(xn0

),T(xn0−1)).

Now since T(xn0
) � T(xn0+1), we can use the inequality (2.2) for these elements, and

then we have:

ϕ(d(Txn0
,Txn0−1)) ≤ ϕ(Θ(xn0

, xn0−1))− φ(Θ(xn0
, xn0−1))

≤ ϕ(max{d(Txn0−1,Txn0−2), d(Txn0−1,Txn0
)})

− φ(Θ(xn0
, xn0−1))

= ϕ(d(Txn0−1,Txn0
))− φ(Θ(xn0

, xn0−1)).

This implies φ(Θ(xn0
, xn0−1)) = 0, by the property of φ we have Θ(xn0

, xn0−1) = 0,
which contradict (2.5). Therefore, (2.6) is true and so the sequence {d(T(xn+1),T(xn))} is
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non-increasing and bounded below. Thus there exists ρ ≥ 0 such that limn→∞ d(T(xn+1),
T(xn)) = ρ. Therefore, from (2.4),

lim
n→∞

d(T(xn),T(xn−1)) ≤ lim
n→∞

Θ(xn, xn−1)

= lim
n→∞

max
{

d(Sxn, Sxn−1), d(Sxn,Txn),

d(Sxn−1,Txn−1),
1
2
[d(Sxn−1, Txn) + d(Sxn, Txn−1)]

}

= lim
n→∞

max{d(Txn−1,Txn−2), d(Txn−1,Txn),

1
2
d(Txn−2,Txn)}.

This implies ρ ≤ limn→∞ Θ(xn, xn−1) ≤ ρ and so limn→∞ Θ(xn, xn−1) = ρ. By the lower
semi-continuity of φ we have

φ(ρ) ≤ lim inf
n→∞

φ(Θ(xn, xn+1)).

Now we claim that ρ = 0. From (2.2), we have

ϕ(d(Txn,Txn−1)) ≤ ϕ(Θ(xn, xn−1))− φ(Θ(xn, xn−1)),

and taking the upper limit as n→ ∞, we have

ϕ(ρ) ≤ ϕ(ρ)− lim inf
n→∞

φ(Θ(xn, xn+1))

≤ ϕ(ρ)− φ(ρ),

that is, φ(ρ) = 0. Thus by the property of φ, we have ρ = 0.

Next we show that {xn} is Cauchy. Suppose this is not true. Then there is an ε > 0
such that for any integer k there exist integers m(k) > n(k) > k such that

(2.7) d(Txn(k),Txm(k)) ≥ ε.

For every integer k, let m(k) be the least positive integer exceeding n(k) satisfying (2.7)
and such that

(2.8) d(Txn(k),Txm(k)−1) < ε.

Now

ε ≤ d(Txn(k),Txm(k))

≤ d(Txn(k),Txm(k)−1) + d(Txm(k)−1,Txm(k)).

Then by ρ = 0 and (2.8) it follows that

(2.9) lim
k→∞

d(Txn(k),Txm(k)) = ε.

Also, by the triangle inequality, we have

∣

∣d(Txn(k), Txm(k)−1)− d(Txn(k),Txm(k))
∣

∣ < d(Txm(k)−1,Txm(k)).

By using (2.9) we get

(2.10) lim
k→∞

d(Txn(k),Txm(k)−1) = ε.
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Now by (2.4) we get

d(Txn(k),Txm(k)−1) ≤ Θ(xn(k), xm(k)−1)

= max
{

d(Sxn(k), Sxm(k)−1), d(Sxn(k), Txn(k)),

d(Sxm(k)−1, Txm(k)−1),

1
2
[d(Sxm(k)−1,Txn(k)) + d(Sxn(k),Txm(k)−1)]

}

≤ max
{

d(Txn(k)−1,Txm(k)−2), d(Txn(k)−1, Txn(k)),

d(Txm(k)−2,Txm(k)−1)

1
2
[d(Txm(k)−2,Txn(k)) + d(Txn(k)−1,Txm(k)−1)]

}

≤ max
{

d(Txn(k)−1,Txm(k)−2), d(Txn(k)−1, Txn(k)),

d(Txm(k)−2,Txm(k)−1)
1

2
[d(Txm(k)−2,Txn(k)−1)

+ d(Txn(k)−1,Txn(k)) + d(Txn(k)−1,Txm(k)−1)]
}

,

and letting k → ∞ and using (2.9) and (2.10), we have

ε ≤ lim
k→∞

Θ(xn(k), xm(k)−1) ≤ ε,

and so

lim
k→∞

Θ(xn(k), xm(k)−1) = ε.

By the lower semi-continuity of φ we have

φ(ε) ≤ lim inf
k→∞

φ(Θ(xn(k), xm(k)−1)).

Now by (2.2) we get

ϕ(ε) = lim sup
k→∞

ϕ(d(Txn(k),Txm(k)))

≤ lim sup
k→∞

ϕ(d(Txn(k),Txn(k)+1) + d(Txn(k),Txm(k)−1))

= lim sup
k→∞

ϕ(d(Txn(k),Txm(k)−1))

≤ lim sup
k→∞

[ϕ(Θ(xn(k), xm(k)−1))− φ(Θ(xn(k), xm(k)−1))]

= ϕ(ε)− lim inf
k→∞

φ(Θ(xn(k), xm(k)−1))

≤ ϕ(ε)− φ(ε),

which is a contradiction. Thus {xn} is a Cauchy sequence. From the completeness of
X there exists z ∈ X such that xn → z as n → ∞. If T and S are continuous then it
is clear that Tz = Sz. If (2.3) holds, then we have Sxn � Sz for all n. Since by (2.4)
we have {T(xn)} = {S(xn+1)} ⊆ S(X) and S(X) is closed, there exists z ∈ X such that
lim

n→∞

S(xn) = S(z).

Therefore, for all n, we can use the inequality (2.2) for xn and z. Since

Θ(z, xn) = max
{

d(Sz,Sxn), d(Sz,Tz), d(Sxn,Txn),
1
2
[d(Sxn,Tz) + d(Sz,Txn)]

}

= max
{

d(Sz,Sxn), d(Sz,Tz), d(Sxn, Sxn+1),

1
2
[d(Sxn, Tz) + d(Sz,Sxn+1)]

}

,
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and so limn→∞ Θ(z, xn) = d(Sz,Tz). Hence we have

ϕ(d(Tz, Sz)) = lim sup
n→∞

ϕ(d(Tz,Sxn+1))

= lim sup
n→∞

ϕ(d(Tz,Txn))

≤ lim sup
n→∞

[ϕ(Θ(z, xn))− φ(Θ(z, xn))]

≤ ϕ(d(Tz,Sz))− φ(d(Tz,Sz)).

By the property of φ we have Tz = Sz. Thus we have proved that T and S have a
coincidence.

Suppose now that T and S commute at z. Set w = Sz = Tz. Then,

(2.11) T(w) = T(S(z)) = S(T(z)) = S(w).

Since from (2.3), we have Sz � S(S(z)) = S(w) and as Sz = Tz and Sw = Tw, from (2.4)
we get

ϕ(d(Tz,Tw)) ≤ ϕ((Θ(z, w))− φ(Θ(z,w))

where

Θ(z, w) = max
{

d(Sz,Sw), d(Sz,Tz), d(Sw,Tw), 1
2
[d(Sw,Tz) + d(Sz,Tw)]

}

= d(w,Tz).

Hence

ϕ(d(w,Tw)) = ϕ(d(Tz,Tw)) ≤ ϕ(d(w,Tw))− φ(d(w,Tw))),

which implies

φ(d(w,Tw))) ≤ 0,

which is possible only when w = Tw. Thus w = Tw = Sw. Hence w is a common fixed
point of T and S. Thus, the proof is complete. �

The following corollary is a generalized version of Harjani Sadarangani [12, Theorems 2
and 3].

2.3. Corollary. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let T, S : X → X be such that

T(X) ⊂ S(X), T is a S-non-decreasing mapping such that

d(Tx,Ty)) ≤ Θ(x, y)− φ(Θ(x, y)) for Sy � Sx,

where

Θ(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty), 1
2
[d(Sy,Tx) + d(Sx,Ty)]

}

,

φ : [0,∞) → [0,∞) is a lower semi-continuous function and ϕ(t) = 0 = φ(t) if and only

if t = 0. Also suppose, there exists x0 ∈ X with Sx0 � Tx0. If

T, S are continuous

or

S(X) is closed subspace of X and
{

whenever {Sxn} ⊂ X is a nondecreasing sequence with Sxn → Sz in S(X),

then Sxn � Sz for all n and Sz � S(S(z))

holds. Then T and S have a coincidence point.

Further, if T and S commute at their coincidence points then T and S have a common

fixed point.
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If we tale S = I , the identity mapping, in Theorem 2.2 and Corollary 2.3, then we
have following corollaries as generalized versions of Harjani Sadarangani [13] and Harjani
Sadarangani [12], respectively.

2.4. Corollary. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let T : X → X, where T is a

non-decreasing mapping such that

(2.12) ϕ(d(Tx,Ty)) ≤ ϕ(Θ(x, y))− φ(Θ(x, y)) for y � x,

where

Θ(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty), 1
2
[d(y,Tx) + d(x,Ty)]

}

and ϕ, φ : [0,∞) → [0,∞), ϕ is continuous and non-decreasing, φ is lower semi-

continuous and ϕ(t) = 0 = φ(t) if and only if t = 0. Also suppose there exists x0 ∈ X

with x0 � Tx0. If

T is continuous

or
{

whenever {xn} ⊂ X is a nondecreasing sequence with xn → z in X,

then xn � z for all n

holds then T has a fixed point.

2.5. Corollary. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let T : X → X, T a non-

decreasing mapping such that

d(Tx,Ty)) ≤ Θ(x, y)− φ(Θ(x, y)) for Sy � Sx,

where

Θ(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty), 1
2
[d(y,Tx) + d(x,Ty)]

}

and φ : [0,∞) → [0,∞) is a lower semi-continuous function satidfying φ(t) = 0 if and

only if t = 0. Also suppose, there exists x0 ∈ X with x0 � Tx0. If

T is continuous

or
{

whenever {xn} ⊂ X is a nondecreasing sequence with xn → z in X,

then xn � z for all n

holds, then T has a fixed point.

2.6. Remark. In [19, Theorem 1.1] it is proved that if

(2.13) every pair of elements has a lower bound and upper bound,

then for every x ∈ X,

lim
n→∞

T
nx = y,

where y is the fixed point of T such that

y = lim
n→∞

T
nx0

and hence T has a unique fixed point. If condition (2.13) fails, it is possible to find
examples of functions T with more than one fixed point. There are some examples to
illustrate this fact in [15].
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2.7. Example. Let X = R and consider a relation on X as follows:

x � y ⇐⇒ {(x = y) or (x, y ∈ [0, 1] with x ≤ y).

It is easy to see that � is a partial order on X. Let d be Euclidean metric on X. Now
define a self map of X as follows:

Tx =















2x−
3

2
if x > 1,

x

2
if 0 ≤ x ≤ 1,

0 if x < 0.

Now we claim that the condition (2.12) of Corollary 2.4 is satisfied with ϕ(t) = t, φ(t) = t
2
.

Indeed, if x, y /∈ [0, 1], then x � y ⇐⇒ x = y. Therefore, since d(Tx,Ty) = 0, then the
condition (2.12) is satisfied.

Again if x ∈ [0, 1] and y /∈ [0, 1], then x and y are not comparative. Now if x, y ∈ [0, 1],
then x � y ⇐⇒ x ≤ y and

d(Tx,Ty) = d(
x

2
,
y

2
)

= 1
2
d(x, y)

≤ 1
2
Θ(x, y)

= Θ(x, y)− 1
2
Θ(x, y)

= Θ(x, y)− φ(Θ(x, y)).

Also it is easy to see that the other conditions of Corollary 2.4 are satisfied and so T has
a fixed point in X. Also note that the the weak contractive condition of Theorem 1.3 of
this paper and of [22, Corollary 2.2] is not satisfied.

3. Application to integral type problems

We present here applications of the previous section. We obtain some fixed point
theorems for pairs of mappings satisfying a general contractive condition of integral type
in complete partially ordered metric spaces.

Before we start the theorem we establish the following terminology:

Υ =
{

Ψ : R+ → R
+ : Ψ is a Lebesgue integrable mapping which is summable

and non-negative and satisfies

∫ ǫ

0

Ψ(t) dt > 0 for each ǫ > 0
}

.

3.1. Theorem. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let S, T : X → X be such that

T(X) ⊂ S(X), T is a S-non-decreasing mapping and satisfying

(3.1)

∫ ϕ(d(Tx,Ty))

0

Ψ(t) dt ≤

∫ ϕ(Θ(x,y))

0

Ψ(t) dt−

∫ φ(Θ(x,y))

0

Ψ(t) dt for Sy � Sx,

where

Φ(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Sy), 1
2
[d(Sy,Tx) + d(Sx,Sy)]

}

and ϕ, φ : [0,∞) → [0,∞), ϕ is a continuous, nondecreasing function, φ a lower semi-

continuous function and ϕ(t) = 0 = φ(t) if and only if t = 0. If

T and S are continuous
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or

S(X) is closed subspace of X and
{

whenever {Sxn} ⊂ X is a nondecreasing sequence with Sxn → Sz in S(X),

then Sxn � Sz for all n and Sz � S(S(z))

holds, then T and S have a coincidence point.

Further, if T and S commute at their coincidence points then T and S have a common

fixed point.

Proof. Define Λ : R
+ → R

+ by Λ(x) =
∫ x

0
Ψ(t)dt. Then Λ is continuous and non-

decreasing with Λ(0) = 0, and equation (3.1) becomes

Λ (ϕ(d(Tx,Ty))) ≤ Λ (ϕ(Θ(x, y)))− Λ (φ(Θ(x, y))) ,

which further can be written as

ϕ1(d(Tx,Ty)) ≤ ϕ1(Θ(x, y)− φ1(Θ(x, y)),

where φ1 = Λ ◦ φ and ϕ1 = Λ ◦ ϕ. Clearly, φ1, ϕ1 are continuous and non-decreasing
and satisfy φ1(t) = 0 = ϕ1(t) if and only if t = 0. Hence, by Theorem 2.2, the proof is
complete. �

3.2. Theorem. Let (X,�) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let S, T : X → X be such that

T(X) ⊂ S(X), where T is an S-non-decreasing mapping.

Moreover, if there exists h ∈ [0, 1) such that

∫ d(Tx,Ty)

0

Ψ(t) dt ≤ h ·

∫ Θ(x,y)

0

Ψ(t) dt for Sy � Sx,

where

Φ(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Sy), 1
2
[d(Sy,Tx) + d(Sx,Sy)]

}

and ϕ, φ : [0,∞) → [0,∞), where ϕ is a continuous, non-decreasing function, φ a lower

semi-continuous function and ϕ(t) = 0 = φ(t) if and only if t = 0. If

T, S are continuous

or

S(X) is closed subspace of X and
{

whenever {Sxn} ⊂ X is a nondecreasing sequence with Sxn → Sz in S(X),

then Sxn � Sz for all n and Sz � S(S(z))

holds, then T and S have a coincidence point.

Further, if T and S commute at their coincidence points then T and S have a common

fixed point.

Proof. Following a similar argument, we can define Λ : R+ → R
+ by Λ(x) =

∫ x

0
Ψ(t) dt

and show the necessary properties. If we fix φ = (1 − h)ϕ, then by Theorem 2.2, the
proof is complete. �

3.3. Remark. We can also establish similar types of integral results as applications of
Corollary 2.3 – Corollary 2.5.
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