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Abstract

A graph is called edge-transitive if its automorphism group acts transi-
tively on its set of edges. In this paper we classify all connected cubic
edge-transitive graphs of order 14p?, where p is a prime.
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1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and con-
nected. For a graph X, we denote by V(X), E(X), A(X) and Aut(X) the vertezx set,
the edge set, the arc set and the full automorphism group of X, respectively. For the
group-theoretic concepts and notations not defined here we refer to [3, 4, 14, 19, 24].

Let G be a finite group and S a subset of G such that 1 ¢ S and S = S~!. The Cayley
graph X = Cay(G, S) on G with respect to S is defined to have vertex set V(X) = G and
edge set E(X) ={(g,s9)|g € G,s € S}. The Cayley graph X = Cay(G, S) is said to be
normal if G < Aut(X). By definition, Cay(G, S) is connected if and only if S generates
the group G.

An s-arc of a graph X is an ordered (s + 1)-tuple (vo,v1,...,vs—1,vs) of vertices of
X such that v;—; is adjacent to v; for 1 < ¢ < s and v;—1 # vi41 for 1 < i < s. A
graph X is said to be s-arc-transitive if Aut(X) acts transitively on the set of its s-
arcs. In particular, O-arc-transitive means vertex-transitive, and l-arc-transitive means
arc-transitive or symmetric. X is said to be s-regular if Aut(X) acts regularly on the
set of its s-arcs. Tutte [20] showed that every finite connected cubic symmetric graph is
s-regular for 1 < s < 5. A subgroup of Aut(X) is said to be s-regular if it acts regularly
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on the set of s-arcs of X. If a subgroup G of Aut(X) acts transitively on V(X) and
E(X), we say that X is G-vertez-transitive and G-edge-transitive, respectively. In the
special case, when G = Aut(X), we say that X is vertex-transitive and edge-transitive,
respectively.

It can be shown that a G-edge-transitive but not G-vertex-transitive graph X is neces-
sarily bipartite, where the two parts of the bipartition are orbits of G < Aut(X). More-
over, if X is regular then these two parts have the same cardinality. A regular G-edge-
transitive but not G-vertex-transitive graph X will be referred to as a G-semisymmetric
graph. In particular if G = Aut(X), X is said to be semisymmetric.

The classification of cubic symmetric graphs of different orders is given in many papers.
In [2, 3], the cubic s-regular graphs up to order 2048 are classified. Throughout this paper,
p and ¢ are prime numbers. The s-regular cubic graphs of some orders such as 2p?, 4p?,
6p?, 10p> were classified in [8-11]. Recently cubic s-regular graphs of order 2pq were
classified in [25].

The study of semisymmetric graphs was initiated by Folkman [13]. For example, cubic
semisymmetric graphs of orders 6p?, 8p* and 2pq were classified in [15, 1, 7]. In this paper
we classify cubic edge-transitive (symmetric or semisymmetric) graphs of order 14p?.

1.1. Theorem. Let p be a prime and X a connected cubic edge-transitive graph of order
14p®. Then X is isomorphic either to the semisymmetric graph S126 or to one s-reqular
graph, where 1 < s < 3. Furthermore,

(1) X is 1-regular if and only if X is isomorphic to one of the graphs F56A, F126,
F350, F686A, F686C, F1694, EF14p®, where p > 13, or to Cay(G, S), where
G=<ab|a®=b" =1,aba=b">= Dy, S = {a,ba,b"*a}, >+1+1=0
(modTp?), p > 13 and 3|(p — 1).

2) X is 2-regular if and only if X is isomorphic to one of the graphs F56B and

(

F686B.
(3) X is 3-regular if and only if X is isomorphic to F56C.

2. Preliminaries

Let X be a graph and N a subgroup of Aut(X). For u, v € V(X), denote by {u, v}
the edge incident to u and v in X, and by Nx (u) the set of vertices adjacent to u in X.
The quotient graph Xn (also denoted by X/N) induced by N is defined as the graph such
that the set ¥ of N-orbits in V(X) is the vertex set of Xy, and B,C € ¥ are adjacent
if and only if there exist v € B and v € C such that {u,v} € E(X).

A graph X is called a covering of a graph X with projection g : X — X if there is a
surjection g : V(X) — V(X) such that Plng(s) : Nx(0) = Nx(v) is a bijection for any
vertex v € V(X) and ¥ € p~'(v). A covering graph X of X with projection g is said to
be regular (or a K-covering) if there is a semiregular subgroup K of the automorphism
group Aut()?) such that the graph X is isomorphic to the quotient graph )Z'K, say by h,
and the quotient map X — Xk is the composition ph of p and h. The fibre of an edge
or a vertex is its preimage under p.

The group of automorphisms of X mapping fibres to fibres is called the fibre-preserving
subgroup of Aut(X).

Let X be a graph and let K be a finite group. By a~! we mean the reverse arc to an arc
a. A woltage assignment (or, a K-voltage assignment) of X is a function ¢ : A(X) —» K
with the property that ¢(a™!) = ¢(a)~" for each arc a € A(X). The values of ¢ are
called wvoltages, and K is the voltage group. The graph X x4 K derived from a voltage
assignment ¢ : A(X) — K has vertex set V(X) x K and edge set E(X) x K, so that
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the edge (e, g) of X X4 K joins the vertex (u, g) to (v,¢(a)g) for a = (u,v) € A(X) and
g € K, where e = u, v.

Clearly, the derived graph X X, K is a covering of X; the first coordinate projection
p: X x4 K — X is called the natural projection. By defining (u, g’)? = (u,g'g) for any
g € K and (u,g’) € V(X x4 K), K becomes a subgroup of Aut(X x4 K) which acts
semiregularly on V(X x4 K). Therefore, X x4 K can be viewed as a K-covering. For
each u € V(X) and u,v € E(X), the vertex set {(u,g) | g € K} is the fibre of u and the
edge set {(u,g9)(v,#(a)g) | g € K} is the fibre of u,v, where a = (u,v). Conversely, each
regular covering X of X with a covering transformation group K can be derived from a
K-voltage assignment.

Let X be a K-covering of X with a projection p. If a € Aut(X) and & € Aut(X)
satisfy ap = pa, we call & a lift of o, and a the projection of &. Concepts such as
a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(X) are self-
explanatory. The lifts and the projections of such subgroups are of course subgroups in
Aut()?) and Aut(X), respectively. In particular, if the covering graph X is connected,
then the covering transformation group K is the lift of the trivial group, that is K =
{& € Aut(X) : p = ap}.

Clearly, if & is a lift of «, then K& are all the lifts of a. The projection p is called
vertez-transitive (edge-transitive) if some vertex-transitive (edge-transitive) subgroup of
Aut(X) lifts along p, and semisymmetric if it is edge- but not vertex-transitive.

The next proposition is a special case of [22, Proposition 2.5].

2.1. Proposition. Let X be a G-semisymmetric cubic graph with bipartition sets U(X)
and W(X), where G < A := Aut(X). Moreover, suppose that N is a normal subgroup of
G. Then,

(1) If N is intransitive on bipartition sets, then N acts semiregularly on both U(X)
and W(X), and X is a regular N-covering of the G/N-semisymmetric graph
XnN.

(2) If 3 does not divide |A/N|, then N is semisymmetric on X. O

2.2. Proposition. [17, Proposition 2.4] The vertezx stabilizers of a connected G-semi-
symmetric cubic graph X have order 2" - 3, where 0 < r < 7. Moreover, if u and v are
two adjacent vertices, then the edge stabilizer G, N Gy is a common Sylow 2-subgroup of
Gy and G. a

2.3. Proposition. [19, pp.236] Let G be a finite group and let p be a prime. If G has
an abelian Sylow p-subgroup, then p does not divide |G' (N Z(G)|. O

2.4. Proposition. [24, Proposition 4.4] Fvery transitive abelian group G on a set Q is
regular, and the centralizer of G in the symmetric group on Q is G. |

2.5. Proposition. [12, Theorem 9] Let X be a connected symmetric graph of prime
valency and let G be an s-regular subgroup of Aut(X) for some s > 1. If a normal
subgroup N of G has more than two orbits, then it is semiregular and G/N is an s-
regular subgroup of Aut(Xn), where Xn 1is the quotient graph of X corresponding to the
orbits of N. Furthermore, X 1is a reqular N-covering of Xn. ]

The next proposition is a special case of [23, Theorem 1.1].

2.6. Proposition. Let X be a connected edge-transitive Zy-cover of the Heawood graph
F14. Thenn=3pSt ... pSt k=0 or 1, t > 1, the primes p;, i = 1,...,t, are different
primes with p; = 1 (mod 8), and X is symmetric and isomorphic to a normal Cayley
graph Cay(G,S) for some group G with respect to a generating set S. Furthermore, if 7
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is coprime to n, then G =< a,b|a> =b"" =1, aba = b~' >= D14, S = {a,ba, b a},
>4+t +1=0 (mod 7n), and X is I-reqular. O

3. Main results

Let p be a prime and let X be a cubic edge-transitive graph of order 14p>. By [21],
every cubic edge and vertex-transitive graph is arc-transitive and consequently, X is
either symmetric or semisymmetric.

For a prime p > 13, denote by EF14p? the Zyp X Zp-covering of the Heawood graph
F14 with voltage assignment (2,0), (-1, 1),(1,-1),(1,1),(-1,-1), (1,1),(0,0), (2,0).
By [2, 3], we have the following lemma.

3.1. Lemma. Let p be a prime and X a connected cubic symmetric graph of order
14p?, where p < 13. Then X is isomorphic to one of the 1-reqular graphs F56A, F126,
F350, F686A, F686C and F'1694, or to the 2-regular graphs F56B or F686B, or to the
3-regular graph F56C. |

3.2. Lemma. Letp > 13 be a prime and X a connected cubic symmetric graph of order
14p®. Then X is isomorphic to one of the 1-reqular graphs EF14p® or Cay(G, S), where
G =< ab|ad® = p7P? = 1, aba = bt > Dyyp2 and S = {a,ba, b a}, such that
t2+t+1=0 (mod 7p*) and 3|(p — 1).

Proof. By Tutte [20], X is at most 5-regular and hence |A| = 2° -3 -7 - p? for some s,
where 1 < s < 5. Let @ = Op(A) be the maximal normal p-subgroup of A. We show
that |Q| = p? as follows.

Let N be a minimal normal subgroup of A. Thus N & L x --- x L = L*, where L is
a simple group. If N is unsolvable then by [4], L & PSL(2,7) or PSL(2,13) of orders
23.3.7 and 2%-3-7-13, respectively. Since 3% { |A|, we have k = 1 and so N = PSL(2,7)
or PSL(2,13). Thus N has more than two orbits and then by Proposition 2.5, N is
semiregular. Therefore, |N| | 14p?, and this is impossible. Hence N is solvable and so
elementary abelian.

Suppose first that @ = 1. Thus N is an elementary abelian g-group, for ¢ = 2,3 or
7 and so N has more than two orbits on X. By Proposition 2.5, N is semiregular and
hence |N| | 14p?. Tt follows that |[N| = 2 or 7. If [N| = 2, by Proposition 2.5 Xy is a
cubic symmetric graph of odd order 7p?, a contradiction.

Suppose that |[N| = 7. By Proposition 2.5, Xn is a cubic A/N-symmetric graph of
order 2p®. Let T'/N be a minimal normal subgroup of A/N. By a similar argument as
above, T'/N is elementary abelian and hence |[T/N| =2 or p. If [T/N| = 2, then |T| = 14
and Xr is a cubic symmetric graph of odd order p?, a contradiction. So, |[T'/N| = p and
also |T'| = Tp. Since p > 13, the Sylow p-subgroup of T is characteristic and so normal
in A, a contrary to the our assumption that QQ = 1.

We now suppose that |Q| = p. Let P be a Sylow p-subgroup of A and C' = Ca(Q) the
centralizer of @ in A. Clearly, Q@ < P and also P < C because P is abelian. Thus p® | |C|.
If p? | |C’| (C" is the derived subgroup of C) then @ < C” and hence p | |C’ () Q)|, forcing
that p | |C' (N Z(C| because Q < Z(C'). This contradicts Proposition 2.3. Consequently,
p?{]C’| and so C’ has more than two orbits on X. By Proposition 2.5, C’ is semiregular
on X and hence |C| | 14p>.

Let K/C’ be a Sylow p-subgroup of C'/C’. Since C'//C" is abelian, K/C" is character-
istic and hence normal in A/C’, implying that K <1 A. Note that p® | |K| and |K]| | 14p>.
If |K| = 14p® then K has a normal subgroup of order 7p?, say H. Since p > 13, the
Sylow p-subgroup of H is characteristic and consequently normal in K and also normal
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in A. Also, if |K| < 14p?, K has a characteristic Sylow p-subgroup of order p? which is
normal in A. However, this is contrary to our assumption |Q| = p. Therefore, |Q| = p°.

Clearly, Q = Z,2 or Z, x Z,. Then by Proposition 2.5, X is a regular Q-covering of
the symmetric graph X¢ of order 14. By [3] the only cubic symmetric graph of order
14 is the Heawood graph F14. Suppose that Q = Z,». Since p > 13, 7 is coprime to
p? and hence by Proposition 2.6, X is isomorphic to a 1-regular graph Cay(G, S), where
G=<abl|ada®= p7P* = 1, aba=b"" > D2, S={aba, b a}, t*+t+1=0 (mod
7p?), p > 13 and 3|(p — 1).

Now, suppose that Q = Z, x Z,. Then by [18, Table 2], X is isomorphic to EF14p?
where p > 13. Hence the result follows. O

3.3. Lemma. Let p be a prime. Then, S126 is the only cubic semisymmetric graph of
order 14p*.

Proof. Let X be a cubic semisymmetric graph of order 14p?. If p < 11, then by [4] there
is only one cubic semisymmetric graph S126 of order 14p?, in which p = 3. Hence we can
assume that p > 11. Set A := Aut(X). By Proposition 2.2, |A,| =2"-3, where 0 <r <7
and hence |A| = 2" -3-7-p% Let Q = Op(A) be the maximal normal p-subgroup of A.
We show that |Q| = p* as follows.

Let N be a minimal normal subgroup of A. Thus N = L*, where L is a simple group.
Let N be unsolvable. By [5], L is isomorphic to PSL(2,7) or PSL(2,13) of orders 2°-3-7
and 22 -3-7-13, respectively. Note that 32 t |A|, forcing k = 1. Also, 3 does not divide
|A/N|, and hence by Proposition 2.1 N is semisymmetric on X. Consequently, 7p® | |N|,
a contradiction because p > 11. Therefore, N is solvable and so elementary abelian. It
follows that N acts intransitively on the bipartition sets of X, and by Proposition 2.1 it
is semiregular on each partition. Hence |N| | 7p2.

Suppose first that @ = 1. This implies that N = Z7. Consequently, by Proposition 2.1,
Xy is a cubic A/N-semisymmetric graph of order 2p®. Let T/N be a minimal normal
subgroup of A/N. If T/N is unsolvable then by a similar argument as above, T/N is
isomorphic to one of the two simple groups in the previous paragraph, implying that
72 | |T| and this is impossible. Hence, T/N is solvable and so elementary abelian. If
T/N acts transitively on one partition of X, by Proposition 2.4 |T/N| = p? and hence
|T| = 7p*. Since p > 11, the Sylow p-subgroup of T is characteristic and consequently
normal in A. It contradicts our assumption @Q = 1. Therefore, T/N acts intransitively
on the bipartition sets of X and by Proposition 2.1, it is semiregular on each partition,
which force |T/N| | p?>. Hence |T/N| = p and so |T| = 7p. Again, A has a normal
p-subgroup, a contradiction.

We now suppose that |Q| = p. Let C = Ca(Q) be the centralizer of Q in A and C’
the derived subgroup of C. By the same argument as in the previous lemma, p* { |C’|
and so C’ acts intransitively on the bipartition sets of X. Then by Proposition 2.1, it is
semiregular and hence |C’| | 7p®.

Let K/C’ be a Sylow p-subgroup of C'/C’. Since C'//C" is abelian, K/C" is character-
istic and hence normal in A/C’, implying that K < A. Note that p* | |K| and |K]| | Tp*.
Then, K has a characteristic Sylow p-subgroup of order p? which is normal in A, contrary
to our assumption |Q| = p.

Therefore, |Q| = p?. Clearly, Q = Zy2 or Zp X Z,. By Proposition 2.1, the semisym-
metric graph X is a regular Q-covering of a A/Q-semisymmetric graph X¢g of order 14
which is the Heawood graph Fi4 under a projection, say gp. Since @ <1 A, the group A
is projected along e and consequently, p is a semisymmetric )-covering projection and
also, X is a semisymmetric Q-covering of the Heawood graph. But by Proposition 2.6,
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there is no semisymmetric Z,2-covering of the Heawood graph and also by [16, Theorem
7.1], there is no semisymmetric Z, x Zp-covering projection of the Heawood graph, a
contradiction. Hence the result follows. |

Now, the proof of Theorem 1.1 follows by Lemmas 3.1, 3.2 and 3.3.
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