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Abstract

A graph is called edge-transitive if its automorphism group acts transi-
tively on its set of edges. In this paper we classify all connected cubic
edge-transitive graphs of order 14p2, where p is a prime.
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1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and con-
nected. For a graph X, we denote by V (X), E(X), A(X) and Aut(X) the vertex set,
the edge set, the arc set and the full automorphism group of X, respectively. For the
group-theoretic concepts and notations not defined here we refer to [3, 4, 14, 19, 24].

Let G be a finite group and S a subset of G such that 1 /∈ S and S = S−1. The Cayley
graph X = Cay(G,S) on G with respect to S is defined to have vertex set V (X) = G and
edge set E(X) = {(g, sg)|g ∈ G, s ∈ S}. The Cayley graph X = Cay(G,S) is said to be
normal if G E Aut(X). By definition, Cay(G,S) is connected if and only if S generates
the group G.

An s-arc of a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of
X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i < s. A
graph X is said to be s-arc-transitive if Aut(X) acts transitively on the set of its s-
arcs. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means
arc-transitive or symmetric. X is said to be s-regular if Aut(X) acts regularly on the
set of its s-arcs. Tutte [20] showed that every finite connected cubic symmetric graph is
s-regular for 1 ≤ s ≤ 5. A subgroup of Aut(X) is said to be s-regular if it acts regularly
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on the set of s-arcs of X. If a subgroup G of Aut(X) acts transitively on V (X) and
E(X), we say that X is G-vertex-transitive and G-edge-transitive, respectively. In the
special case, when G = Aut(X), we say that X is vertex-transitive and edge-transitive,
respectively.

It can be shown that a G-edge-transitive but not G-vertex-transitive graph X is neces-
sarily bipartite, where the two parts of the bipartition are orbits of G ≤ Aut(X). More-
over, if X is regular then these two parts have the same cardinality. A regular G-edge-
transitive but not G-vertex-transitive graph X will be referred to as a G-semisymmetric
graph. In particular if G = Aut(X), X is said to be semisymmetric.

The classification of cubic symmetric graphs of different orders is given in many papers.
In [2, 3], the cubic s-regular graphs up to order 2048 are classified. Throughout this paper,
p and q are prime numbers. The s-regular cubic graphs of some orders such as 2p2, 4p2,
6p2, 10p2 were classified in [8-11]. Recently cubic s-regular graphs of order 2pq were
classified in [25].

The study of semisymmetric graphs was initiated by Folkman [13]. For example, cubic
semisymmetric graphs of orders 6p2, 8p2 and 2pq were classified in [15, 1, 7]. In this paper
we classify cubic edge-transitive (symmetric or semisymmetric) graphs of order 14p2.

1.1. Theorem. Let p be a prime and X a connected cubic edge-transitive graph of order
14p2. Then X is isomorphic either to the semisymmetric graph S126 or to one s-regular
graph, where 1 ≤ s ≤ 3. Furthermore,

(1) X is 1-regular if and only if X is isomorphic to one of the graphs F56A, F126,
F350, F686A, F686C, F1694, EF14p2, where p ≥ 13, or to Cay(G,S), where

G =< a, b | a2 = b7p
2

= 1, aba = b−1 >∼= D14p2 , S = {a, ba, bt+1a}, t2+t+1 = 0

(mod7p2), p ≥ 13 and 3|(p − 1).
(2) X is 2-regular if and only if X is isomorphic to one of the graphs F56B and

F686B.
(3) X is 3-regular if and only if X is isomorphic to F56C.

2. Preliminaries

Let X be a graph and N a subgroup of Aut(X). For u, v ∈ V (X), denote by {u, v}
the edge incident to u and v in X, and by NX(u) the set of vertices adjacent to u in X.
The quotient graph XN (also denoted by X/N) induced by N is defined as the graph such
that the set Σ of N-orbits in V (X) is the vertex set of XN , and B,C ∈ Σ are adjacent
if and only if there exist u ∈ B and v ∈ C such that {u, v} ∈ E(X).

A graph X̃ is called a covering of a graph X with projection ℘ : X̃ → X if there is a

surjection ℘ : V (X̃) → V (X) such that ℘|N
X̃

(ṽ) : NX̃
(ṽ) → NX (v) is a bijection for any

vertex v ∈ V (X) and ṽ ∈ ℘−1(v). A covering graph X̃ of X with projection ℘ is said to
be regular (or a K-covering) if there is a semiregular subgroup K of the automorphism

group Aut(X̃) such that the graph X is isomorphic to the quotient graph X̃K , say by h,

and the quotient map X̃ → X̃K is the composition ℘h of ℘ and h. The fibre of an edge
or a vertex is its preimage under ℘.

The group of automorphisms of X̃ mapping fibres to fibres is called the fibre-preserving

subgroup of Aut(X̃).

Let X be a graph and let K be a finite group. By a−1 we mean the reverse arc to an arc
a. A voltage assignment (or, a K-voltage assignment) of X is a function φ : A(X) → K

with the property that φ(a−1) = φ(a)−1 for each arc a ∈ A(X). The values of φ are
called voltages, and K is the voltage group. The graph X ×φ K derived from a voltage
assignment φ : A(X) → K has vertex set V (X) × K and edge set E(X) × K, so that
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the edge (e, g) of X ×φ K joins the vertex (u, g) to (v, φ(a)g) for a = (u, v) ∈ A(X) and
g ∈ K, where e = u, v.

Clearly, the derived graph X ×φ K is a covering of X; the first coordinate projection
℘ : X ×φ K → X is called the natural projection. By defining (u, g′)g = (u, g′g) for any
g ∈ K and (u, g′) ∈ V (X ×φ K), K becomes a subgroup of Aut(X ×φ K) which acts
semiregularly on V (X ×φ K). Therefore, X ×φ K can be viewed as a K-covering. For
each u ∈ V (X) and u, v ∈ E(X), the vertex set {(u, g) | g ∈ K} is the fibre of u and the
edge set {(u, g)(v, φ(a)g) | g ∈ K} is the fibre of u, v, where a = (u, v). Conversely, each

regular covering X̃ of X with a covering transformation group K can be derived from a
K-voltage assignment.

Let X̃ be a K-covering of X with a projection ℘. If α ∈ Aut(X) and α̃ ∈ Aut(X̃)
satisfy α̃℘ = ℘α, we call α̃ a lift of α, and α the projection of α̃. Concepts such as

a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(X̃) are self-
explanatory. The lifts and the projections of such subgroups are of course subgroups in

Aut(X̃) and Aut(X), respectively. In particular, if the covering graph X̃ is connected,
then the covering transformation group K is the lift of the trivial group, that is K =

{α̃ ∈ Aut(X̃) : ℘ = α̃℘}.

Clearly, if α̃ is a lift of α, then Kα̃ are all the lifts of α. The projection ℘ is called
vertex-transitive (edge-transitive) if some vertex-transitive (edge-transitive) subgroup of
Aut(X) lifts along ℘, and semisymmetric if it is edge- but not vertex-transitive.

The next proposition is a special case of [22, Proposition 2.5].

2.1. Proposition. Let X be a G-semisymmetric cubic graph with bipartition sets U(X)
and W (X), where G ≤ A := Aut(X). Moreover, suppose that N is a normal subgroup of
G. Then,

(1) If N is intransitive on bipartition sets, then N acts semiregularly on both U(X)
and W (X), and X is a regular N-covering of the G/N-semisymmetric graph
XN .

(2) If 3 does not divide |A/N |, then N is semisymmetric on X. �

2.2. Proposition. [17, Proposition 2.4] The vertex stabilizers of a connected G-semi-
symmetric cubic graph X have order 2r · 3, where 0 ≤ r ≤ 7. Moreover, if u and v are
two adjacent vertices, then the edge stabilizer Gu ∩Gv is a common Sylow 2-subgroup of
Gu and Gv. �

2.3. Proposition. [19, pp.236] Let G be a finite group and let p be a prime. If G has
an abelian Sylow p-subgroup, then p does not divide |G′

⋂
Z(G)|. �

2.4. Proposition. [24, Proposition 4.4] Every transitive abelian group G on a set Ω is
regular, and the centralizer of G in the symmetric group on Ω is G. �

2.5. Proposition. [12, Theorem 9] Let X be a connected symmetric graph of prime
valency and let G be an s-regular subgroup of Aut(X) for some s ≥ 1. If a normal
subgroup N of G has more than two orbits, then it is semiregular and G/N is an s-
regular subgroup of Aut(XN ), where XN is the quotient graph of X corresponding to the
orbits of N . Furthermore, X is a regular N-covering of XN . �

The next proposition is a special case of [23, Theorem 1.1].

2.6. Proposition. Let X be a connected edge-transitive Zn-cover of the Heawood graph
F14. Then n = 3kpe11 · · · pett , k = 0 or 1, t ≥ 1, the primes pi, i = 1, . . . , t, are different
primes with pi = 1 (mod 3), and X is symmetric and isomorphic to a normal Cayley
graph Cay(G,S) for some group G with respect to a generating set S. Furthermore, if 7
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is coprime to n, then G =< a, b | a2 = b7n = 1, aba = b−1 >∼= D14n, S = {a, ba, bt+1a},
t2 + t+ 1 = 0 (mod 7n), and X is 1-regular. �

3. Main results

Let p be a prime and let X be a cubic edge-transitive graph of order 14p2. By [21],
every cubic edge and vertex-transitive graph is arc-transitive and consequently, X is
either symmetric or semisymmetric.

For a prime p ≥ 13, denote by EF14p2 the Zp × Zp-covering of the Heawood graph
F14 with voltage assignment (2, 0), (−1, 1), (1,−1), (1, 1), (−1,−1), (1, 1), (0, 0), (2, 0).

By [2, 3], we have the following lemma.

3.1. Lemma. Let p be a prime and X a connected cubic symmetric graph of order
14p2, where p < 13. Then X is isomorphic to one of the 1-regular graphs F56A, F126,
F350, F686A, F686C and F1694, or to the 2-regular graphs F56B or F686B, or to the
3-regular graph F56C. �

3.2. Lemma. Let p ≥ 13 be a prime and X a connected cubic symmetric graph of order
14p2. Then X is isomorphic to one of the 1-regular graphs EF14p2 or Cay(G,S), where

G =< a, b | a2 = b7p
2

= 1, aba = b−1 >∼= D14p2 and S = {a, ba, bt+1a}, such that

t2 + t+ 1 = 0 (mod 7p2) and 3|(p − 1).

Proof. By Tutte [20], X is at most 5-regular and hence |A| = 2s · 3 · 7 · p2 for some s,
where 1 ≤ s ≤ 5. Let Q = Op(A) be the maximal normal p-subgroup of A. We show
that |Q| = p2 as follows.

Let N be a minimal normal subgroup of A. Thus N ∼= L× · · · × L = Lk, where L is
a simple group. If N is unsolvable then by [4], L ∼= PSL(2, 7) or PSL(2, 13) of orders
23 ·3 ·7 and 22 ·3 ·7 ·13, respectively. Since 32 ∤ |A|, we have k = 1 and so N ∼= PSL(2, 7)
or PSL(2, 13). Thus N has more than two orbits and then by Proposition 2.5, N is
semiregular. Therefore, |N | | 14p2, and this is impossible. Hence N is solvable and so
elementary abelian.

Suppose first that Q = 1. Thus N is an elementary abelian q-group, for q = 2, 3 or
7 and so N has more than two orbits on X. By Proposition 2.5, N is semiregular and
hence |N | | 14p2. It follows that |N | = 2 or 7. If |N | = 2, by Proposition 2.5 XN is a
cubic symmetric graph of odd order 7p2, a contradiction.

Suppose that |N | = 7. By Proposition 2.5, XN is a cubic A/N-symmetric graph of
order 2p2. Let T/N be a minimal normal subgroup of A/N . By a similar argument as
above, T/N is elementary abelian and hence |T/N | = 2 or p. If |T/N | = 2, then |T | = 14
and XT is a cubic symmetric graph of odd order p2, a contradiction. So, |T/N | = p and
also |T | = 7p. Since p ≥ 13, the Sylow p-subgroup of T is characteristic and so normal
in A, a contrary to the our assumption that Q = 1.

We now suppose that |Q| = p. Let P be a Sylow p-subgroup of A and C = CA(Q) the
centralizer of Q in A. Clearly, Q < P and also P ≤ C because P is abelian. Thus p2 | |C|.
If p2 | |C′| (C′ is the derived subgroup of C) then Q ≤ C′ and hence p | |C′

⋂
Q|, forcing

that p | |C′
⋂

Z(C| because Q ≤ Z(C). This contradicts Proposition 2.3. Consequently,
p2 ∤ |C′| and so C′ has more than two orbits on X. By Proposition 2.5, C′ is semiregular
on X and hence |C′| | 14p2.

Let K/C′ be a Sylow p-subgroup of C/C′. Since C/C′ is abelian, K/C′ is character-
istic and hence normal in A/C′, implying that K ✁A. Note that p2 | |K| and |K| | 14p2.
If |K| = 14p2 then K has a normal subgroup of order 7p2, say H . Since p ≥ 13, the
Sylow p-subgroup of H is characteristic and consequently normal in K and also normal
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in A. Also, if |K| < 14p2, K has a characteristic Sylow p-subgroup of order p2 which is
normal in A. However, this is contrary to our assumption |Q| = p. Therefore, |Q| = p2.

Clearly, Q ∼= Zp2 or Zp × Zp. Then by Proposition 2.5, X is a regular Q-covering of
the symmetric graph XQ of order 14. By [3] the only cubic symmetric graph of order
14 is the Heawood graph F14. Suppose that Q ∼= Zp2 . Since p ≥ 13, 7 is coprime to

p2 and hence by Proposition 2.6, X is isomorphic to a 1-regular graph Cay(G,S), where

G =< a, b | a2 = b7p
2

= 1, aba = b−1 >∼= D14p2 , S = {a, ba, bt+1a}, t2 + t+ 1 = 0 (mod

7p2), p ≥ 13 and 3|(p− 1).

Now, suppose that Q ∼= Zp × Zp. Then by [18, Table 2], X is isomorphic to EF14p2,
where p ≥ 13. Hence the result follows. �

3.3. Lemma. Let p be a prime. Then, S126 is the only cubic semisymmetric graph of
order 14p2.

Proof. Let X be a cubic semisymmetric graph of order 14p2. If p < 11, then by [4] there
is only one cubic semisymmetric graph S126 of order 14p2, in which p = 3. Hence we can
assume that p ≥ 11. Set A := Aut(X). By Proposition 2.2, |Av| = 2r ·3, where 0 ≤ r ≤ 7
and hence |A| = 2r · 3 · 7 · p2. Let Q = Op(A) be the maximal normal p-subgroup of A.
We show that |Q| = p2 as follows.

Let N be a minimal normal subgroup of A. Thus N ∼= Lk, where L is a simple group.
Let N be unsolvable. By [5], L is isomorphic to PSL(2, 7) or PSL(2, 13) of orders 23 ·3 ·7
and 22 · 3 · 7 · 13, respectively. Note that 32 ∤ |A|, forcing k = 1. Also, 3 does not divide
|A/N |, and hence by Proposition 2.1 N is semisymmetric on X. Consequently, 7p2 | |N |,
a contradiction because p ≥ 11. Therefore, N is solvable and so elementary abelian. It
follows that N acts intransitively on the bipartition sets of X, and by Proposition 2.1 it
is semiregular on each partition. Hence |N | | 7p2.

Suppose first thatQ = 1. This implies thatN ∼= Z7. Consequently, by Proposition 2.1,
XN is a cubic A/N-semisymmetric graph of order 2p2. Let T/N be a minimal normal
subgroup of A/N . If T/N is unsolvable then by a similar argument as above, T/N is
isomorphic to one of the two simple groups in the previous paragraph, implying that
72 | |T | and this is impossible. Hence, T/N is solvable and so elementary abelian. If
T/N acts transitively on one partition of XN , by Proposition 2.4 |T/N | = p2 and hence
|T | = 7p2. Since p ≥ 11, the Sylow p-subgroup of T is characteristic and consequently
normal in A. It contradicts our assumption Q = 1. Therefore, T/N acts intransitively
on the bipartition sets of XN and by Proposition 2.1, it is semiregular on each partition,
which force |T/N | | p2. Hence |T/N | = p and so |T | = 7p. Again, A has a normal
p-subgroup, a contradiction.

We now suppose that |Q| = p. Let C = CA(Q) be the centralizer of Q in A and C′

the derived subgroup of C. By the same argument as in the previous lemma, p2 ∤ |C′|
and so C′ acts intransitively on the bipartition sets of X. Then by Proposition 2.1, it is
semiregular and hence |C′| | 7p2.

Let K/C′ be a Sylow p-subgroup of C/C′. Since C/C′ is abelian, K/C′ is character-
istic and hence normal in A/C′, implying that K ✁ A. Note that p2 | |K| and |K| | 7p2.
Then, K has a characteristic Sylow p-subgroup of order p2 which is normal in A, contrary
to our assumption |Q| = p.

Therefore, |Q| = p2. Clearly, Q ∼= Zp2 or Zp × Zp. By Proposition 2.1, the semisym-
metric graph X is a regular Q-covering of a A/Q-semisymmetric graph XQ of order 14
which is the Heawood graph F14 under a projection, say ℘. Since Q ✁ A, the group A
is projected along ℘ and consequently, ℘ is a semisymmetric Q-covering projection and
also, X is a semisymmetric Q-covering of the Heawood graph. But by Proposition 2.6,
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there is no semisymmetric Zp2 -covering of the Heawood graph and also by [16, Theorem
7.1], there is no semisymmetric Zp × Zp-covering projection of the Heawood graph, a
contradiction. Hence the result follows. �

Now, the proof of Theorem 1.1 follows by Lemmas 3.1, 3.2 and 3.3.
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