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Abstract

We characterize approach spaces by suitable systems of neighbour-
hoods. We further characterize the lower separation axioms T0, T1,
T2, and regularity and the measure of compactness using these neigh-
bourhood systems. Also the approach space underlying an approach
uniform space is described using the neighbourhood systems.
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1. Introduction

Approach spaces were introduced by R. Lowen as a common framework for metric and
topological spaces [4]. They can be defined in various ways, e.g. via an approach distance,
a system of closure operators, approach systems, hull operators or limit operators. Having
a system of closure operators at our disposal, Lowen [5] points out that the definition of
neighbourhoods is natural. Yet this has not been published so far, although from another
direction (limit towers as stacks of limit structures, see [1]), approach spaces have been
characterized and also here the definition of neighbourhoods appears natural. In this
note we try to close this gap by giving a set of “natural” axioms for neighbourhood
systems for the points of an approach space. We characterize approach spaces by these
neighbourhood systems.

In order to underline the appropriateness of this approach, we use the neighbourhood
systems to characterize the lower separation axioms T0, T1 and T2 [6] and regularity [2].
We further characterize the measure of compactness [5]. All these characterization have a
nice similarity to characterizations of the corresponding properties for topological spaces.
We further show that the approach space underlying an approach uniform space [7] can
be easily described using the neighbourhoods. The latter yields a nice description of the
limit operator for an approach uniform space.
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2. Preliminaries

For an ordered set (L,≤), we write, upon existence, α∧β for the infimum of α, β ∈ L
and α ∨ β for their supremum. Similarly we denote, upon existence, the infimum of a
subset A ⊆ L by

∧

A and the supremum of a subset by
∨

A.

Let X be a set and F(X) the set of all filters on X. The set F(X) is ordered by set
inclusion, i.e. F ≤ G ⇐⇒ F ⊆ G. The fixed ultrafilter generated by {x} is denoted by
ẋ = {A ⊆ X : x ∈ A}. For a set J and a family of filters on X, (Fj)j∈J , indexed by J
and a filter G ∈ F(J) the compression operator κ(G, (Fj)j∈J ) is defined by ([3])

κ(G, (Fj)j∈J ) =
∨

G∈G

∧

j∈G

Fj .

Approach spaces can be defined in various ways [5]. We choose here the definition via
the limit operator as this suits us best.

2.1. Definition. [5] A function λ : F(X) −→ [0,∞]X is called a limit operator iff

(L1) For all x ∈ X: λ(ẋ)(x) = 0;
(L2) For all F,G ∈ F(X), x ∈ X: F ≤ G implies λ(G)(x) ≤ λ(F)(x);
(L3’) For all (Fj)j∈J ∈ F(X)J , x ∈ X: λ(

∧

j∈J Fj)(x) =
∨

j∈J λ(Fj)(x);

(L4) For allG ∈ F(X), (Fy)y∈X ∈ F(X)X , x ∈ X: λ(κ(G, (Fy)y∈X))(x) ≤ λ(G)(x)+
∨

y∈X λ(Fy)(y).

The pair (X,λ) is then called an approach space. A mapping f : (X,λ) −→ (X ′, λ′)
between two approach spaces is called a contraction if λ′(f(F))(f(x)) ≤ λ(F)(x) for all
F ∈ F(X), x ∈ X.

The category AP with approach spaces as objects and contractions as morphisms is
a topological construct that contains both TOP, the category of topological spaces (as a
bireflective and bicoreflective subcategory) and∞pqMET of extended pseudo-quasimetric
spaces (as a bicoreflective subcategory), see Lowen [5].

3. Characterization of approach spaces by neighbourhood sys-

tems

Let (X,λ) ∈ |AP |. We define for 0 ≤ α ≤ ∞ and x ∈ X the α-neighbourhood filter at

x by

U
x
α =

∧

λ(F)(x)≤α

F.

We note that Ux
α ∈ F(X) by (L1).

3.1. Lemma. Let λ : F(X) −→ [0,∞]X be a mapping that satisfies the axioms (L1) and
(L2) of Definition 2.1. The following are equivalent.

(1) (L3’);
(2) For all F ∈ F(X), x ∈ X, 0 ≤ α ≤ ∞: λ(F)(x) ≤ α ⇐⇒ F ≥ Ux

α.

Proof. We assume first that (L3’) is true. If λ(F)(x) ≤ α, then F ≥ Ux
α by the definition

of Ux
α. Conversely let F ≥ Ux

α. Then by (L2) and (L3’)

λ(F)(x) ≤ λ(Ux
α)(x) = λ

(

∧

λ(F)(x)≤α

F
)

(x) =
∨

λ(F)(x)≤α

λ(F)(x) ≤ α.

Let us now assume that condition (2) is true. By (L2) it follows that always
∨

j∈J λ(Fj)(x)

≤ λ(
∧

j∈J Fj)(x). For the other inequality we let α =
∨

j∈J λ(Fj)(x). Then λ(Fj)(x) ≤ α
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for all j ∈ J and hence, by (2), Fj ≥ Ux
α for all j ∈ J . Therefore,

∧

j∈J Fj ≥ Ux
α and,

again by (2), finally λ(
∧

j∈J Fj)(x) ≤ α. �

3.2. Lemma. Let (X,λ) ∈ |AP |. The system U = (Ux
α)x∈X,α∈[0,∞] has the following

properties:

(U0) Ux
α ∈ F(X) for all x ∈ X, α ∈ [0,∞];

(U1) Ux
α ≤ ẋ for all x ∈ X, α ∈ [0,∞];

(U2) Ux
α+β ≤ κ(Ux

β, (U
y
α)y∈X)) for all α, β ∈ [0,∞], x ∈ X;

(U3) 0 ≤ α ≤ β implies Ux
β ≤ Ux

α;

(U4) For all ∅ 6= A ⊂ [0,∞]:
∨

α∈A Ux
α = Ux∧

A.

Proof. (U0), (U1) and (U3) are easy and are left for the reader. For (U2) we use
Lemma 3.1 and show that λ(κ(Ux

β, (U
y
α)y∈X))(x) ≤ α + β. By Lemma 3.1 we have

λ(Ux
β)(x) ≤ β and

∨

y∈X λ(Uy
α)(y) ≤ α. Hence, by (L4)

λ(κ(Ux
β, (U

y
α)y∈X))(x) ≤ λ(Ux

β)(x) +
∨

y∈X

λ(Uy
β)(y) ≤ α+ β.

For (U4) we first note that by (U3) for any ∅ 6= A ⊆ [0,∞], Ux
α ≤ Ux∧

A for all α ∈ A.

This implies that
∨

α∈A Ux
α ∈ F(X) and that

∨

α∈A Ux
α ≤ Ux∧

A. Furthermore, we know

that
∨

α∈A Ux
α ≥ Ux

β for all β ∈ A. Hence, by (L2), for all β ∈ A we have that

λ(
∨

α∈A

U
x
α)(x) ≤ λ(Ux

β)(x) ≤ β

(again by Lemma 3.1). Therefore also λ(
∨

α∈A Ux
α)(x) ≤

∧

A and, again invoking
Lemma 3.1, we obtain

∨

α∈A Ux
α ≥ Ux∧

A. �

We remark that (U3) is a consequence of (U4). Also it can easily be shown that (U4)
is equivalent to Ux

α =
∨

β>α Ux
β .

Given now a system of filters on X, U = (Ux
α)x∈X,α∈[0,∞], we define λU : F(X) −→

[0,∞]X by

λU(F)(x) =
∧

{α ∈ [0,∞] : U
x
α ≤ F}.

3.3. Lemma. Let U = (Ux
α)x∈X,α∈[0,∞] satisfy (U0) and (U4) of Lemma 3.2. Let

F ∈ F(X), x ∈ X and α ∈ [0,∞]. The following are equivalent.

(1) λU(F)(x) ≤ α;
(2) F ≥ Ux

α.

Proof. If F ≥ Ux
α, then by definition λU(F)(x) ≤ α. Conversely, let λU(F)(x) =

∧

{β ∈
[0,∞] : Ux

β ≤ F} ≤ α. Then

U
x
α ≤ U

x∧
{β:Ux

β
≤F} =

∨

β:Ux
β
≤F

U
x
β ≤ F. �

3.4. Lemma. Let U = (Ux
α)x∈X, α∈[0,∞] satisfy (U0)–(U4) of Lemma 3.2. Then (X,λU) ∈

|AP |.

Proof. (L1) and (L2) are easy and are left for the reader. For (L3’) we use the complete
distributivity of [0,∞]. We have

∨

j∈J λU(Fj)(x) =
∨

j∈J

∧

Aj with Aj = {α ∈ [0,∞] :

Ux
α ≤ F}. Then

∨

j∈J

∧

Aj =
∧

(αj)∈
∏

j∈J Aj

∨

j∈J

αj =
∧

αj :U
x
αj

≤Fj∀j∈J

∨

j∈J

αj .
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If we fix for each j ∈ J , αj ∈ Aj , then with α =
∨

j∈J αj we obtain from (U3) for every

j ∈ J , Ux
α ≤ Ux

αj
≤ Fj . Hence

∨

j∈J

λU(Fj)(x) ≥
∧

α:Ux
α≤Fj∀j∈J

α =
∧

α:Ux
α≤

∧
j∈J Fj

α = λU

(

∧

j∈J

Fj

)

(x).

The other inequality follows from (L2). In order to prove (L4), we set α = λU(G)(x) and
β =

∨

y∈X λU(Fy)(y). By Lemma 3.3 then G ≥ Ux
α and Fy ≥ U

y
β for all y ∈ X. Hence

by (U2), Ux
α+β ≤ κ

(

Ux
α, (U

y
β)y∈X

)

≤ κ
(

G, (Fy)y∈X

)

. Again, by Lemma 3.3, we obtain

finally λU

(

κ
(

G, (Fy)y∈X

))

(x) ≤ α+ β. �

3.5. Lemma. Let (X,λ) ∈ |AP |. If we denote the neighbourhood system by U
λ =

(

Ux
α

)

x∈X,α∈[0,∞]
, then λ(

Uλ
) = λ.

Proof. Let F ∈ F(X) and x ∈ X. Then λ(Uλ)(F)(x) =
∧

{α ∈ [0,∞] : F ≥ Ux
α}. From

Lemma 3.1 we know that F ≥ Ux
α if and only if λ(F)(x) ≤ α. Hence we obtain

λ(Uλ)(F)(x) =
∧

{α ∈ [0,∞] : λ(F)(x) ≤ α} = λ(F)(x). �

3.6. Lemma. Let U satisfy (U0)–(U4) from Lemma 3.2. Then U
(λU) = U.

Proof. Let x ∈ X and α ∈ [0,∞]. We set

U
(λU) = (Ux

α)x∈X,α∈[0,∞] and U = (Vx
α)x∈X,α∈[0,∞].

By Lemma 3.3 we obtain that from λU(F)(x) ≤ α it follows that Vx
α ≤ F. Hence

Ux
α =

∧

λcu(F)(x)≤α F ≥ Vx
α. In order to show Ux

α ≤ Vx
α it is sufficient to show that

λU(V
x
α)(x) ≤ α. But this follows straight from λU(V

x
α)(x) =

∧

{β ∈ [0,∞] : Vx
β ≤

Vx
α} ≤ α. �

We finally characterize contractions using neighbourhood systems.

3.7. Lemma. Let (X,λ), (X ′, λ′) ∈ |AP | and let f : X −→ X ′ be a mapping. The

following are equivalent.

(1) f is a contraction;

(2) V
f(x)
α ≤ f(Ux

α) for all α ∈ [0,∞] and all x ∈ X, where U
λ = (Ux

α)x∈X,α∈[0,∞]

and U
λ′

= (Vy
α)y∈X′,α∈[0,∞] are the neighbourhood systems for (X,λ), (X ′, λ′),

respectively.

Proof. If f is a contraction, then with F = Ux
α we obtain λ′(f(Ux

α))(f(x)) ≤ λ(Ux
α)(x) ≤

α by Lemma 3.1. If we use Lemma 3.1 again, we obtain from this f(Ux
α) ≥ V

f(x)
α .

Let now the condition (2) be true and let F ∈ F(X) and x ∈ X. With α = λ(F)(x)

we obtain F ≥ Ux
α and hence f(F) ≥ f(Ux

α) ≥ V
f(x)
α . With (L2) and Lemma 3.1 we

obtain from this

λ′(f(F))(f(x)) ≤ λ′(Vf(x)
α )(f(x)) ≤ α,

and f is a contraction. �

We could define the category of neighbourhood approach spaces with spaces with neigh-
bourhood systems that satisfy (U0)–(U4) as objects and mappings which satisfy (2) of
Lemma 3.7 as morphisms . The Lemmas 3.2, 3.4, 3.5, 3.6 and 3.7, however, show that
the category AP of approach spaces and contractions is isomorphic to this new category.
So it makes not much sense introducing a new notation. We rather consider our neigh-
bourhood systems as an alternative way of describing approach spaces. In the following
sections we will show that this description is very nice and leads to characterizations
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of certain properties of approach spaces which are similar to characterizations of corre-
sponding properties in TOP.

4. Characterization of approach properties by neighbourhood

systems

Separation axioms. In [6] Lowen and Sioen defined several separation axioms in AP .
Given an approach space (X,λ) its topological coreflection is denoted by (X,Tλ) ∈
|TOP |. It is shown in [5] that convergence in (X,Tλ) is characterized by F → x ⇐⇒
λ(F)(x) = 0 for x ∈ X and F ∈ F(X). An approach space (X,λ) is called a T0-space

if (X,Tλ) is a topological T0-space. The T0-axiom in TOP can be characterized by
convergence via the following axiom:

(T0) x 6= y implies ẏ 6→ x or ẋ 6→ y.

Translating this, we find that an approach space is a T0-space if and only if λ(ẋ)(y) =
0 = λ(ẏ)(x) implies x = y.

4.1. Lemma. Let (X,λ) ∈ |AP |. Then (X,λ) is a T0-space if and only if Ux
0 ≤ ẏ and

U
y
0 ≤ ẋ implies x = y.

Proof. We note that Ux
0 ≤ ẏ if and only if λ(ẏ)(x) = 0 by Lemma 3.1. �

T1-spaces can be characterized similarly. An approach space (X,λ) is a T1-space [6]
if and only if (X,Tλ) is a T1-space. Again a characterization via convergence yields that
(X,λ) is a T1-space if and only if λ(ẋ)(y) = 0 implies x = y.

4.2. Lemma. Let (X,λ) ∈ |AP |. Then (X,λ) is a T1-space if and only if U
y
0 ≤ ẋ

implies x = y. �

Also T2-spaces in AP are defined via the topological bicoreflection: (X,λ) is a T2-
space if and only if (X,Tλ) is a T2-space in TOP , see [6]. The T2-axiom can again be
characterized using the limit operator as: λ(F)(x) = 0 = λ(F)(y) implies x = y.

4.3. Lemma. Let (X,λ) ∈ |AP |. Then (X,λ) is a T2-space if and only if Ux
0 ∨ U

y
0 ∈

F(X) implies x = y.

Proof. If (X,λ) is a T2-space and Ux
0 ∨U

y
0 exists, then by (L2) and Lemma 3.1 λ(Ux

0 ∨
U

y
0) ≤ λ(Ux

0) = 0 and λ(Ux
0 ∨U

y
0) ≤ λ(Uy

0) = 0 and hence by (T2), x = y. Conversely, if
λ(F)(x) = 0 = λ(F)(y), then, again by Lemma 3.1, F ≥ Ux

0 and F ≥ U
y
0 . Consequently,

Ux
0 ∨U

y
0 exists and hence x = y. �

Regularity in AP is defined differently. In [2] a diagonal condition is used. There,
(X,λ) ∈ |AP | is called regular if for all sets J , all mappings ψ : J −→ X, all selections
of filters (Fj)j∈J ∈ F(X)J , all filters G ∈ F(J) and all x ∈ X we have

λ(ψ(G))(x) ≤ λ(κ(G, (Fj)j∈J))(x) +
∨

j∈J

λ(Fj)(ψ(j)).

This condition can be characterized as follows [2]. For F ⊆ X and ǫ ≥ 0 we define

F (ǫ) = {y ∈ X :
∧

U∈F(X) ultra:A∈U

λ(U)(y) ≤ ǫ}.

It was noted in [2] that F (ǫ) = {y ∈ X : δ(y,F ) ≤ ǫ}, where δ is the approach distance

(see [5]). For F ∈ F(X) we define F(ǫ) to be the filter generated by the filter base

{F (ǫ) : F ∈ F}. Then (X,λ) is regular if and only if for all F ∈ F(X), for all ǫ ≥ 0 and

for all x ∈ X we have λ(F(ǫ))(x) ≤ λ(F)(x) + ǫ.
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4.4. Lemma. Let (X,λ) ∈ |AP |. Then (X,λ) is regular if and only if (Ux
α)

(ǫ) ≥ Ux
α+ǫ

for all x ∈ X and all α, ǫ ≥ 0.

Proof. Let (X,λ) be regular and let α, ǫ ≥ 0. Then we know that λ((Ux
α)

(ǫ))(x) ≤

λ(Ux
α)(x) + ǫ ≤ α+ ǫ. By Lemma 3.1 this implies (Ux

α)
(ǫ) ≥ Ux

α+ǫ.

Conversely, let F ∈ F(X) and set α = λ(F)(x). Then F ≥ Ux
α and hence F(ǫ) ≥

(Ux
α)

(ǫ) ≥ Ux
α+ǫ. With (L2) and Lemma 3.1 this yields λ(F(ǫ))(x) ≤ λ((Ux

α)
(ǫ))(x) ≤

α+ ǫ. �

Reading F (ǫ) as the ǫ-closure of F , we can rephrase Lemma 4.4 in the following way:
Each (α − ǫ)-neighbourhood of a point contains the ǫ-closure of an α-neighbourhood of
the point. This is perfectly analogous to the definition of regularity in TOP .

Measure of compactness. In [5], for an approach space (X,λ), a measure of compact-
ness is defined as

µC(X) =
∨

U∈F(X) ultra

∧

x∈X

λ(U)(x).

It is shown in [5] that µC(X) generalizes the well-known Hausdorff measure of non-
compactness for pseudo-metric spaces. We have a nice characterization of µC(X) using
neighbourhood systems.

4.5. Lemma. Let (X,λ) ∈ |AP |. Then µC(X) ≤ α if and only if for each ǫ > 0 and for

each collection (Vx)x∈X with Vx ∈ Ux
α+ǫ for every x ∈ X there is a finite subcollection

Vx1
, Vx2

, . . . , Vxn such that X = Vx1
∪ Vx2

∪ · · · ∪ Vxn .

Proof. Let µC(X) ≤ α and assume that for an ǫ > 0 and for a collection (Vx)x∈X with
Vx ∈ Ux

α+ǫ for all x ∈ X we have that for all finite subcollections Vx1
∪ · · · ∪ Vxn 6= X.

Then

B = {X \ (Vx1
∪ · · · ∪ Vxn) : {Vx1

, . . . , Vxn} ⊆ {Vx : x ∈ X} finite subcollection}

is the basis of a filter. Let U ∈ F(X) be a finer ultrafilter. If λ(U)(x) ≤ α + ǫ, then
U ≥ Ux

α+ǫ and hence Vx ∈ U, a contradiction to X \Vx ∈ U. Therefore λ(U)(x) > α+ ǫ
for all x ∈ X and hence

∧

x∈X λ(U)(x) ≥ α+ǫ. It follows µC(X) ≥ α+ǫ, a contradiction.

To show the converse, we assume that µC(X) > α. Then also µC(X) > α + ǫ for
some ǫ > 0. Hence there is an ultrafilter U ∈ F(X) such that

∧

x∈X λ(U)(x) > α + ǫ.
Therefore λ(U)(x) > α+ ǫ for all x ∈ X and hence U 6≥ Ux

α+ǫ for all x ∈ X. Hence for
every x ∈ X there is Vx ∈ Ux

α+ǫ such that Vx /∈ U. We choose now x1, x2, . . . , xn such
that Vx1

∪ Vx2
∪ · · · ∪ Vxn = X. As U is an ultrafilter, it follows that Vxk

∈ U for some
k, a contradiction. Hence µC(X) ≤ α and the proof is complete. �

Lemma 4.5 generalizes the well-known characterization of compactness in TOP by
means of neighbourhoods: A space X is compact if and only if for each selection of
neighbourhoods Vx for every point x ∈ X, there exist finitely many x1, . . . , xn such that
X = Vx1

∪ · · · ∪ Vxn .

5. Characterization of the approach space underlying an approach

uniform spaces using neighbourhood systems

There are various ways for defining an approach uniform space [7, 8]. We will need
two of them. For the first way, we can consider an ideal Γ ⊆ [0,∞]X× (i.e. γ, ν ∈ Γ
implies γ ∨ ν ∈ Γ and γ ∈ Γ, and ν ≤ γ implies ν ∈ Γ, where the functions in Γ are
ordered pointwise). If Γ satisfies the following axioms
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(AU1) ∀ γ ∈ Γ, ∀ x ∈ X: γ(x, x) = 0;
(AU2) ∀ ξ ∈ [0,∞]X×X : (∀ ǫ > 0, ∀N >∞ : ∃ γN

ǫ ∈ Γ s.t. ξ∧N ≤ γN
ǫ + ǫ) =⇒ ξ ∈ Γ;

(AU3) ∀ γ ∈ Γ ∀N <∞∃γN ∈ Γ s.t. ∀x, y, z ∈ X : γ(x, z) ∧N ≤ γN (x, y) + γN(y, z);
(AU4) ∀ γ ∈ Γ: γs ∈ Γ (where γs(x, y) = γ(y, x) for all x, y ∈ X).

then the pair (X,Γ) is called an approach uniform space.

For an approach uniform space (X,Γ) we have an underlying approach space (X,λΓ)
with

λΓ(F)(x) =
∨

γ∈Γ

∧

F∈F

∨

y∈F

γ(x, y),

for F ∈ F(X) and x ∈ X [7].

Another, equivalent definition of an approach uniform space uses the concept of a
uniform tower on X×X ([7]). For ǫ > 0 we define UΓ

ǫ as the filter generated by the filter
base {[γ < α] : γ ∈ Γ, α > ǫ}. Here we have [γ < α] = {(x, y) ∈ X ×X : γ(x, y) < α}. A
uniform tower then satisfies the following “natural” axioms. For all ǫ, ǫ′ > 0 we have

(UT0) Uǫ ∈ F(X ×X);

(UT1) Uǫ ≤ ∆̇ (with ∆̇ = {A ⊆ X ×X : (x, x) ∈ A∀x ∈ X});
(UT2) Uǫ ≤ U

−1
ǫ ;

(UT3) Uǫ+ǫ′ ≤ Uǫ ◦ Uǫ′ ;
(UT4) Uǫ =

∨

α>ǫ Uα.

We note that in [7] the filter U0 was not defined. We will define it via (UT4) as U0 =
∨

α>0 Uα. The reader can easily verify that this causes no contradictions.

We define now for U ⊆ X × X and x ∈ X the set U(x) = {y ∈ X : (x, y) ∈ U}
and with this for F ∈ F(X × X) the filter F(x) ∈ F(X) generated by the filter basis
{U(x) : U ∈ F}.

5.1. Lemma. For a uniform approach space (X,Γ) with uniform tower (UΓ
ǫ )ǫ>0 we have

U
Γ
ǫ (x) =

∧

λΓ(F)(x)≤ǫ

F.

Proof. If λΓ(F)(x) ≤ ǫ then for all γ ∈ Γ we have
∧

F∈F

∨

y∈F γ(x, y) ≤ ǫ. Hence, if

α > ǫ there is F ∈ F such that γ(x, y) < α for all y ∈ F . Therefore F ⊆ [γ < α](x)
and we obtain [γ < α](x) ∈ F. Therefore it follows that UΓ

ǫ (x) ≤ F. Therefore U
Γ
ǫ (x) ≤

∧

λΓ(F)(x)≤ǫ F.

For the converse inequality, we show that λΓ(U
Γ
ǫ (x))(x) ≤ ǫ. We have

λΓ(U
Γ
ǫ (x))(x) =

∨

γ∈Γ

∧

V ∈UΓ
ǫ (x)

∨

y∈V

γ(x, y)

=
∨

γ∈Γ

∧

η∈Γ,α>ǫ

∨

y∈[η<α](x)

γ(x, y)

≤
∨

γ∈Γ

∧

α>ǫ

∨

y∈[γ<α](x)

γ(x, y)

=
∨

γ∈Γ

∧

α>ǫ

∨

y:γ(x,y)<α

γ(x, y)

≤
∨

γ∈Γ

∧

α>ǫ

α = ǫ.

Hence
∧

λΓ(F)(x)≤ǫ F ≤ U
Γ
ǫ (x) and the proof is complete. �
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Note that this implies that the neighbourhood system at x ∈ X for the approach
space underlying an approach uniform space can be obtained from the uniform tower
(UΓ

ǫ )ǫ≥0 as (UΓ
ǫ (x))ǫ≥0. This is again in perfect analogy to the situation in the category

UNIF of uniform spaces. We deduce a convenient description of the approach limit for
an approach uniform tower.

5.2. Corollary. For an approach uniform space (X,Γ) we have λΓ(F)(x) =
∧

{α ∈
[0,∞] : UΓ

α(x) ≤ F}.
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