Hacettepe Journal of Mathematics and Statistics
Volume 41 (2) (2012), 291 -306

FIXED AND RELATED FIXED POINT
THEOREMS FOR THREE MAPS IN
G-METRIC SPACES

Mujahid Abbas*, Talat Nazir*, Wasfi Shatanawi* and Zead Mustafa'

Received 24:02:2011 : Accepted 18:10:2011

Abstract

Using the setting of G-metric spaces, unique common fixed points of
three maps that satisfy a generalized (¢, )-weak contractive condition
are obtained. It is noted that the existence of a fixed point of any
one of the mappings implies that the three mappings have a common
fixed point. These results extend and generalize various well known
comparable results in the existing literature.
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1. Introduction and preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has
been at the center of vigorous research activity. Mustafa and Sims [7] generalized the
concept of a metric space. Based on the notion of generalized metric spaces, Mustafa et
al. [7, 8,9, 10, 11] obtained some fixed point theorems for mappings satisfying different
contractive conditions. Abbas and Rhoades [1] initiated the study of a common fixed
point theory in generalized metric spaces. Saadati et al. [13] proved some fixed point
results for contractive mappings in partially ordered G-metric spaces. Abbas et al. [3]
studied some coupled common fixed point theorems in two generalized metric spaces.
Meanwhile, Shatanawi [14] obtained a coupled fixed point theorem in G-metric space.
Abbas et al [2] and Chugh et al. [5] obtained some fixed point results for maps satisfying
property P in G-metric spaces. Recently, Shatanawi [15] proved some fixed point results
for self mapping in a complete G-metric space under some contractive conditions related
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to a nondecreasing map ¢ : R — R* with nh_)rrolo @™ (t) =0 for all t > 0. For more works
in G-metric spaces see [4, 16].

The aim of this paper is to initiate the study of a common fixed point for three map-
pings in complete G-metric space under the various generalized (¢, 1)-weak contractive
conditions. It is worth mentioning that our results do not rely on the notion of continu-
ity and any type of commutativity of mappings involved therein. We generalize various
results of Mustafa et al. [9, 10] and Shatanawi [15].

Consistent with Mustafa and Sims [8], the following definitions and results will be
needed in the sequel.

1.1. Definition. Let X be a nonempty set. Suppose that the mapping G : X x X x X —
R™ satisfies:
(a) G(z,y,2) =0if x =y = z;
(b) 0 < G(z,z,y) for all z,y € X. with x # y;
(¢) G(z,z,y) < G(z,y, 2) for all z,y,z € X with y # z;
(d) G(z,y,2) = G(z,2,y) = G(y,z,x) = --- (symmetry in all three variables); and
(e) G(z,y,2) < G(z,a,a) + G(a,y,z) for all z,y,z,a € X.
Then G is called a G-metric on X and (X, G) is called a G— metric space.
Mustafa and Sims [8, Proposition 1] have also shown that if G(z,y,z) = 0 then
x =y = z. For more properties of a G-metric we refer the reader to [8].
1.2. Definition. A sequence {z,} in a G-metric space X is:

(i) a G-Cauchy sequence if, for every € > 0, there is a natural number ng such that
for all n,m,l > no, G(Tn, Tm,z;) < €.

(ii) a G-Convergent sequence if, for any € > 0, there is an z € X and an np € N
such that for all n,m > no, G(zn, Tm,) < €.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X
is G-convergent in X. It is known that {z,} G-converges to x € X if and only if
G(Tm,Zn,x) = 0 as n,m — oo.
1.3. Proposition. [8] Let X be a G-metric space. Then the following are equivalent:
(1) The sequence {zn} is G-convergent to x.
(2) G(zn,xn,z) = 0 as n — oco.
(3) G(zn,z,2) = 0 as n — co.
(4) G(zn,xm,x) = 0 as n,m — co. O
1.4. Proposition. [8] Let X be a G-metric space. Then the following are equivalent:
(1) The sequence {zn} is G-Cauchy.
(2) For every for every € > 0 there exists no € N such that for all n,m > ng,
G(Tn, Tm,Tm) < &; that is, if G(Tn, Tm,Tm) = 0 as n,m — co.
1.5. Definition. A G-metric on X is said to be symmetric if G(z,y,y) = G(y, z,z) for
all z,y € X.

1.6. Proposition. FEvery G-metric on X will define a metric da on X by
(1.1)  de(z,y) = G(z,y,y) + G(y,z,x), Vo,y € X.

For a symmetric G-metric space, one obtains

(1.2)  de(z,y) =2G(z,y,y), Vz,y € X.

However, if G is not symmetric, then the following inequality holds:

(1.3)  2G(z,y,y) < dc(z,y) < 3G(z,y,y), Yo,y € X. O
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1.7. Definition. The following two classes of mappings are defined as
D ={p|p:[0,00) = [0,00) is lower semi continuous,
o(t) >0 for all ¢ > 0, ¢(0) = 0}.
U ={¢|:[0,00) = [0,00) is continuous and nondecreasing with
(t) = 0 if and only if ¢ = 0}.

2. Common fixed point theorems

In this section, we obtain common fixed point theorems for three mappings defined
on a generalized metric spaces.

2.1. Theorem. Let f. g and h be self maps on a complete G-metric space X satisfying
21 P(G(fz,gy,h2)) < p(M(z,y,2)) — p(M(2,y,2)),
where Y € ¥, p € & and
M(z,y, z) = max{G(x,y, 2), G(z,z, fx),G(y,y, 9y), G(z, z, hz),
G(z, fz,9y),G(y, 9y, h2), G(z, hz, fz)}
for all x,y,z € X. Then f, g and h have a unique common fized point in X. Moreover,

any fized point of f is a fired point of g and h and conversely.

Proof. Suppose that zo is an arbitrary point in X. Define a sequence {z,} by z3nt+1 =
T30, T3nt2 = 9T3n+1, T3nts = hant2. We may assume that G(x3n, Tan+1, T3n42) > 0.
for every n. If not, then z3, = T3n+1 = Tsn+2 for some n. For all those n. using (2.1),
we obtain

Y (G(23n+1, T3n+2, T3n+3))
(2.2) =Y (G(fr3n, 9Z3n+1, hT3n12))
< (M(23n, Tan+t1, Tant2)) — P(M(X3n, T3nt1, T3nt2)),
where
M (z3n, 3n+1, T3n+2)
= max{G(Z3n, T3n+1, Tan+2), G(T3n, T3n, [T3n),
G(Z3n+1, T3n+1, 9Z3n+1), G(T3n+2, T3n+2, AT3n+2),
G(z3n, f3n, 9T3n+1), G(T3n+1, 9T3n+1, MT3n+2),
G(z3n+2, hT3n+2, fTan)}
= max{G(Z3n, T3n+1,T3n+2), G(T3n, T3n, T3n+1),
G(Z3n+1, T3n+1, T3n+2), G(T3n+2, T3n+2, T3n+3),
G(Z3n, T3n+1, T3n+2), G(T3n+1, T3n+2, T3n+3),
G(173n+2, T3n+3, £E3n+1)}-
On using the fact G(z,z,y) < G(z,y, 2) for all z,y,z € X. with y # z. it follows that
M (z3n, Z3n+1, T3nt2) = Max{G(T3n, T3n+1, T3n+2), G(T3n+1, T3n+2, L3n+3) }
= max{0, G(Z3n+1, T3n+2, T3n+3) }
= G(T3n+1, T3nt2, T3nt3).
Hence
WY(G(T3n41, Tant2, Zan+3)) < Y (G(T3n41, Tant2, T3nt3))

— (G (T3n+1, Tan+2, Tan+3)),
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implies that ¢o(G(Z3n+1, T3n+2,23n+3)) = 0 and Z3p+1 = Tant2 = Zsnt+3. Following
similar arguments, we obtain xsn+2 = T3n4+3 = T3n+4 and hence s, becomes a common
fixed point of f, g and h.

Now, by taking G(x3n, Z3n+1, Z3n+2) > 0 for n =0,1,2,3,... consider
Y (G(23n+1, T3n+2, T3n+3))
(2.3) = Y(G(fr3n, 9T3n+1, hsnt2))
S P(M (230, T3nt1, Tant2)) — (M (Z3n, Tant1, Tant2)),
where
M (230, T3n+1, T3n+2)
= max{G(Z3n, T3n+1, Tan+2), G(T3n, T3n, [T3n),
G(Z3n+1, T3n+1, 9Z3n+1), G(T3n+2, T3n+2, AT3n+2),
G(z3n, [Z3n, 9Z3n+1), G(T3n+1, 9T3n+1, hTant2),
G(z3nt2, hant2, fT3n)}
= max{G(T3n, T3n+1, T3n+2), G(T3n, T3n, Tant+1),
G(Z3n+1, T3n+1, T3n+2), G(T3n+2, T3n+2, T3n+3),
G(Z3n, T3n+1, T3n+2), G(T3n+1, T3n+2, T3n+3),
G($3n+2, T3n+3, $3n+1)}
= max{G(z3n, T3n+1, T3n+2), G(T3n+1, T3n+2, T3n+3) }.
Suppose that for infinitely many values of n
max{G(T3n, T3n+1, T3n+2), G(T3n+1, T3n+2, Tant+3) } = G(T3n+t1, T3nt2, T3n+3),
then we obtain that
Y (G(Z3n+1, Tant2, T3n+3)) < P (G(T3n41, Tant2, Tan+s))
— o(G(23n+1, T3nt2, T3nt3))
< Y(G(Z3n+1, T3nt2, T3n+3)),
a contradiction. Thus, for infinitely many values of n we have
(G (3041, Tant2, Tan+3)) < Y(M(T3n, T3n+1, Tant2))
— (M (%30, T3n41, Zant2))
< Y(M (230, T3n+1, T3n+2))
= V(G (23n, Tant1, T3nt2))-
Since the control function ¥ is nondecreasing, it follows that
G(Z3n+1, T3n+2, T3n+3) < M(Z3n, T3n+1, L3n+2) = G(T3n, T3n+1, T3nt+2).
Similarly, it can be shown that
G(%3n+2, T3n+3, Tan+d) < M(Z3n+1, T3n+2, T3n+3)
= G($3n+17 T3n+2, $3n+3)
and
G(%3n43, T3n+4, T3nt5) < M(T3n42, T3n43, T3nta)
= G($3n+2, T3n+3, $3n+4)-
Therefore, for all n,

G(Tn+1, Tnt2, Tnts) < G(Tn, Tng1, Tnt2),
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and {G(Z3n+1, T3n+2, T3n+3)} IS a non increasing sequence and so there exists L > 0 such

that lim G(.Tgn.»,_l, T3n+2; :Ii’3n+3) = lim M(.Tgn, $3n+1,$3n+2) = L. Then, by the lower
n— o0 n— o0

semi continuity of ¢,
o(L) <liminfo(M(z3n, T3nt1, Tant2)).

n—o00

We claim that L = 0. By lower semicontinuity of ¢, taking the upper limits as n — oo
on both sides of

V(G (T3n+1, Tant2, Tants)) < (M (an, Tant1, Tant2))—O(M (T3n, Tani1, Tnt2)),
we have
(L) < ¢ (L) — liminfo(M (z3n, Tan 41, Tant2))
<P (L) — (L),
i.e. (L) <0. Thus ¢(L) =0 and we conclude that

(2.4) nlillglo G(Z3n+1, T3nt2, Tnts) = 0.

Now we shall show that {z,} is a G- Cauchy sequence. It is sufficient to show that {zs,}
is G-Cauchy in X. If it is not, there is € > 0 and integers 3ny, 3my with 3my > 3ng, > k
such that

(25) G(mBnk7x3mk7m3mk) Z € and G(mBnk7x3mk737m3mk—3) <e.
Now (2.4) and (2.5) give

€ ($3nk7$3mk7m3mk)

ININ A

G
G(Z3ny,, ¥3my,—3, T3my—3) + G(X3my,—3, T3my, , T3my, )
G(Z3ny, , T3my,—3, T3my—3) + G(T3my -3, T3mj,—1, T3mj,—1)

—+ G($3mk—1, mBmk 5 x3mk)

N

G(Z3ny, , T3my,—3, T3my—3) + G(T3my —1, T3mj,—2, T3mj,—3)

+ G(23m),—1,T3my, , T3my, 1),
which further implies that

(26) kll{go G(x3nk7x3mk7x3mk) =E.

Also,

G(@3ny , T3my, » T3my, )
< G(X3ny,, T3ng+15 T3ng+1) + G(T3np,+1, T3my, , T3m,y, )
< G(X3ny,, T3nj+15 T3ng+1) + G(T3n,+1, T3my 425 T3my+2)
+ G(T3my+2; Tamy, , T3m), )
< G(X3ny,, T3nj+15 T3ng+1) + G(T3n,+1, T3my+2, T3my+3)
+ G(X3my 43, T3mp+3, L3my+2) + G(T3my+2, T3my, » T3m,, )
< G(Z3ny,, T3ng+15 T3ng+2) + G(T3ny+1, T3mp+2, T3my+3)

+ G(X3mp 41, T3mp+25 T3my+3) + G(X3my, , T3my+1, T3my+2),
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implies that ¢ < klim G(Z3n),+1, T3my+2, T3m,,+3). From (2.4) and (2.6), we have
— 00

G($3nk+1,$3mk+2,$3mk+3)
< G(@3ng+1, Tany,» T3ny, ) + G(Tny,, T3my 42, Tamy+3)
< G(T3ny+1, Tang , Tany, ) + G(T3ny, T3my,, T3m,, )
+ G(z3m,, , T3my+2, 3my+3)
< G(@3ny, Tang+1, T3ng+2) + G(T3ny , T3my, s T3my, )
+ G(X3my, , T3mp+25 T3mp+2) + G(T3my+2, T3my+2, T3my, +3)
< G(@3ny, Tang+1, T3ng+2) + G(T3ny , Tmy, s T3my, )

+ G(z3m,,, T3my+1, T3my+2) + G(T3my, 415 T3my, +25 T3my, +3),

which gives that klim G(Z3nj,+1, T3my+2, T3m+3) < €, and hence
— 00

(2.7) leIIgOG($3nk+1,$3mk+2,$3mk+3) =£.

Now,

G(Z3ny,, 3my, , T3my, ) < G(X3ny, T3mp+15 L3mp+1) + G(T3mp+1, T3my, » T3my, )

< G(Z3ny,, T3mp+1; T3mp+2) T G(T3my, , T3mp+1, T3mp+2),
gives that € < lim G(x3n,,, Z3mj+1; L3my+2), and
k— oo
G(Z3ny > T3my,+1, T3my+2) < G(T3ny, T3my,+1, T3ny, ) + (T30, , T3ng > T3my, +2)
< G(Z3ny,, T3ng+1; T3ng+2) + G(T3ny, , T3mp+1, T3mp+2)-
By using (2.4) and (2.7), we get
lim G(x3nk B :C3mk+1, mek+2) S g,

k— oo
and hence
(2.8) lim G(mgnk,wgmk+1,$3mk+2) =¢&.

k— o0

Also,

G(Z3ny,, 3my, , T3my, ) < G(X3ny,, T3mp+25 T3my+2) + G(T3my+2, T3my, » T3m,y, )

< G(Z3ny,, T3ng+1; T3mp+2) + G(Z3my,, T3my+1, T3my+2)
yields e < lim G(Z3n,,, T3nj,+1, L3m,+2) and
k—oo
G(Z3ny,, T3ng+1, T3mp+2) < G(T3ny, T3ng+1, T3ny, ) + G(X3n,,; T3ny, , T3my+2)
< G(Z3ny,, T3np+1, T3ng+2) + G(T3ng, T3my+1, T3mp+2)-
By using (2.4) and (2.8), we get

lim G(z3n,, T3n,+1, T3mp+2) < €

k— oo
and hence
(2.9) lim G(x3nk,$3nk+1,x3mk+2) =E£.

k—oo
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Now from the definition of M and from (2.4), (2.7), (2.8), (2.9) we have

M (23n,, T3my+1, T3my+2)
= max {G(mBnk s T3mp+1, L3my+2); G(T3ny, , Tany,, [T3n, ),
G(Z3mp+1, T3my+1, 9Z3mp+1), G(T3my 42, T3my+2, A3m,+2),
G(Z3ny,, fZ3ns s 9T3mp+1)s G(X3mp+1, GT3mp+1, AT3m +2),
G(@3my+2, htamy+2, fTan,) }
= max {G(T3n, , T3my+1, T3my +2), G(T3n,, , Tan,, Tny, 11),
G(Z3mp+1, T3mp+1, T3mp+2), G(Z3my +25 T3my+2, T3my+3),
G(T3ny,, T3ny,+1, T3my+2), G(T3my+1, T3my+25 T3my+3)
G($3mk+27 T3mp+3) $3nk+1)}~
Thus

klim M (23n,,, T3mj +1, T3m,+2) = max{e,0,0,0,0,¢,e} = .
oo

From (2.1), we obtain

Y(G(X3np+15 T3mp+2, T3my+3)) = V(G (fT3ny, 9T3mp+1, AT3m,+2))
S (M (@30, T3my+1, T3my+2))
— (M (Z3n,,, T3mp+1, T3mp+2)),

which on taking the limit as & — oo implies

¥ (e) <Y (e) — (o),
a contradiction as £ > 0.

It follows that {x3,} is a G-Cauchy sequence and by the G-completeness of X, there
exists u € X such that {z,} converges to u as n — co. We claim that fu = u. For this,
consider

Y(G(fu, Tant2, Tant3)) = V(G(fu, gTant1, hrsni2))
< P(M(u, T3n+1, Tant2)) — (M (U, T3n+1, Tant2)),
where
M (u, Z3n+1, T3nt2)
= max{G(u, L3n+1, T3n+2), G(u, u, fu), G(T3n+1, T3n+1, gL3n+1),
G(x3n+2, T3nt2, heante), G(u, fu, gT3n+1), G(T3n+1, 9T3n+1, hTant2),
G(z3n+2, hT3nt2, fu)}
= max{G(u, T3n+1, T3n+2), G(u, u, fu), G(T3n+1, T3n+1, T3nt2),
G(T3n+2, T3n+2, T3n+3), G(U, fu, Tant2), G(T3n+1, T3nt2, T3nt3),
G(z3n+2, Tan+3, fu)}.
On taking the limit as n — oo, we obtain that
¥ (G(fu,u,u)) <P (G(fu,u,u)) — @(G(fu,u, u)),
a contradiction. Hence fu = u. Similarly it can be shown that gu = v and hu = w.

Now we prove the uniqueness of the common fixed point. Suppose that v is another
common fixed point of f, g and h. Then

P(G(u,0,0)) = 9 (G(fu, gv, hv)) < o (M (u,0,0)) = p(M (u,v,v)),
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where
M (u,v,v) = max{G(u, v,v), G(u,u, fu), G(v,v, gv), G(v, v, hv),
G(u, fu,v),G(v,gv, hv), G(v, hv, fu)}
max{G(u,v,v), G(u,u,u),G(v,v,v),G(v,v,v)
G(u,u,v),G(v,v,v),G(v,v,u)}
= max{G(u,v,v), G(u,u,v)}.
If M(u,v,v) = G(u,v,v). then
Y(G(u,v,v)) < P(G(u,v,v)) — o(G(u,v,v)),
a contradiction.
If M(u,v,v) = G(u,u,v), then
¥ (G(u,v,v)) < P(G(u, u,v)) — o(G(u, u,v))
< P(G(u, u,v)).
Again applying (2.1), we have
V(G(u, u,v)) = V(G(fu, gu, hv)) < Y(M(u,u,v)) — (M (u, u,v)),

where

(2.10) M (u,u,v) = max{G(u, u,v), G(u,v,v)}.

If M(u,u,v) = G(u,u,v), then we obtain v = v. Otherwise, we have
P(G(u,u,0)) S P(G(u,v,v)) = p(G(u, v,0)),

a contradiction. Hence u is a unique common fixed point of f, g and h.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p).
If not then in the case when p # g(p) and p # h(p) we obtain

Y(G(p, gp, hp)) = Y(G(fp, gp, hp)) < (M (p,p,p)) — (M (p, p,p)),

where
M (p,p,p) = max {G(p,p,p), G(p,p, fp), G(p,p, 9p), G(p, p, hp),
G(p, fp, gp), G(p, gp, hp), G(p, hp, fp) }
= max {0, G(p, p, gp), G(p, p, hp), G(p, gp, hp) }
= G(p, gp, hp).
Thus

Y(G(p, gp, hp)) < (G (p, gp, hp)) — »(G(p, gp, hp)),

a contradiction. Similarly, when p # g(p) and p = h(p), or p # h(p) and p = g(p), we
arrive at a contradiction following a similar argument to that given above. Therefore in
all cases, we conclude that, f(p) = g(p) = h(p) = p. Hence, every fixed point of f is a
fixed point of g and h, and conversely. O

2.2. Corollary. Let f, g and h be self maps on a complete G-metric space X satisfying
(211)  (G(f"x, g™y, h"2)) < Y(M(z,y,2)) — (M (2,y,2)),
where Y € ¥, p € & and
M(z,y,z) = max {G(ac,y7 2),G(f"x,x,x), Gy, 9"y, y),G(z,2, K" 2),
Gz, "z, 9™y), Gy, 9"y, k™" 2), G(z, k™ z, f"z)}
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forall x,y,z € X and m € N. Then f. g and h have a unique common fixed point in
X. Moreover, any fized point of f is a fixed point of g and h, and conversely.

Proof. 1t follows from Theorem 2.1 that f™, ¢g"™ and A™ have a unique common fixed

point p. Now f(p) = f(f™(p)) = f"" (p) = f"(f(p)), 9(p) = 9(g™(p)) = g™ (p) =
9™ (9(p)) and h(p) = h(h™(p)) = h™*'(p) = K™ (h(p)) imply that f(p), g(p) and h(p)
are also fixed points for f, g™ and A". Hence f, g and h have a unique common fixed
point.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p).
If not then for the case when p # g(p) and p # h(p) we obtain

Y(G(p, gp, hp)) = V(G (f™p,g™ (gp),h™ (hp)))
< (M (p, gp, hp)) — (M (p, gp, hp)),

where
M (p, gp, hp) = max {G(p, gp, hp), G(f ™" p,p,p), G(9p, 9™ (9p), 9P),
G(hp, hp, k™ (hp)), G(p, f"p, 9™ (gp)),
G(gp, g™ (gp),h™ (hp)), G (hp, K™ (hp) , f"p)}
= max {G(p, gp, hp), G(p, p, p), G(gp, gp, gp), G(hp, hp, hp),
G(p,p,gp),G(gp, gp, hp), G(hp, hp,p) }
= G(p, gp, hp).
Thus

Y(G(p, gp, hp)) < (G (p, gp, hp)) — ©(G(p, gp, hp)),
which is a contradiction as ¢(G(p, gp, hp)) > 0. Similarly, when p # ¢g(p) and p = h(p),

or p # h(p) and p = g(p), we arrive at a contradiction by following a similar argument.
Therefore in all cases, we conclude that f(p) = g(p) = h(p) = p. Hence, every fixed point
of f is a fixed point of g and h, and conversely. a
2.3. Corollary. Let f, g and h be self maps on a complete G-metric space X satisfying
G(fz, gy, hz) < kmax{G(z,y,2),G(z,z, fz),G(y,y,9y),G (2, 2, hz),

G(z, fx,9y),G(y, gy, hz),G(z, hz, fr) }

for all x,y,z € X, where k € [0,1). Then f, g and h have a unique common fized point
in X. Moreover, any fized point of f is a fized point of g and h, and conversely.

(2.12)

Proof. Define ¢, : [0,00) — [0,00) by ¥(¢t) =t and ¢(t) = (1 — k)t for all ¢ € [0, c0),
where k € [0,1). Then it is clear that ¢y € ¥ and ¢ € ®. The result now follows from
Theorem 2.1. ]

2.4. Corollary. Let f, g and h be self maps on a complete G-metric space X satisfying

for all x,y,z € X, where ¢ € ¥, p € ®. Then f, g and h have a unique common fized
point in X. Moreover, any fixed point of f is a fized point of g and h, and conversely. O

2.5. Corollary. Let f. g and h be self maps on a complete G-metric space X satisfying

G(z,y,2)
2.14 hz) < ———=——~—
(2.14)  G(fz,9y,hz) < 5 TG .7)
for all x,y,z € X. Then f, g and h have a unique common fized point in X. Moreover,
any fixed point of f is a fixed point of g and h, and conversely.
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1
Proof. Define ¢, : [0,00) — [0,00) by ¥(t) =t and ¢(t) = T3 for all ¢ € [0, c0).
Then it is clear that ¢ € ¥ and ¢ € ®. The result now follows from Corollary 2.4. ]

2.6. Theorem. Let f, g and h be self maps on a complete G-metric space X satisfying

where Y € ¥, ¢ €  and
M("E7 y7 z) = ma‘X{G(:’r7 y7 Z)7 G(m7 f',I:7 f‘r)7 G(y7 gy7 gy)7 G(z7 hz7 hz)}
for all x,y,z € X. Then f, g and h have a unique common fized point in X. Moreover,

any fixed point of f is a fixed point of g and h, and conversely.

Proof. Suppose that zo is an arbitrary point in X. Define {zn} by Zznt1 = fan,
T3n+2 = GT3n+1, L3n+3 = NT3nt2. We suppose that G(Z3n, T3nt1, T3nt+2) > 0 for every
n. If not, then by similar arguments to those given in Theorem 2.1, we obtain that xs,
is the common fixed point of f, g and h.

Now, by taking G(x3n, Z3n+t1, T3nt2) > 0 for each n, and from (2.15), we have
Y(G(T3n41, Tant2, Tant3)) = V(G (f23n, 9T3n+1, hTsnt2))
<YM (230, T3n+1, T3nt2)) — (M (T30, T3n+1, T3nt2))
forn=0,1,2,..., where
M (z3n, 3n+1, T3n+2)
= max {G(T3n, T3nt1, Tant2), G(T3n, [T3n, [Tan),
G(Z3n+1, 9T3n+1, 9Z3n+1), G(T3n+2, hT3n+2, hx3n+2)}
= max {G(m3n, Z3n+1, T3n+2)s G(T3n, T3n+1, T3n+1),
G($3n+1, T3n+2, $3n+2), G(173n+2, T3n+3, $3n+3)}
< G(Z3n, T3nt1, T3n+2) < M(Z3n, T3nt1, Tant2).
Therefore, we must have
(G (T3n11, T3nt2, Zant3)) < Y(M (230, T3nt1, T3nt2)) — (M (T30, T3nt1, T3nt2))
< Y(M(z3n, Z3n+1, T3nt2))
= (G (x3n, Tant1, T3nt2)),
and since the control function v is nondecreasing, it follows that
G(x3n41, T3n+t2, T3nt+3) < M (230, T3nt1, T3nt2)
= G(Z3n, T3n+1, T3n+2).
Similarly, it can be shown that
G(x3n+2, T3n+3, Tanta) < M(Zan+1, Tant2, Tan+s)
= G(173n+1, T3n+2, 173n+3)
and
G(Z3n+3, T3n+4, T3n+5) < M(Z3n+2, T3n+3, T3n+4)
= G($3n+27 T3n+3, $3n+4)~

Therefore, for all n, G(n+1, Tnt2, Tnt3) < G(Tn, Tnt1,Tnt2) and {G(z3n+1, T3nt2,
Z3n+3)} IS a non increasing sequence and so there exists L > 0 such that

lim G($3n+1,$3n+2,$3n+3) = lim M(l’3n,$3n+1,$3n+2) = L.
n—o0 n— o0



Fixed and Related Fixed Point Theorems 301

Following similar arguments to those given in Theorem 2.1, we conclude that
(2.16) nli{rolo G(Z3n+1, T3nt2, Tants) = 0.

Now, we shall show that {z,} is a G-Cauchy sequence. It is sufficient to show that {zsn,}
is G-Cauchy in X. If not, there is ¢ > 0 and there exist integers 3n; and 3my with
3my > 3ng > k such that

(2.17)  G(z3ny, T3my > T3my,) > € and G(z3n,,, T3my —3, T3my—3) < E.
Now (2.16) and (2.17) imply that
e < G($3nk,1’3mk,x3mk)

(T3ng > T3my,—3, T3my—3) + G(T3mp,—3, T3my  T3my, )

IN N

G
G(Z3ny, , T3my,—3, T3my—3) + G(T3my,—3, T3mj,—1, T3mj,—1)

—+ G(flf3mk—1, mek 5 x3mk)

N

< G(Z3ny,, 3my—3, T3my—3) + G(X3my—1, T3my,—2, T3mj,—3)
+ G(X3my—1, T3my, s T3mp+1),
and hence
(2.18) lim G(mgnk,wgmk,xgmk) =E£.
k—oco
The inequalities
€ < G(@3ny, T3my,  T3my, )
< G(X3ny,, 3mp+15 T3mp+1) + G(T3mg+1, T3my, , 3my,)
< G(X3ny,, 3mp+15 T3mp+2) + G(T3my s T3mp+1, T3mp+2),

give that ¢ < klim G(3n,,, 3my+1, T3my+2), while (2.16), (2.18) and the inequality
— 00

G(Z3ny > T3my, +15 T3my,+2) < G(@3ny > T3my,» T3my, ) + G(T3my, , T3my +1, T3my +2)
yields klgrolo G(z3ny,, T3my+1, T3my+2) < € and hence
(2.19) lim G(m’gnk,wgmk+1,$3mk+2) =E£.
k—oo
Now from the definition of M and from (2.16) and (2.18), we have
M (23n,,; T3my+1, T3my+2)
= max {G(xBnk s T3mp+1, T3my+2); G(T3ny,, fT3n,, [T3n, ),
G(23my 41, 9T3my+1, 9T3my 1), G(T3my,+2, W 3my 12, BZ3m, +2) }
= max {G(.Tgnk y T3my+1, $3mk+2), G(m’gnk s L3ng+1, .TSnk-l»l)’
G(T3my,+1, T3mp+25 T3my, +2) G(T3my +25 T3my, +3, T3my,+3) }-
Thus

lim M (23n,, Z3m;+1, T3m,+2) = max{e,0,0,0} = ¢.
k—oo

From (2.15), we obtain
Y(G(T3ny,+1, T3mp+25 T3mp+3))
= Y(G(fran,, 9T3my+1, RT3my+2))
<YM (230, T3mp+1, T3mp+2)) — @(M (T30, T3my+1, T3mp+2))-

Taking the limit as £ — oo implies that

P(e) < Yle) — (o),
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which is a contradiction as ¢ > 0. Hence {x3,} is a G-Cauchy sequence. By the G-
completeness of X, there exists some u € X such that {z,} converges to u as n — co.
We claim that fu = u. If not, then consider

Y(G(fu, fu,z3n+3)) < Y(G(fu, 23n+2, Z3n+3))
= Y(G(fu, gT3n+1, hvsn2))
< M (u, Z3n4+1, Tant2) — @(M (U, T3n+1, Tant2)),
where
M (u, Z3n+1, T3nt+2) = max{G(u, T3n+1, T3n+2), G(u, fu, fu),
G(T3n+1, gT3n+1, gT3n+1), G(T3n+2, hT3nt2, hrsnt2)}
= max{G(u, T3n+1, T3nt+2), G(u, fu, fu),
G(£E3n+1,$3n+2, 173n+2), G($3n+2,$3n+3,$3n+3)}-
On taking the limit as n — oo we obtain that
Y(G(fu, fu,u)) < O(G(u, fu, fu)) — o(G(u, fu, fu))
<Y(G(fu, fu, u)),
a contradiction. Hence fu = w. Similarly it can be shown that gu = w and hu = u.

Now we prove the uniqueness of the common fixed point. If not, suppose that if v is
another common fixed point of f, g and h. Then

Y(G(u,v,0)) = P(G(fu, gv, hv)) < P(M(u,v,v)) — o(M(u,v,v)),
where
M (u, v,v) = max{G(u,v,v), G(u, fu, fu), G(v, gv, gv), G(v, hv, hv)}
= G(u,v,v).
Hence

1/)(G(u7 'U, 'U)) S 1/)(G(u7 U7 'U)) - SD(G(U7 U7 'U)),
a contradiction. Hence u is a unique common fixed point of f, g and h.

Now suppose that for some p in X we have f(p) = p. We claim that p = g(p) = h(p).
If not, then in case when p # g(p) and p # h(p) we obtain

Y(G(p, gp, hp)) = V(G (fp, gp, hp)) < (M (p,p,p)) — (M (p,p, p)),

where
M(p,p,p) = max{G(p,p,p), G(p, fp, fp), G(p, 9p, 9p), G(p, hp, hp) }
= max{0, G(p, gp, gp), G(p, hp, hp)}
< G(p,gp, hp).
Thus

»(G(p, gp, hp)) < Y(G(p, gp, hp)) — (G (p, gp, hp)),

a contradiction. Similarly, when p # g(p) and p = h(p), or p # h(p) and p = g(p), we
arrive at a contradiction by using a similar argument. Therefore in all cases, we conclude
that, f(p) = g(p) = h(p) = p. Hence, every fixed point of f is a fixed point of g and h,
and conversely. |
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2.7. Corollary. Let f. g and h be self maps on a complete G-metric space X satisfying
(220) 1/)(G(fm$7 gmy7 hmz)) < ¢(M($7 Y, Z)) - QO(M($7 Y, Z))7
where Y € ¥, ¢ €  and

M(z,y, z) = max {G(z,y,2),G(z, f"x, f"2), Gy, g™y, g"y), G(2,h" 2, K" 2)}

for all x,y,z € X. Then f, g and h have a unique common fized point in X. Moreover,
any fized point of f is a fixed point of g and h, and conversely.

Proof. 1t follows from Theorem 2.6 that f™, g”" and A™ have a unique common fixed

point p. Now f(p) = f(f"(p)) = f" " (p) = " (f(p)), 9(») = 9(g™ (1)) = g™ (p) =
9™ (g(p)) and h(p) = h(h™(p)) = h™*'(p) = A" (h(p)) imply that f(p), g(p) and h(p)
are also fixed points for f, g™ and h". Hence f, g and h have a unique common fixed
point.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p).
If not, then in the case where p # g(p) and p # h(p) we obtain

Y(G(p, gp, hp)) = V(G (f™p,g™ (gp),h™ (hp)))
< (M (p,gp, hp)) — (M (p, gp, hp)),

where
M (p, gp, hp) = max {G(p, gp, hp), G(p, f™p, f™p), G(gp, 9™ (9p), 4™ (9p)),
G(hp, k™ (hp) , k"™ (hp)) }
= max{G(p, gp, hp), G(p, p,p), G(9p, gp, 9p), G(hp, hp, hp) }
= G(p, gp, hp),
that is

»(G(p, gp, hp)) < P(G(p, gp, hp)) — (G (p, gp, hp)),

which is a contradiction. Similarly, when p # g(p) and p = h(p), or p # h(p) and p = ¢g(p),
we arrive at a contradiction following a similar argument to the above. Therefore, in all
cases we conclude that f(p) = g(p) = h(p) = p. Hence, every fixed point of f is a fixed
point of g and h, and conversely. |

2.8. Corollary. Let f, g and h be self maps on a complete G-metric space X satisfying
(2.21)  G(f=, gy, hz) < Nmax{G(z,y,2),G(z, fz, f), G(y, 9y, 9y), G(z, hz, hz)),

for all x,y,z € X, where X\ € [0,1). Then f, g and h have a unique common fized point
in X. Moreover, any fixed point of f is a fized point of g and h, and conversely.

Proof. Define ¢, : [0,00) — [0,00) by () = t and ¢(t) = (1 — \)t for all ¢ € [0, c0),
where A € [0,1). Then it is clear that ¢ € U and ¢ € ®. The result now follows from
Theorem 2.6. g

2.9. Example. Let X = [0,1] and G(z,y,2) = max{|z —yl|,|y — 2|, |z — z|} be a G-
metric on X. Define f,g,h: X — X by

for z € [0, 1),

[\]

for z € [5,1],

By
—
8
N
Il
—_——

SIEEIERCTE TR

for z € [0, 1),

<Q
—~
8]
-
I
—_——

for z € [3,1],
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and
% for z € [0, 1),
h(x) =Nz i
3 for z € [3,1].
Note that f, g and h are discontinuous maps. And also h(l) _ L #+ 1 _
1’9 . ps: MG)TRT R T
and fh(ﬁ) = — ;é ﬁ = ]“(5)7 which shows that f, g and h do not commute.

We take 1/)( ) =t and ¢(t) = 15t for t € [0,00), so that
V(M (z,y,2)) — o(M(z,y,2)) = 75 M(z,y, 2).
For z,y,z € [0, 1),
G(z, fr, fz) = 4, Gy, 9y, 9y) = & and G(z,hz, hz) = .

Since,
M(z,y,z) = max{G(z,y, 2),G(z, fz, fx),G(y, 9y, 9y), G (2, hz, hz)}
= max { max{|z —y[, |y — 2|, |z — z[}, 55, &, T},
so that
G(fguhe) = ma{ |~ £ [£ = 31,15 - 51}
= dmax (| - %12 21|~ 1]}
< 15 max { max{|z —y[, |y — 2|, [z — 2[}, 55, &, %
= 5 M(z,y,2)
=¥ (M(z,y,2)) — p(M(z,y,2)).
For x,y,2 € [%,1]7
G(z, fz, fr) = 8, G(y,gy,9y) = % and G(z, hz, hz) = £,
so that
M(z,y,z) = max{G(z,y,2),G(z, fz, fx), G(y, 9y, 9y), G(2, hz, hz)}
= max { max{|z —y|, |y — 2|, [z — @[}, %, & F
Now

G(fx, gy, hz) = max{[§ — §|.|§ — 3], [5 - 5}
gmax {[3 = §|.[§—=[, |2 - 5|}
2 max { max{|z —y|,|y — 2|, |z — m|},%’”,%y,%z
= 5 M(z,y,2)
=y (M(z,y,2)) — p(M(z,y,2)).
Now for z € [0,1). y,z € [1,1].
G(z, fz, fz) = 22, G(y,gy,9y) = 5—y and G(z, hz, hz) = 22,

I A

so that

M(z,y, z) = max{G(z,y, 2), G(z, fz, fz),G(y, 9y, 9y), G(z, hz, hz)}

2|}, Uz 5y 2

= max { max{|z —y|, |y — 2|, |z — [}, 53, %, &

hg(

1
2

)
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Now

G(fz,9y,hz) = max { |55 — ¢[,[§ = 5[.15 - &}
=gmax {5 —%[,[§ —2[ .| - 5[}
< 2 max { max{|z —y|, |y — 2|, |z — x|}, L&, 3L 2=
= 5 M(z,y,2)

¢ (M('T7 Y, Z)) - (p(M(JZ, Y, Z))

The remaining cases are follow similarly as above. So the axioms of Theorem 2.6 are
satisfied, and 0 is the unique common fixed point of f, g and h. Moreover, each fixed
point of f is a fixed point of g and h, and conversely.

2.10. Remark. The following results can be viewed as special cases of our results.

(a) Theorem 2.1 generalizes Theorem 2.1 and Theorem 2.3 of [9]; and Theorem 3.1,
Corollary 3.3, Corollary 3.4 and Corollary 3.5 of [15] into three maps.

(b) Corollary 2.5 generalizes Corollary 3.5 of [15] into three maps.

(¢) Theorem 2.6 generalizes Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.5,
Corollary 2.6, Corollary 2.7 and Corollary2.8 of [11].

(d) Corollary 2.8 generalizes Corollary 3.4 of [15] into three maps.
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