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Abstract

In this study, we employ the fixed point theorem of Krasnoselskii and
the concepts of separate and large contractions to show the existence
of a periodic solution of a highly nonlinear delay differential equation.
Also, we give a classification theorem providing sufficient conditions for
an operator to be a large contraction, and hence, a separate contraction.
Finally, under slightly different conditions, we obtain the existence of
a positive periodic solution.
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1. Introduction

In this paper, we use Krasnoselskii’s fixed point theorem and show the highly nonlinear
delay differential equation

(1.1) x′(t) = −a(t)h(x(t)) +G(t, x(t− r(t)))

has a non-zero periodic solution and a positive periodic solution.
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To show existence of the non-zero periodic solution for Eq. (1.1), throughout the
paper we assume that

G(t, 0) 6= a(t)h(0) for some t ∈ R.

On the other hand, since we are dealing with periodic solutions of Eq. (1.1), it is natural
to ask that all functions be continuous on their respective domains and that for a least
positive real number T , we have

(1.2) a(t+ T ) = a(t), r(t+ T ) = r(t), G(t, ·) = G(t+ T, ·).
Since the equation (1.1) is totally nonlinear, to convert it into an integral equation
problem, we will have to add and subtract a linear term. This process destroys the
traditional contraction property for one of the mappings that is necessary for the use
of Krasnoselskii’s theorem. But the process replaces it with what is called a “large
contraction”. For more on the existence of periodic solutions we refer the reader to
[1, 2, 3, 6], and the references therein. Next we state Krasnoselskii’s fixed point theorem.
For its proof we refer the reader to [8].

1.1. Theorem. [Krasnoselskĭı] Let M be a bounded convex nonempty subset of a Banach
space (B, ‖ · ‖). Suppose that A and B map M into B such that

i. x, y ∈ M, implies Ax+By ∈ M,
ii. A is compact and continuous,
iii. B is a contraction mapping.

Then there exists z ∈ M with z = Az +Bz. �

Concerning the terminology of compact mappings used in this theorem, we mean the
following. Let A be a mapping from a set M into a topological space X. If A(M) is
contained in a compact subset of X, we say that A is compact.

In [4], Liu and Li reformulated the theorem of Krasnoselskii by replacing the contrac-
tion with what they called a separate contraction, which we define below.

1.2. Definition. [4, Definition 1.2] Let (M, d) be a metric space and B : M → M. B is
said to be a separate contraction if there exists two functions ϕ, φ : R+ → R+ satisfying

i. φ(0) = 0, φ is strictly increasing,
ii. d(B(x),B(y)) ≤ ϕ(d(x, y)),
iii. φ(r) ≤ r − ϕ(r) for r > 0.

One may easily verify that every contraction mapping is a separate contraction map-
ping. Next, we define another kind of contraction mapping called a large contraction.

1.3. Definition. Let (M, d) be a metric space and B : M → M. B is said to be a large
contraction if for φ, ϕ ∈ M with φ 6= ϕ we have d(Bφ,Bϕ) ≤ d(φ, ϕ) and if for all ε > 0,
there exists a δ < 1 such that

[φ, ϕ ∈ M, d(φ,ϕ) ≥ ε] ⇒ d(Bφ,Bϕ) ≤ δd(φ,ϕ).

The following lemma provides a relationship between the classes of separate and large
contraction mappings.

1.4. Lemma. [4, Lemma 1.1] If B is a large contraction mapping then B is a separate
contraction mapping. �

It should be noted that the converse of the statement in Lemma 1.4 is not true in
general (see [5, Example 4.3]).

The next theorem requires a separate contraction instead of a contraction.
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1.5. Theorem. [4, Theorem 2.3] Let M be a bounded convex nonempty subset of a
Banach space (B, ‖ · ‖). Suppose that A and B map M into B such that

i. x, y ∈ M, implies Ax+By ∈ M,
ii. A is continuous and compact,
iii. B is a separate contraction mapping.

Then there exists z ∈ M with z = Az +Bz. �

Hence, the next result can be derived as an application of Lemma 1.4 and Theorem 1.5.

1.6. Theorem. Let M be a bounded convex nonempty subset of a Banach space (B, ‖ · ‖).
Suppose that A and B map M into B such that

i. x, y ∈ M implies Ax+By ∈ M,
ii. A is continuous and compact,
iii. B is a large contraction mapping.

Then there exists z ∈ M with z = Az +Bz. �

In the present paper we employ Theorem 1.6 which involves a large contraction to
study the existence of periodic and positive periodic solutions of (1.1).

2. Existence of periodic solutions

Define PT = {ϕ ∈ C(R,R) : ϕ(t + T ) = ϕ(t)}, where C(R,R) is the space of all real
valued continuous functions on R. Then PT is a Banach space when endowed with the
supremum norm

‖x‖ = sup
t∈[0,T ]

|x(t)| = sup
t∈R

|x(t)|.

The next Lemma is essential for the construction of our mapping that is required for the
application of Theorem 1.6. To have a well behaved mapping we must assume that

(2.1)

∫ T

0

a(s)ds 6= 0.

Let the mapping H be defined by

(2.2) H(x(u)) = x(u)− h(x(u)),

where the function h is as in Eq. (1.1).

2.1. Lemma. If x ∈ PT , then x(t) is a solution of equation (1.1) if and only if

(2.3) x(t) =

∫ t+T

t

e−
∫ t+T
u a(s) ds

1− e−
∫
T
0

a(s) ds
(a(u)H(x(u)) +G(u, x(u− r(u)))) du.

Proof. Let x ∈ PT be a solution of (1.1). We rewrite (1.1) in the form

x′(t) + a(t)x(t) = a(t)H(x(u)) +G(t, x(t− r(t))).

Next we multiply both sides of the resulting equation with e
∫ t
0
a(s) ds, and then integrate

from t to t+ T to obtain

x(t+ T )e
∫ t+T
0

a(s)ds − x(t)e
∫ t
0
a(s) ds

=

∫ t+T

t

(a(u)H(x(u)) +G(u, x(u− r(u))) e
∫u
0

a(s) ds du.

Using the fact that x(t + T ) = x(t) and e
∫ t+T
t a(s) ds = e

∫ T
0

a(s) ds, the above expression
can be put in the form of Eq. (2.3). One may verify that x(t) given by (2.3) satisfies
Eq. (1.1). This completes the proof. �
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First we note that for t ∈ [0, T ] and u ∈ [t, t+ T ] we have

(2.4)
e−

∫ t+T
u a(s)ds

1− e−
∫ T
0

a(s)ds
≤ e

∫
2T
0

|a(s)|ds

|1− e−
∫ T
0

a(s)ds|
:= M.

Let J be a positive constant. Define the set

(2.5) MJ = {ϕ ∈ PT : ||ϕ|| ≤ J}.
Obviously, the set MJ is a bounded and convex subset of the Banach space PT . Let the
mapping A : MJ → PT be defined by

(2.6) (Aϕ)(t) =

∫ t+T

t

e−
∫ t+T
u a(s) ds

1− e−
∫ T
0

a(s)ds
G(u, ϕ(u− r(u))) du, t ∈ R.

Similarly we define the mapping B : MJ → PT by

(2.7) (Bψ)(t) =

∫ t+T

t

e−
∫ t+T
u a(s) ds

1− e−
∫ T
0

a(s)ds
a(u)H(ψ(u)) du, t ∈ R.

It is clear from (2.6) and (2.7) that Aϕ and Bψ are T -periodic in t.

2.2. Lemma. Suppose there exists a function ξ ∈ PT such that

(2.8) |G(t, ϕ(t− r(t)))| ≤ ξ(t) for all t ∈ R and ϕ ∈ MJ .

Then the mapping A, defined by (2.6), is continuous in ϕ ∈ MJ .

Proof. To see that A is a continuous mapping, let {ϕi}i∈N be a sequence of functions
in MJ such that ϕi → ϕ as i → ∞. By (2.4), (2.8), and the the continuity of G, the
Dominated Convergence theorem yields

lim
i→∞

‖Aϕi −Aϕ‖ ≤M lim
i→∞

∫ T

0

∣

∣G(u, ϕi(u− r(u)))−G(u, ϕ(u− r(u)))
∣

∣ du

≤M

∫ T

0

lim
i→∞

∣

∣G(u, ϕj(u− r(u)))−G(u, ϕ(u− r(u)))
∣

∣ du

= 0.

This shows the continuity of the mapping A. �

In the next example, we display such a function satisfying (2.8).

2.3. Example. If we assume that G(t, x) satisfies the Lipschitz condition in x, i.e., there
is a positive constant k such that

(2.9) |G(t, z)−G(t, w)| ≤ k‖z − w‖, for z, w ∈ PT ,

then for ϕ ∈ MJ we obtain the following

|G(t, ϕ(t− r(t)))| = |G(t, ϕ(t− r(t)))−G(t, 0) +G(t, 0)|
≤ |G(t, ϕ(t− r(t)))−G(t, 0)|+ |G(t, 0)|
≤ kJ + |G(t, 0)|.

In this case we may choose ξ as

(2.10) ξ(t) = kJ + |G(t, 0)| .
Another possible ξ satisfying (2.8) is the following

(2.11) ξ(t) = |g(t)|+ |p(t)| |y(t)|n ,
where n = 1, 2, . . ., g and p are continuous functions on R, and y ∈ MJ .
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2.4. Remark. Condition (2.9) is strong since it requires the function G to be globally
Lipschitz. A lesser condition is (2.8) in which ξ can be directly chosen as in (2.10) or
(2.11).

In the next two results we assume that for all t ∈ R and ψ ∈ MJ ,

(2.12) η

∫ t+T

t

[|a(u)||H(ψ(u))|+ ξ(t)] e−
∫ t+T
u a(s) ds du ≤ J,

where J and ξ are defined by (2.5) and (2.8), respectively, and

(2.13) η :=
∣

∣

∣(1− e−
∫ T
0

a(s)ds)−1
∣

∣

∣ .

2.5. Lemma. Suppose (2.8) and (2.12). Then A is continuous in ϕ ∈ MJ and maps MJ

into a compact subset of MJ .

Proof. Let ϕ ∈ MJ . Continuity of A for ϕ ∈ MJ follows from Lemma 2.2. Now, by (2.8)
and (2.12) we have |(Aϕ)(t)| < J . Thus, Aϕ ∈ MJ . Let ϕi ∈ MJ , i = 1, 2, . . .. Then
from the above discussion we conclude that

||Aϕi|| ≤ J, i = 1, 2, . . . .

This shows A(MJ) is uniformly bounded. It remins to show thatA(MJ) is equicontinuous.
Since ξ is continuous and T -periodic, (2.8) and the differentiation of (2.6) with respect
to t yield

∣

∣(Aϕj)
′(t)

∣

∣ = |G(t, ϕj(t− r(t)))− a(t)(Aϕi)(t)|
≤ ξ(t) + |a(t)||(Aϕi)(t)|
≤ ξ(t) + ||a|| ||Aϕi|| ≤ L,

for some positive constant L. Thus the estimation on |(Aϕi)
′(t)| implies that A(MJ) is

equicontinuous. Then the Arzela–Ascoli theorem yields the compactness of the mapping
A. The proof is complete. �

2.6. Theorem. Suppose (2.8) and (2.12). If B is a large contraction on MJ , then (1.1)
has a periodic solution in MJ .

Proof. Let A and B be defined by (2.6) and (2.7), respectively. By Lemma 2.5, the
mapping A is compact and continuous. Then using (2.12) and the periodicity of A and
B, we have

Aϕ+Bψ : MJ → MJ

for ϕ,ψ ∈ MJ . Hence an application of Theorem 1.6 implies the existence of a periodic
solution in MJ . This completes the proof. �

The next result shows the relationship between the mappings H and B in the sense
of large contractions.

2.7. Lemma. Let a be a positive valued function. If H is a large contraction on MJ ,
then so is the mapping B.
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Proof. If H is large contraction on MJ , then for x, y ∈ MJ , with x 6= y, we have ||Hx−
Hy|| ≤ ||x− y||. Hence,

|Bx(t)−By(t)| ≤
∫ t+T

t

e−
∫ t+T
u a(s) ds

1− e−
∫ T
0

a(s) ds
a(u)|H(x)(u)−H(y)(u)|du

≤ ||x− y||
1− e−

∫ T
0

a(s)ds

∫ t+T

t

e−
∫ t+T
u a(s) dsa(u) du

= ||x− y||.

Taking the supremum over the set [0, T ], we get that ‖Bx−By‖ ≤ ||x − y||. One may
also show in a similar way that

‖Bx−By‖ ≤ δ||x− y||

holds if we know the existence of a 0 < δ < 1 such that for all ε > 0,

[x, y ∈ MJ , ||x− y|| ≥ ε] =⇒ ||Hx−Hy|| ≤ δ||x − y||.

The proof is complete. �

From Theorem 2.6 and Lemma 2.7, we deduce the following result.

2.8. Corollary. In addition to the assumptions of Theorem 2.6, suppose also that a is
a positive valued function. If H is a large contraction on MJ , then (1.1) has a periodic
solution in MJ . �

3. Examples and a classification

It was shown in [1, Example 1.2.7] that if h (u) = u3, then the mapping H in (2.2)
defines a large contraction on the set

M√
3/3 =

{

φ : [0,∞) → R continuous and ‖φ‖ ≤
√
3/3

}

.

In this section, we give two additional examples to show that different types of functions
can be chosen in order for the mapping H to be a large contraction, and hence, a separate
contraction (see Lemma 1.4). Moreover, we state a theorem classifying the functions h
so that the mapping H given by (2.2) is a large contraction on a given set.

First, we begin with the case h(u) = u5.

3.1. Example. Let ‖·‖ denote the supremum norm. If

M5−1/4 =
{

φ : φ ∈ C(R,R) and ‖φ‖ ≤ 5−1/4},

and h(u) = u5, then the mapping H defined by (2.2) is a large contraction on the set
M5−1/4 .

Proof. For any reals a and b we have

0 ≤ (a+ b)4 = a4 + b4 + ab(4a2 + 6ab+ 4b2),

and therefore,

−ab(a2 + ab+ b2) ≤ a4 + b4

4
+
a2b2

2
≤ a4 + b4

2
.
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If x, y ∈ M5−1/4 with x 6= y then [x(t)]4 + [y(t)]4 < 1. Hence, we arrive at

|H(u)−H(v)| ≤ |u− v|
∣

∣

∣

∣

1−
(

u5 − v5

u− v

)∣

∣

∣

∣

= |u− v|
[

1− u4 − v4 − uv(u2 + uv + v2)
]

≤ |u− v|
[

1−
(

u4 + v4
)

2

]

≤ |u− v| ,(3.1)

where we used the notations u = x(t) and v = y(t). Now, we are ready to show that
H is a large contraction on M5−1/4 . For a given ε ∈ (0, 1), suppose x, y ∈ M5−1/4 with
‖x− y‖ ≥ ε. There are two cases:

(a) ε
2
≤ |x(t)− y(t)| for some t ∈ R, and (b) |x(t)− y(t)| ≤ ε

2
for some t ∈ R.

In case (a) we have

(ε/2)4 ≤ |x(t)− y(t)|4 ≤ 8(x(t)4 + y(t)4),

so

x(t)4 + y(t)4 ≥ ε4

27
.

For all such t, we get by (3.1) that

|H(x(t))−H(y(t))| ≤ |x(t)− y(t)|
(

1− ε4

28

)

.

On the other hand in case (b) we find by using (3.1) that

|H(x(t))−H(y(t))| ≤ |x(t)− y(t)| ≤ 1

2
‖x− y‖ .

Hence, in both cases we have

|H(x(t))−H(y(t))| ≤ max

{

1− ε4

28
,
1

2

}

‖x− y‖ .

Thus, H is a large contraction on the set M5−1/4 with δ = max
{

1− ε4

27
, 1
2

}

. The proof

is complete. �

Next, we make use of Example 3.1 and Corollary 2.8 to show that

(3.2) 4(5−5/4) + η

∫ t+T

t

(

5−5/4|b(u)|+ |c(u)|
)

e−
∫ t+T
u a(s) ds du ≤ 5−1/4

is the condition guaranteeing that the totally nonlinear delay differential equation

(3.3) x′(t) = −a(t)x(t)5 + b(t)x(t− r(t))5 + c(t)

has a T -periodic solution, where η is as in (2.13) and c ( 6= 0) ∈ PT .

3.2. Example. Suppose that a, b, and c ( 6= 0) are in PT and that a(t) > 0 for all t. If
(3.2) holds for all t ∈ R, then Eq. (3.3) has a T -periodic solution in M5−1/4 .

Proof. Let

G(u, ψ(u− r(u))) = b(u)ψ(u− r(u))5 + c(u)

and

h (ψ(u)) = ψ(u)5.
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Define the mapping B as in (2.7). For x ∈ M5−1/4 , we have

|x(t)|5 ≤ 5−5/4,

and therefore,

(3.4)
G(u, x(u− r(u))) = b(u)x(u− r(u))5 + c(u)

≤ 5−5/4|b(u)|+ |c(u)| .

This is (2.8) with ξ(u) = 5−5/4|b(u)|+ |c(u)|. Since a(t) > 0 and

|H(x(t))| = |x(t)− x(t)5| ≤ 4(5−5/4) for all x ∈ M,

(3.2) implies

η

∫ t+T

t

[|a(u)| |H(x(u))|+ ξ(t)] e−
∫ t+T
u a(s) ds du

≤ 4(5−5/4)

1− e−
∫
T
0

a(s)ds

∫ t+T

t

a(u)e−
∫ t+T
u a(s) ds du+ η

∫ t+T

t

ξ(t)e−
∫ t+T
u a(s) ds du

= 4(5−5/4) + η

∫ t+T

t

ξ(u)e−
∫ t+T
u a(s) ds du

≤ 5−1/4.

Thus, (2.12) is satisfied. The proof is completed by making use of Corollary 2.8. �

3.3. Example. In addition to the assumptions of Example 3.2, suppose also that there
is a positive constant L such that

(3.5) L
{

5−5/4|b(u)|+ |c(u)|
}

≤ a(u), for all u ∈ R

and

(3.6) 4(5−5/4) +
1

L
≤ 5−1/4.

Then (3.3) has a periodic solution in M5−1/4 .

Proof. Let ξ be defined by ξ(u) = 5−5/4|b(u)|+ |c(u)|. Combining (3.4)-(3.6), we find

4(5−5/4) + η

∫ t+T

t

ξ(u)e−
∫ t+T
u a(s) ds du

≤ 4(5−5/4) +
η

L

∫ t+T

t

a(u)e−
∫ t+T
u a(s) ds du

≤ 4(5−5/4) +
1

L
≤ 5−1/4.

That is, (3.2) holds. The proof follows from the result of Example 3.2. �

By Example 3.1, we observe that the properties of the function h in (2.2) play a
substantial role in obtaining a large contraction H on a convenient set.

Let α ∈ (0, 1] be a fixed real number. Define the set Mα by

(3.7) Mα = {φ : φ ∈ C(R,R) and ‖φ‖ ≤ α} .
We deduce by the next theorem that the following are sufficient conditions implying that
the mapping H given by (2.2) is a large contraction on the set Mα.

H.1. h : R → R is continuous on [−α, α] and differentiable on (−α, α),
H.2. The function h is strictly increasing on [−α, α],
H.3. sup

t∈(−α,α)

h′(t) ≤ 1.
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3.4. Theorem. Let h : R → R be a function satisfying (H.1–H.3). Then the mapping
H in (2.2) is a large contraction on the set Mα.

Proof. Let φ, ϕ ∈ Mα with φ 6= ϕ. Then φ(t) 6= ϕ(t) for some t ∈ R. Let us denote the
set of all such t by D(φ, ϕ), i.e.,

D(φ, ϕ) = {t ∈ R : φ(t) 6= ϕ(t)} .
For all t ∈ D(φ, ϕ), we have

|Hφ(t)−Hϕ(t)| = |φ(t)− h(φ(t))− ϕ(t) + h(ϕ(t))|

= |φ(t)− ϕ(t)|
∣

∣

∣

∣

1−
(

h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)

)∣

∣

∣

∣

.(3.8)

Since h is a strictly increasing function we have

(3.9)
h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)
> 0 for all t ∈ D(φ, ϕ).

For each fixed t ∈ D(φ, ϕ) define the interval Ut ⊂ [−α, α] by

Ut =

{

(ϕ(t), φ(t)) if φ(t) > ϕ(t),

(φ(t), ϕ(t)) if φ(t) < ϕ(t).

The Mean Value Theorem implies that for each fixed t ∈ D(φ, ϕ) there exists a real
number ct ∈ Ut such that

h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)
= h′(ct).

By (H.2–H.3) we have

(3.10) 0 ≤ inf
u∈(−α,α)

h′(u) ≤ inf
u∈Ut

h′(u) ≤ h′(ct) ≤ sup
u∈Ut

h′(u) ≤ sup
u∈(−α,α)

h′(u) ≤ 1.

Hence, by (3.8–3.10) we obtain

(3.11) |Hφ(t)−Hϕ(t)| ≤
∣

∣

∣

∣

1− inf
u∈(−α,α)

h′(u)

∣

∣

∣

∣

|φ(t)− ϕ(t)| .

for all t ∈ D(φ, ϕ). This implies a large contraction in the supremum norm. To see this,
choose a fixed ε ∈ (0, 1) and assume that φ and ϕ are two functions in Mα satisfying

ε ≤ sup
t∈D(φ,ϕ)

|φ(t)− ϕ(t)| = ‖φ− ϕ‖ .

If |φ(t)− ϕ(t)| ≤ ε
2
for some t ∈ D(φ, ϕ), then we get by (3.10) and (3.11) that

(3.12) |H(φ(t))−H(ϕ(t))| ≤ |φ(t)− ϕ(t)| ≤ 1

2
‖φ− ϕ‖ .

Since h is continuous and strictly increasing, the function h
(

u+ ε
2

)

− h(u) attains its
minimum on the closed and bounded interval [−α, α]. Thus, if ε

2
< |φ(t)− ϕ(t)| for some

t ∈ D(φ, ϕ), then by (H.2) and (H.3) we conclude that

1 ≥ h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)
> λ,

where

λ :=
1

2α
min {h(u+ ε/2)− h(u) : u ∈ [−α, α]} > 0.

Hence, (3.8) implies

(3.13) |Hφ(t)−Hϕ(t)| ≤ (1− λ) ‖φ(t)− ϕ(t)‖ .
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Consequently, combining (3.12) and (3.13) we obtain

|Hφ(t)−Hϕ(t)| ≤ δ ‖φ− ϕ‖ ,
where

δ = max

{

1

2
, 1− λ

}

< 1.

The proof is complete. �

3.5. Example. Let α ∈ (0, 1) and k ∈ {1, 2, . . .} be two constants.

i. The function h1(u) =
1
2k
u2k, u ∈ (−1, 1), does not satisfy the condition (H.2).

ii. The function h2(u) =
1

2k+1
u2k+1, u ∈ (−1, 1), satisfies (H.1–H.3).

Proof. Since h′
1(u) = u2k−1 < 0 for −1 < u < 0, the condition (H.2) is not satisfied for h1.

Evidently, (H.1–H.2) hold for h2. Finally, (H.3) follows from the fact that h′
2(u) ≤ α2k

and α ∈ (0, 1). �

3.6. Example. Let the function h be defined by h(u) = 2u−1, u ∈ [−1, 1]. One may
easily verify the conditions (H.1–H.3). Define the set

M1 = {φ : φ ∈ C(R,R) and ‖φ‖ ≤ 1} .
By Theorem 3.4, the mapping Hx = x− h ◦ x defines a large contraction on the set M1.
As in Example 3.2, one may show that

η

∫ t+T

t

{|b(u)|+ |c(u)|} exp
(

−
∫ t+T

u

a(s) ds

)

du ≤ 1

is the condition guaranteeing the existence of a non-zero periodic solution of the nonlinear
delay differential equation

x′(t) = −a(t)2x(t)−1 + b(t)2x(t−r(t))−1 + c(t), t ∈ R,

where a, b, and c are T -periodic continuous functions with a 6= b, a(t) > 0, and c 6= 0.

4. Positive periodic solutions

This section is concerned with the existence of a positive periodic solution of (1.1).
Again, we arrive at our result by using Theorem 1.6. Since we are looking for the
existence of positive periodic solutions, some of the conditions in previous sections will
have to be modified accordingly. Theorem 1.6 was first used in [7] by Raffoul to show the
existence of positive periodic solutions of neutral differential equations with functional
delay, where the notion of contraction instead of large contraction is used. However,
our problem which is given by (1.1), is totally nonlinear and the mapping B is a large
contraction. We begin with the modification of (2.1) and ask that,

(4.1)

∫ T

0

a(s) ds > 0.

For the sake of simplicity, we let

(4.2) M =
e
∫
2T
0

|a(s)|ds

1− e−
∫
T
0

a(s)ds
,

and

(4.3) m =
e−

∫
2T
0

|a(s)|ds

1− e−
∫
T
0

a(s)ds
.



Totally Nonlinear Delay Differential Equations 11

It is easy to see that for all (t, s) ∈ [0, 2T ]× [0, 2T ],

m ≤ e−
∫ t+T
u a(s)ds

1− e−
∫
T
0

a(s)ds
≤M.

For some non-negative constant L and a positive constant K we define the set

Q = {φ ∈ PT : L ≤ φ(t) ≤ K for all t ∈ [0, T ]},
which is a closed, convex, and bounded subset of the Banach space PT . In addition we
assume that for all u ∈ R, x ∈ Q,

(4.4)
L

mT
≤ G(u, (u)) + a(u)(x(u)− h(x(u))) ≤ K

MT
,

whereM and m are defined by (4.2) and (4.3), respectively. If we assume G(t, x) satisfies
(2.8), then the continuity and compactness of A can be easily shown, as before.

4.1. Theorem. Suppose (2.8), (2.12), (4.1), and (4.4) hold. If B is a large contraction
on Q, then (1.1) has a positive periodic solution in the set Q.

Proof. We proceed by Theorem 1.6. Let A and B be defined by (2.6) and (2.7), respec-
tively. The conditions (2.8) and (2.12) guarantee the continuity and compactness of A.
Let the constants M and m be defined by (4.2) and (4.3), respectively. We get by (4.1)
and (4.4) that

(Bψ)(t) + (Aϕ)(t) =

∫ t+T

t

γ(t, u)
[

a(u)H(ψ(u)) +G(u, ϕ(u− r(u)))
]

du

≤ TM
K

TM
= K,

and

(Bψ)(t) + (Aϕ)(t) =

∫ t+T

t

γ(t, u)
[

a(u)H(ψ(u)) +G(u, ϕ(u− r(u)))
]

du

≥ Tm
L

Tm
= L,

for ψ,ϕ ∈ Q, where

γ(t, u) = e−
∫ t+T
u a(s) ds

(

1− e−
∫ T
0

a(s) ds
)−1

.

This shows that Bψ + Aϕ ∈ Q. All the hypothesis of Theorem 1.6 are satisfied and
therefore equation (1.1) has a positive periodic solution, say z residing in Q. The proof
is complete. �

4.2. Example. In the following five steps we will construct an example so that the
assumptions of Theorem 4.1 hold.

Step 1. Let the function a be defined by

(4.5) a(t) = 11− 10

{

sin

(

π
12

ln(3/2)
t

)}2

.

It is obvious that the function a is T -periodic with

(4.6) T =
1

6
ln(3/2)

and satisfies the following inequality

(4.7) 1 ≤ a(t) ≤ 11.
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Furthermore, we have
∫ T

0

a(t) dt = ln(3/2) > 0.

This shows that condition (4.1) holds.

Step 2. Let

C(u, x(u)) := G(u, x(u− r(u))) + a(u)H(x(u)),

where

(4.8) G(u, x(u)) = −a(u)x(u) + 3

2
a(u)h(x(u)) + x(u− r(u)) + 3.

For all x ∈ Q, we have

G(u+ T, ·) = G(u, ·),
i.e., (1.2) holds.

Step 3. Let K = 11 and L = 1 to define the set

Q := {φ ∈ PT : 1 ≤ φ(u) ≤ 11 for all t ∈ [0, T ]} ,
where T is as in (4.6). Evidently, a ∈ Q. To see that the condition (4.4) holds we need
to calculate

M =
exp

(

∫ 2T

0
a(t) dt

)

1− exp
(

−
∫ T

0
a(t) dt

)

and

m =
exp

(

−
∫ 2T

0
a(t)dt

)

1− exp
(

−
∫ T

0
a(t) dt

) .

Step 4. Using Maple 6.0 we approximate the numbers m, M , L/mT and K/MT as
follows:

M = 6.75000, m = 1.33333,
L

mT
= 3.70674,

K

MT
= 22.81481.

Setting

(4.9) h(t) =
1

10

1

124
t5,

we conclude that

(4.10)
1

103680
≤ h(t) ≤ 161051

103680

for all t ∈ [1, 11]. Since 1 ≤ x(u) ≤ 11 for all x ∈ Q we have

L

mT
= 3.706674 ≤ C(u, x) =

a(u)h(x(u))

2
+ x(u− r(u)) + 3 ≤ K

MT
= 22.81481.

This means the condition (4.4) holds.

Step 5. As in the proof of Example 3.5, one may show that h satisfies (H.1–H.4).
Theorem 3.4 implies that the operator Hx = x−h◦x is a large contraction on the set Q.
Since the function a is positive valued, from Lemma 2.7 the operator B given by (2.7)
defines a large contraction on the set Q. By (4.5)–(4.10), one may also verify that (2.8)
and (2.12) hold. Therefore, Theorem 4.1 implies that the equation

x′(t) = −a(t)h(x(t))+G(t, x(t−r(t))) = 1

2
a(t)h(x(t))−a(t)x(t)+x(t−r(t))+3
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has a periodic solution in the set Q, where a and h are defined by (4.5) and (4.9),
respectively.
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