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Received 29 : 01 : 2010 : Accepted 08 : 08 : 2011

Abstract

In this paper, the generating matrix function and recurrence relations
for Chebyshev matrix polynomials of the second kind are obtained.
Several families of bilinear and bilateral generating matrix functions
for Chebyshev matrix polynomials of the second kind are derived.
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1. Introduction

There has been significant development in the study of orthogonal matrix polynomials.
For example, some results in the theory of classical orthogonal polynomials have been
extended to orthogonal matrix polynomials, see [3, 4, 7, 8, 9, 10, 11, 13, 15]. Jacobi
matrix polynomials, Chebyshev matrix polynomials of the first and second kind have
been introduced and studied in [2, 5, 12] for matrices in C

N×N . Our main aim in this
paper is to prove new properties for Chebyshev matrix polynomials of the second kind.
The outline of this paper is as follows. In section 2, we demonstrate some properties of
the Chebyshev matrix polynomials of the second kind. We derive bilinear and bilateral
generating matrix functions for Chebyshev matrix polynomials of the second kind in
section 3.

Throughout this paper, for a matrix A in C
N×N , its spectrum σ(A) denotes the set

of all eigenvalues of A. The two-norm of A, which will be denoted by ‖A‖, is defined by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2

,
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where, for a vector y ∈ C
N , ‖y‖2 =

(

yT y
)1/2

is the Euclidean norm of y. If f(z) and
g(z) are holomorphic functions of the complex variable z, which are defined in an open
set Ω of the complex plane and A is a matrix in C

N×N with σ(A) ⊂ Ω, then from the
properties of the matrix functional calculus in [6], it follows that:

f(A)g(A) = g(A)f(A).

Hence, if B ∈ C
N×N is a matrix for which σ(B) ⊂ Ω and AB = BA, then

f(A)g(B) = g(B)f(A).

We say that a matrix A in C
N×N is a positive stable matrix if Re(λ) > 0 for all λ ∈ σ(A),

where σ(A) is the set of all eigenvalues of A. Throughout this paper, the zero matrix of
C
N×N will be denoted by 0. Furthermore, the identity matrix of CN×N will be denoted

by I . The hypergeometric matrix function F (A,B;C; z) has been given in the form [10]
as follows:

F (A,B;C; z) =

∞
∑

n=0

(A)n (B)n
n!

[(C)n]
−1 zn

for matrices A,B and C in C
N×N such that C + nI is invertible for all integers n ≥ 0

and for |z| < 1. From [10], one recalls the Pochhammer symbol in its matrix version as
follows

(A)n = A(A+ I)(A+ 2I) · · · (A+ (n− 1)I), n ≥ 1; (A)0 = I.

1.1. Lemma. [14] If ‖·‖ denotes any matrix norm for which ‖I‖ = 1, and if ‖M‖ < 1
(M ∈ C

N×N ), then (I +M)−1 exists:

(I +M)−1 = I −M +M2 − · · · . �

If D is the complex plane cut along the negative real axis and log(z) denotes the

principle logarithm of z, then z1/2 represents exp((1/2) log(z)). If A is a matrix in C
N×N

with σ(A) ⊂ D, then A1/2 =
√
A denotes the image by z1/2 of the matrix functional

calculus acting on the matrix A.

Let A be a matrix in C
N×N where

A+ nI is invertible for every integer n > 0

and let λ be a complex number whose real part is positive. Then the Laguerre matrix

polynomials L
(A,λ)
n (x) are defined by [8] as follows:

(1.1) L(A,λ)
n (x) =

n
∑

k=0

(−1)k

k! (n− k)!
(A+ I)n [(A+ I)k]

−1 (λx)k , n ≥ 0.

Let A be a matrix in C
N×N where

Re(µ) > 0 for all eigenvalue µ ∈ σ(A).

Then the Hermite matrix polynomials Hn(x,A) are defined by [7] as:

(1.2) Hn(x,A) = n!

[n
2
]

∑

k=0

(−1)k

k! (n− 2k)!
(x
√
2A)n−2k, n ≥ 0.

The Jacobi matrix polynomials P
(A,B)
n (x) have been given in [5] for parameter matrices

A and B whose eigenvalues, z, all satisfy the condition Re(z) > −1. For any natural

number n > 0, the Jacobi matrix polynomials P
(A,B)
n (x) are defined by

(1.3)
P (A,B)
n (x) =

(−1)n

n!
F
(

A+B + nI,−nI ;B + I ;
1 + x

2

)

× Γ−1(B + I) Γ
(

B + (n+ 1)I
)

.
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In [2], the Chebyshev matrix polynomials of the second kind are defined by

(1.4) Un(x,A) =

[n/2]
∑

k=0

(−1)k (n− k)! (
√
2Ax)n−2k

k! (n− 2k)!
,

where A be a positive stable matrix in C
N×N .

2. Some results for Chebyshev matrix polynomials of the second

kind

In this section, we derive the generating matrix function and recurrence relations for
Chebyshev matrix polynomials of the second kind. We have the following main theorem.

2.1. Theorem. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then the generating matrix function for Chebyshev matrix polynomials

of the second kind is

(2.1)
∞
∑

n=0

Un(x,A)tn = (I −
√
2Axt+ t2I)−1, |t| < 1, |x| < 1.

Proof. By making use of (1.4) in the left-hand side of (2.1) and replacing n by n + 2k,
we have

∞
∑

n=0

Un(x,A)tn =

∞
∑

n=0





[n/2]
∑

k=0

(−1)k (n− k)! (
√
2Ax)n−2k

k! (n− 2k)!



 tn

=

∞
∑

n=0

( ∞
∑

k=0

(−1)k (n+ 1)(n+ 2) · · · (n+ k)

k!
t2k
)

(
√
2Ax)ntn.

By using

(1 + t2)−n−1 =
∞
∑

k=0

(−1)k (n+ 1)(n+ 2) · · · (n+ k)

k!
t2k; |t| < 1,

we can write
∞
∑

n=0

Un(x,A)tn =
∞
∑

n=0

(1 + t2)−n−1(
√
2Ax)ntn,

and then by Lemma 1.1, for
∥

∥

√
A
∥

∥ < 1√
2
, one can obtain the generating matrix function

for Chebyshev matrix polynomials of the second kind. �

2.2. Theorem. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then recurrence relation for Chebyshev matrix polynomials of the

second kind is
√
2AUn−1(x,A) = U

′

n(x,A) + U
′

n−2(x,A)−
√
2A x U

′

n−1(x,A); n ≥ 2, |x| < 1.

Proof. By differentiating (2.1) with respect to x, making the necessary arrangements and
identification of coefficients of tn, the theorem can be proved. �

2.3. Theorem. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then the recurrence relation for Chebyshev matrix polynomials of the

second kind is

Un+1(x,A) = −Un−1(x,A) +
√
2A x Un(x,A); n ≥ 1, |x| < 1.
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Proof. By differentiating (2.1) with respect to t, making the necessary arrangements and
identification of coefficients of tn, the theorem can be proved. �

2.4. Corollary. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then the Chebyshev matrix polynomials of the second kind satisfy

Un(−x,A) = (−1)nUn(x,A), |x| < 1.

Proof. Taking (−x) instead of x and (−t) instead of t in (2.1), the proof is completed. �

2.5. Corollary. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then Chebyshev matrix polynomials of the second kind satisfy

[

U1(x,A) −U0(x,A)
U0(x,A) 0

]n

=

[

Un(x,A) −Un−1(x,A)
Un−1(x,A) −Un−2(x,A)

]

; n ≥ 1, |x| < 1,

where U−1(x,A) = 0.

Proof. By using induction and Theorem 2.3, one can obtain the desired result. �

2.6. Theorem. Let A be a matrix in C
N×N where Re(λ) > 0 for all eigenvalue λ ∈ σ(A)

and
∥

∥

√
A
∥

∥ < 1√
2
. Then Chebyshev matrix polynomials of the second kind satisfy

(Un(x,A), Un−1(x,A)) = (U1(x,A), U0(x,A))(I,0)n−1; n ≥ 2,

where

(Un(x,A), Un−1(x,A))(I,0) = (−Un−1(x,A) +
√
2AxUn(x,A), Un(x,A));

n ≥ 1, |x| < 1.

Proof. By using induction and Theorem 2.3, the theorem can be proved. �

3. Multilinear and multilateral generating matrix functions for

Chebyshev matrix polynomials of the second kind

In this section, we derive several families of bilinear and bilateral generating matrix
functions for Chebyshev matrix polynomials of the second kind generated by (2.1).

We first state our result as follows.

3.1. Theorem. Corresponding to a non-vanishing function Ωµ(y1, . . . , ys) consisting of
s complex variables y1, . . . , ys (s ∈ N) and of complex order µ, let

(3.1) Λµ,ν(y1, . . . , ys; z) :=
∞
∑

k=0

ak Ωµ+νk(y1, . . . , ys) z
k

and for (ak 6= 0, µ, ν ∈ C),

(3.2) Θn,p,µ,ν(x; y1, . . . , ys; ζ) :=

[n/p]
∑

k=0

ak Un−pk(x,A)Ωµ+νk(y1, . . . , ys) ζ
k,

where A is a positive stable matrix in C
N×N with

∥

∥

√
A
∥

∥ < 1√
2
, n, p ∈ N and (as usual)

[λ] represents the greatest integer in λ ∈ R. Then we have

(3.3)

∞
∑

n=0

Θn,p,µ,ν
(

x; y1, . . . , ys;
η

tp

)

tn = (I −
√
2Axt+ t2I)−1Λµ,ν(y1, . . . , ys; η),

provided that each member of (3.3) exists for |t| < 1, |x| < 1.
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Proof. For convenience, let S denote the first member of the assertion (3.3) of Theo-
rem 3.1. Then, plugging the polynomials

Θn,p,µ,ν
(

x; y1, . . . , ys;
η

tp

)

which come from (3.2) into the left-hand side of (3.3), we obtain

(3.4) S =

∞
∑

n=0

[n/p]
∑

k=0

ak Un−pk(x,A)Ωµ+νk(y1, . . . , ys) η
k tn−pk.

Upon changing the order of summation in (3.4), if we replace n by n+ pk, we can write

S =
∞
∑

n=0

∞
∑

k=0

ak Un(x,A)Ωµ+νk(y1, . . . , ys ) η
k tn

=

( ∞
∑

n=0

Un(x,A) tn
)( ∞

∑

k=0

ak Ωµ+νk(y1, . . . , ys) η
k

)

=
(

I −
√
2Axt+ t2I

)−1
Λµ,ν(y1, . . . , ys; η),

which completes the proof of Theorem 3.1. �

By expressing the multivariable function Ωµ+νk(y1, . . . , ys ), (k ∈ N0, s ∈ N) in terms
of a simpler function of one or more variables, we can give further applications of Theo-
rem 3.1. For example, consider the case of

s = 1 and Ωµ+νk(y ) = L
(B,λ)
µ+νk(y)

in Theorem 3.1. Here the Laguerre matrix polynomials L
(B,λ)
n (y) are defined by (1.1) as:

L(B,λ)
n (y) =

n
∑

k=0

(−1)k λk

k! (n− k)!
(B + I)n

[

(B + I)k
]−1

yk

in which B is a matrix in C
N×N , B + nI is invertible for every integer n > 0 and λ is

a complex number with Re (λ) > 0. Notice that the Laguerre matrix polynomials are
generated as follows:

(3.5)
∞
∑

n=0

L(B,λ)
n (y) tn = (1− t)−(B+I) exp

(

−λyt

1− t

)

,

|t| < 1, −∞ < y < ∞. Then we obtain the following result which provides a class of
bilateral generating matrix functions for the Chebyshev matrix polynomials of the second
kind and the Laguerre matrix polynomials.

3.2. Corollary. Let Λµ,ν(y; z) :=
∞
∑

k=0

ak L
(B,λ)
µ+νk(y) z

k, where (ak 6= 0, µ, ν ∈ N0) and

Θn,p,µ,ν(x; y; ζ) :=

[n/p]
∑

k=0

ak Un−pk(x,A)L
(B,λ)
µ+νk(y) ζ

k,

where n, p ∈ N and A and B are matrices in C
N×N satisfying the condition Re(λ) > 0

for all eigenvalues λ ∈ σ(A), and B + nI is invertible for every integer n > 0. Then we
have

(3.6)
∞
∑

n=0

Θn,p,µ,ν
(

x; y;
η

tp

)

tn = (I −
√
2Axt+ t2I)−1Λµ,ν (y; η)

provided that each member of (3.6) exists for
∥

∥

√
A
∥

∥ < 1√
2
and |t| < 1, |x| < 1. �
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3.3. Remark. Using the generating matrix function (3.5) for the Laguerre matrix poly-
nomials and taking ak = 1, µ = 0, ν = 1, we have

∞
∑

n=0

[n/p]
∑

k=0

Un−pk(x,A)L
(B,λ)
k (y) ηk tn−pk

=
(

I −
√
2Axt+ t2I

)−1
(1− η)−(B+I) exp

(

−λyη

1− η

)

,

where |η| < 1, −∞ < y < ∞.

Set s = 1 and Ωµ+νk(y) = P
(B,C)
µ+νk (y) in Theorem 3.1, where the Jacobi matrix poly-

nomials P
(B,C)
n (y) are defined by (1.3) as:

P (B,C)
n (y) =

(−1)n

n!
F

(

B +C + (n+ 1) I,−nI ;C + I ;
1 + y

2

)

× Γ−1(C + I) Γ(C + (n+ 1)I),

where B and C are matrices in C
N×N whose eigenvalues, z, all satisfy the condition

Re(z) > −1. Here the Jacobi matrix polynomials are generated by

(3.7)

∞
∑

n=0

(B + C + I)n P (B,C)
n (y) [(C + I)n]

−1 rn

= (1 + r)−(B+C+I) F

(

B + C + I

2
,
B + C + 2I

2
;C + I ;

2r(y + 1)

(1 + r)2

)

|r| < 1, |y| < 1,

which was given in [1]. Then we obtain the following result which provides a class of
bilateral generating matrix functions for Chebyshev matrix polynomials of the second
kind and the Jacobi matrix polynomials.

3.4. Corollary. Let Λµ,ν(y; z) :=
∞
∑

k=0

ak (B + C + I)k P
(B,C)
µ+νk (y) [(C + I)k]

−1 zk where

(ak 6= 0 µ, ν ∈ N0) and

Θn,p,µ,ν(x; y; ζ) :=

[n/p]
∑

k=0

ak Un−pk(x,A) (B +C + I)k P
(B,C)
µ+νk (y) [(C + I)k]

−1 ζk,

where n, p ∈ N and A,B and C are matrices in C
N×N satisfying the condition Re(λ) > 0

for all eigenvalues λ ∈ σ(A), Re(γ) > −1 for all eigenvalues γ ∈ σ(B) and Re(ξ) > −1
for all eigenvalues ξ ∈ σ(C). Then we have

(3.8)

∞
∑

n=0

Θn,p,µ,ν
(

x; y;
η

tp

)

tn =
(

I −
√
2Axt+ t2I

)−1
Λµ,ν(y; η)

provided that each member of (3.8) exists for
∥

∥

√
A
∥

∥ < 1√
2
and |t| < 1, |x| < 1. �

3.5. Remark. Using the generating matrix function (3.7) for the Jacobi matrix poly-
nomials and taking ak = 1, µ = 0, ν = 1, we have

∞
∑

n=0

[n/p]
∑

k=0

Un−pk(x,A) (B +C + I)k P
(B,C)
k (y) [(C + I)k]

−1 ηk tn−pk

=
(

I −
√
2Axt+ t2I

)−1

× (1 + η)−(B+C+I) F

(

B + C + I

2
,
B + C + 2I

2
;C + I ;

2η(y + 1)

(1 + η)2

)

,
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where |η| < 1, |y| < 1.

In Theorem 3.1 choose

s = 1 and Ωµ+νk(y) = Uµ+νk(y,B),

where B is a positive stable matrix in C
N×N and µ, ν ∈ N0. Then we obtain the following

class of bilinear generating matrix function for the Chebyshev matrix polynomials of the
second kind.

3.6. Corollary. Let Λµ,ν(y; z) :=
∞
∑

k=0

ak Uµ+νk(y,B) zk, where (ak 6= 0, µ, ν ∈ N0) and

Θn,p,µ,ν(x; y; ζ) :=

[n/p]
∑

k=0

ak Un−pk(x,A)Uµ+νk(y,B) ζk,

where n, p ∈ N and B is a positive stable matrix in C
N×N . Then we have

(3.9)

∞
∑

n=0

Θn,p,µ,ν
(

x; y;
η

tp

)

tn =
(

I −
√
2Axt+ t2I

)−1
Λµ,ν(y; η)

provided that each member of (3.9) exists for
∥

∥

√
A
∥

∥ < 1√
2
and |t| < 1, |x| < 1. �

3.7. Remark. Using Corollary 3.4 and taking ak = 1, µ = 0, ν = 1, we have

∞
∑

n=0

[n/p]
∑

k=0

Un−pk(x,A)Uk(y,B) ηktn−pk

=
(

I −
√
2Axt+ t2I

)−1(
I −

√
2Byη + η2I

)−1
,

where |η| < 1, |y| < 1 and
∥

∥

√
B
∥

∥ < 1√
2
.

Furthermore, for every suitable choice of the coefficients ak (k ∈ N0), if the multi-
variable function Ωµ+ψk(y1, . . . , ys), (s ∈ N), is expressed as an appropriate product of
several simpler functions, the assertions of Theorem 3.1 can be applied in order to de-
rive various families of multilinear and multilateral generating matrix functions for the
Chebyshev matrix polynomials of the second kind.

We set

s = 2 and Ωµ+νk(y, z ) = Hµ+νk(y, z,B)

in Theorem 3.1. Here the two-variable Hermite matrix polynomials Hn(y, z,B) are de-
fined by means of the generating matrix function in [2] as follows:

(3.10) exp
(

yt
√
2B − zt2I

)

=
∞
∑

n=0

1

n!
Hn(y, z,B)tn; |t| < ∞,

where B is a positive stable matrix in C
N×N . Then we obtain the following result which

provides a class of multilateral generating matrix functions for the two-variable Hermite
matrix polynomials and the Chebyshev matrix polynomials of the second kind defined
by (1.4).

3.8. Corollary. Let Λµ,ψ(y, z; r) :=
∞
∑

k=0

ak Hµ+νk(y, z,B)rk, where (ak 6= 0, µ, ν ∈ N0)

and

Θn,p,µ,ψ(x; y, z; ζ) :=

[n/p]
∑

k=0

ak Un−pk(x,A)Hµ+νk(y, z,B)ζk,
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where n, p ∈ N and A and B are positive stable matrices in C
N×N . Then we have

(3.11)
∞
∑

n=0

Θn,p,µ,ψ
(

x; y, z;
η

tp

)

tn =
(

I −
√
2Axt+ t2I

)−1
Λµ,ψ(y, z; η)

provided that each member of (3.11) exists for
∥

∥

√
A
∥

∥ < 1√
2
and |t| < 1, |x| < 1. �

3.9. Remark. Using the generating matrix function (3.10) for the two-variable Hermite
matrix polynomials and taking ak = 1

k!
, µ = 0, ν = 1, we have

∞
∑

n=0

[n/p]
∑

k=0

Un−pk(x,A)
Hk(y, z,B)

k!
ηk tn−pk

=
(

I −
√
2Axt+ t2I

)−1
exp

(

yη
√
2B − zη2I

)

,

where |η| < ∞.
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[7] Jódar, L. and Company, R. Hermite matrix polynomials and second order matrix differential

equations, J. Approx. Theory Appl. 12 (2), 20–30, 1996.
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