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Abstract

The aim of this paper is to introduce a new system of generalized H-
resolvent equations in uniformly smooth Banach spaces and to men-
tion the corresponding system of variational inclusions. An equivalence
relation is established between the system of generalized H-resolvent
equations and the system of variational inclusions. We also prove the
existence of solutions for the system of generalized H-resolvent equa-
tions and the convergence of the iterative sequences generated by the
algorithm. Our results are new and generalize many known results
appearing in the literature.
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1. Introduction

Using the concept of resolvent operator technique, Noor and Noor [17] introduced and
studied resolvent equations and established the equivalence between the mixed variational
inequalities and the resolvent equations. The resolvent equations technique is being
used to develop powerful and efficient numerical techniques for solving mixed (quasi)
variational inequalities and related optimization problems.

In 2001, Verma [22] introduced and studied a system of variational inequalities and
developed some iterative algorithms for approximating the solutions of this system of
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variational inequalities. Pang [18], Cohen and Chaplais [11], Bianchi [6], Ansari and Yao
[5] considered a system of scalar variational inequalities and Pang showed that the traffic
equilibrium problem, the Nash equilibrium, and the general equilibrium programming
problem can be modeled as a system of variational inequalities. As generalizations of
a system of variational inequalities, Agarwal et al. [1] introduced a system of general-
ized nonlinear mixed quasi-variational inclusions and investigated the sensitivity analysis
of solutions for the system of generalized mixed quasi-variational inclusions in Hilbert
spaces. Fang and Huang [12] introduced a new class of H-accretive operators in the set-
ting of Banach spaces and extended the concept of resolvent operators associated with
the classical m-accretive operators to H-accretive operators. By using this new resolvent
operator technique, they studied the approximate solutions of a class of variational inclu-
sions with H-accretive operators in the setting of Banach spaces. Lan, Cho and Verma
[14] solved cocoercive variational inequalities in Banach spaces and Verma [21] intro-
duced a general proximal point algorithm involving an η-maximal accretive framework
in Banach spaces.

Very recently J-W. Peng [19] introduced a system of generalized mixed quasi-varia-
tional-like inclusions with (H,η)-accretive operators i.e., a family of generalized mixed
quasi-variational-like inclusions with (H, η)-accretive operators defined on a product of
sets in Banach spaces. Ceng and Yao [10] and Ceng, Wang and Yao [8] studied system of
variational inequalities by using the projection method and relaxed extragradient method,
respectively. Ahmad and Yao [3] studied and introduced a system of generalized resolvent
equations and Ceng and Yao [9] studied mixed equilibrium problems. Ceng, Ansari and
Yao [7] applied relaxed viscosity iterative methods for solving variational inequalities
in Banach spaces and Hassouni and Moudafi [13] studied a perturbed algorithm for
variational inclusions.

Inspired and motivated by the recent research work going on in this field, the aim of
this paper is to introduce and study a new system of generalized H-resolvent equations
in uniformly smooth Banach spaces. We established an equivalence relation between
the system of generalized H-resolvent equations and the corresponding system of varia-
tional inclusions. Some iterative algorithms for solving system of generalized H-resolvent
equations and convergence criteria are discussed.

2. Formulation and preliminaries

Throughout the paper, unless otherwise specified, we assume that E is a real Banach
space with its norm ‖ · ‖, E∗ is the topological dual of E, d is the metric induced
by the norm ‖ · ‖, CB(E) (respectively, 2E) is the family of all nonempty closed and
bounded subsets (respectively, all nonempty subsets) of E, D(·, ·) is the Hausdorff metric
on CB(E) defined by

D(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(A, y)
}

,

where d(x,B) = inf
y∈B

d(x, y) and d(A, y) = inf
x∈A

d(x, y).

We also assume that 〈·, ·〉 is the duality pairing between E and E⋆ and J : E → 2E
⋆

is the normalized duality mapping defined by

J(x) = {f ∈ E⋆ : 〈x, f〉 = ‖x‖‖f‖, and ‖x‖ = ‖f‖}, for all x ∈ E.

Now, we recall some definitions, notations and results which will be used throughout the
paper.
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The uniform convexity of a Banach space E means that for any ǫ > 0 there exists
δ > 0 such that for any x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ = ǫ ensure the following
inequality,

‖x+ y‖ ≤ 2(1− δ).

The function

δE(ǫ) = inf

{

1−
‖x+ y‖

2
: ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ = ǫ

}

is called the modulus of convexity of E.

The uniform smoothness of a Banach space E means that for any given ǫ > 0, there
exists δ > 0 such that

‖x+ y‖+ ‖x− y‖

2
− 1 ≤ ǫ‖y‖

holds. The function

τE(t) = sup

{

‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = t

}

is called the modulus of smoothness of E.

We remark that the Banach space E is uniformly convex if and only if δE(ǫ) > 0, for

all ǫ > 0, and it is uniformly smooth if and only if limt→0
τE(t)

t
= 0.

2.1. Definition. A mapping g : E → E is said to be

(i) accretive, if for any x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈g(x)− g(y), j(x− y)〉 ≥ 0;

(ii) strictly accretive, if for any x, y ∈ E, there exists j(x − y) ∈ J(x− y) such that

〈g(x)− g(y), j(x− y)〉 ≥ 0;

and equality holds if and only if x = y;
(iii) strongly accretive, if for any x, y ∈ E, there exists j(x − y) ∈ J(x − y) and a

constant δg > 0 such that

〈g(x)− g(y), j(x− y)〉 ≥ δg‖x− y‖2;

(iv) Lipschitz continuous if for any x, y ∈ E, there exists a constant λg such that

‖g(x)− g(y)‖ ≤ λg‖x− y‖.

2.2. Definition. A multi-valued mapping M : E → 2E is said to be

(i) accretive, if for any x, y ∈ E, there exists j(x − y) ∈ J(x − y) such that for all
u ∈ M(x) and v ∈ M(y),

〈u− v, j(x − y)〉 ≥ 0;

(ii) strongly accretive, if for any x, y ∈ E, there exists j(x − y) ∈ J(x − y) and a
constant δM such that for all u ∈ M(x) and v ∈ M(y),

〈u− v, j(x − y)〉 ≥ δM‖x− y‖2;

(iii) m-accretive, if M is accretive and (I + ρM)(E) = E for every (equivalently, for
some) ρ > 0, where I is the identity mapping (equivalently, if M is accretive
and (I +M)(E) = E).

2.3. Definition. Let H : E → E be an operator. A multivalued mapping M : E → 2E

is said to be H-accretive if M is accretive and (H + ρM)(E) = E for all ρ > 0.
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2.4. Remark. IfH = I , then Definition 2.3 reduces to the usual definition ofm-accretive
operator.

2.5. Definition. Let H : E → E be a strictly accretive operator and M : E → 2E an
H-accretive multivalued mapping. The H-resolvent operator JM

H,ρ : E → E associated
with H and M is defined by

JM
H,ρ(x) = (H + ρM)−1(x), for all x ∈ E.

2.6. Theorem. [12] Let H : E → E be a strongly accretive operator with constant r
and M : E → 2E an H-accretive multivalued mapping. Then the H-resolvent operator
JM
H,ρ : E → E associated with H and M is Lipschitz continuous with constant 1

r
, that is,

‖JM
H,ρ(x)− JM

H,ρ(y)‖ ≤
1

r
‖x− y‖, for all x, y ∈ E. �

2.7. Definition. [2] The H-resolvent operator JM
H,ρ : E → E is said to be a retraction if

[JM
H,ρ(x)]

2 = JM
H,ρ(x), for all x ∈ E.

2.8. Definition. A multivalued mapping G : E → CB(E) is said to be D-Lipschitz
continuous if for any x, y ∈ E, there exist a constant λDG

> 0, such that

D(G(x), G(y)) ≤ λDG
‖x− y‖.

2.9. Proposition. [4, 20] Let E be a uniformly smooth Banach space and J : E → 2E
⋆

a normalized duality mapping. Then, for any x, y ∈ E,

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, for all j(x+ y) ∈ J(x+ y),

(ii) 〈x− y, j(x)− j(y)〉 ≤ 2C2τE(4‖x− y‖/D), where D =
√

(‖x‖2 + ‖y‖2)/2. �

Let E1 and E2 be any two real Banach spaces, S : E1 ×E2 → E1, T : E1 ×E2 → E2,
p : E1 → E1, q : E2 → E2, H1 : E1 → E1 and H2 : E2 → E2 single-valued mappings,
G : E1 → CB(E1), F : E2 → CB(E2) multi-valued mappings. Let M : E1×E1 → 2E1 be
H1-accretive and N : E2 ×E2 → 2E2 be H2-accretive mappings. let f : E1 → E1 and g :
E2 → E2 be nonlinear mappings with f(E1)∩D(M(·, x)) 6= ∅ and g(E2)∩D(N(·, y)) 6= ∅,
respectively. Then we consider the following system of generalized H-resolvent equations:

Find (x, y) ∈ E1 ×E2, u ∈ G(x), v ∈ F (y), z′ ∈ E1, z
′′ ∈ E2 such that

(2.1)
S(x− p(x), v) + ρ−1R

M(·,x)
H1,ρ

(z′) = 0, ρ > 0,

T (u, y − q(y)) + γ−1R
N(·,y)
H2,γ

(z′′) = 0, γ > 0,

where R
M(·,x)
H1ρ

= I −H1(J
M(·,x)
H1,ρ

), R
N(·,y)
H2,γ

= I −H2(J
N(·,y)
H2γ

) and J
M(·,x)
H1,ρ

, J
N(·,y)
H2,γ

are the
resolvent operators associated with M and N , respectively.

The corresponding system of generalized variational inclusions of (2.1) is the following:

Find (x, y) ∈ E1 ×E2, u ∈ G(x), v ∈ F (y) such that

(2.2)
0 ∈ S(x− p(x), v) +M(f(x), x),

0 ∈ T (u, y − q(y)) +N(g(y), y).

A problem similar to (2.2) is considered by Lan et al. [15] in Hilbert spaces.

2.10. Lemma. (x, y) ∈ E1×E2, u ∈ G(x), v ∈ F (y) is a solution of system of generalized
variational inclusions (2.2) if and only if (x, y, u, v) satisfies

f(x) = J
M(·,x)
H1,ρ

[H1(f(x))− ρS(x− p(x), v)],

g(y) = J
N(·,y)
H2,γ

[H2(g(y))− γT (u, y − q(y))],

where ρ > 0 and γ > 0 are constants.
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Proof. The proof is a direct consequence of the definition of H-resolvent operator, and
hence, is omitted. �

3. Iterative algorithms and a convergence result

In this section, we first establish an equivalence relation between system of generalized
H-resolvent equations (2.1) and the system of generalized variational inclusions (2.2).
Finally, we prove the existence of a solution of (2.1) and the convergence of sequences
generated by the proposed algorithms.

3.1. Proposition. The system of generalized variational inclusions (2.2) has a solution
(x, y, u, v) with (x, y) ∈ E1 × E2, u ∈ G(x), v ∈ F (y) if and only if the system of
generalized H-resolvent equations (2.1) has a solution (z′, z′′, x, y, u, v) with (x, y) ∈ E1×
E2, u ∈ G(x), v ∈ F (y), z′ ∈ E1, z

′′ ∈ E2 where

f(x) = J
M(·,x)
H1,ρ

(z′),(3.1)

g(y) = J
N(·,y)
H2,γ

(z′′),(3.2)

where z′ = H1(f(x))− ρS(x− p(x), v) and z′′ = H2(g(y))− γT (u, y − q(y)).

Proof. Let (x, y, u, v) be a solution of the system of generalized variational inclusion (2.2).
Then by Lemma 2.10, it satisfies the following equations

f(x) = J
M(·,x)
H1,ρ

[H1(f(x))− ρS(x− p(x), v)],

g(y) = J
N(·,y)
H2,γ

[H2(g(y))− γT (u, y − q(y))].

Let z′ = H1(f(x))− ρS(x− p(x), v) and z′′ = H2(g(y))− γT (u, y− q(y)). Then we have

f(x) = J
M(·,x)
H1,ρ

(z′),

g(y) = J
N(·,y)
H2,γ

(z′′),

z′ = H1(J
M(·,x)
H1,ρ

(z′)) − ρS(x − p(x), v) and z′′ = H2(J
N(·,y)
H2,γ

(z′′)) − γT (u, y − q(y)). It
follows that

(I −H1(J
M(·,x)
H1,ρ

))(z′) = z′ −H1(J
M(·,x)
H1,ρ

(z′))

= H1(J
M(·,x)
H1,ρ

(z′))− ρS(x− p(x), v)−H1(J
M(·,x)
H1,ρ

(z′))

= −ρS(x− p(x), v),

and similarly

(I −H2(J
N(·,y)
H2,γ

))(z′′) = −γT (u, y − q(y)),

i.e.

S(x− p(x), v) + ρ−1R
M(·,x)
H1,ρ

(z′) = 0,

T (u, y − q(y)) + γ−1R
N(·,y)
H2,γ

(z′′) = 0.

Thus, (z′, z′′, x, y, u, v) is a solution of the system of generalized H-resolvent equations
(2.1).

Conversely, let (z′, z′′, x, y, u, v) be a solution of the system of generalized H-resolvent
equations (2.1), then

ρS(x− p(x), v) = −R
M(·,x)
H1,ρ

(z′),(3.3)

γT (u, y − q(y)) = −R
N(·,y)
H2,γ

(z′′).(3.4)
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Now

ρS(x− p(x), v) = −R
M(·,x)
H1,ρ

(z′)

= −(I −H1(J
M(·,x)
H1,ρ

))(z′)

= (H1(J
M(·,x)
H1,ρ

))(z′)− z′

= (H1(J
M(·,x)
H1,ρ

))[H1(f(x))− ρS(x− p(x), v)]

− [H1(f(x))− ρS(x− p(x), v)]

which implies that

f(x) = J
M(·,x)
H1,ρ

[H1(f(x))− ρS(x− p(x), v)],

and

γT (u, y − q(y)) = −R
N(·,y)
H2,γ

(z′′)

= −(I −H2(J
N(·,y)
H2,γ

))(z′′)

= (H2(J
N(·,y)
H2,γ

))(z′′)− z′′

= (H2(J
N(·,y)
H2,γ

))[H2(g(y))− γT (u, y − q(y))]

− [H2(g(y))− γT (u, y − q(y))]

which implies that

g(y) = J
N(·,y)
H2,γ

[H2(g(y))− γT (u, y − q(y))].

Thus, we have

f(x) = J
M(·,x)
H1,ρ

[H1(f(x))− ρS(x− p(x), v)],

g(y) = J
N(·,y)
H2,γ

[H2(g(y))− γT (u, y − q(y))],

so, by Lemma 2.10, (x, y, u, v) is a solution of the system of generalized variational
inclusions (2.2). �

Alternative Proof. Let

z′ = H1(f(x))− ρS(x− p(x), v) and z′′ = H2(g(y))− γT (u, y − q(y)).

Using (3.1) and (3.2), we can write

z′ = (H1(J
M(·,x)
H1,ρ

))(z′)−ρS(x−p(x), v) and z′′ = (H2(J
N(·,y)
H2,γ

))(z′′)−γT (u, y−q(y)),

which implies that

S(x− p(x), v) + ρ−1R
M(·,x)
H1,ρ

(z′) = 0, ρ > 0,

T (u, y − q(y)) + γ−1R
N(·,y)
H2,γ

(z′′) = 0, γ > 0,

is the required system of generalized H-resolvent equations. �

3.2. Algorithm. For given (xo, yo) ∈ E1 × E2, uo ∈ G(xo), vo ∈ F (yo), z′o ∈ E1,
z′′o ∈ E2, compute {z′n}, {z

′′
n}, {xn}, {yn}, {un} and {vn} by the iterative schemes,

f(xn) = J
M(·,xn)
H1,ρ

(z′n)(3.5)

g(yn) = J
N(·,yn)
H2,γ

(z′′n).(3.6)
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Using Nadler’s theorem [16], we have

un ∈ G(xn) : ‖un+1 − un‖ ≤ D(G(xn+1), G(xn)),(3.7)

vn ∈ F (yn) : ‖vn+1 − vn‖ ≤ D(F (yn+1), F (yn)),(3.8)

z′n+1 = [H1(f(xn))− ρS(xn − p(xn), vn)],(3.9)

z′′n+1 = [H2(g(yn))− γT (un, yn − q(yn))],(3.10)

n = 0, 1, 2, . . ..

The system of generalized resolvent equations (2.1) can also be written as

z′ = H1(f(x))− S(x− p(x), v) + (I − ρ−1)R
M(·,x)
H1,ρ

(z′),

z′′ = H2(g(y))− T (u, y − q(y)) + (I − γ−1)R
N(·,y)
H2,γ

(z′′).

We use this fixed-point formulation to suggest the following iterative method.

3.3. Algorithm. For given (xo, yo) ∈ E1 × E2, uo ∈ G(xo), vo ∈ F (yo), z′o ∈ E1,
z′′o ∈ E2, compute {z′n}, {z

′′
n}, {xn}, {yn}, {un} and {vn} by the iterative schemes,

f(xn) = J
M(·,xn)
H1,ρ

(z′n),

g(yn) = J
N(·,yn)
H2,γ

(z′′n),

un ∈ G(xn) : ‖un+1 − un‖ ≤ D(G(xn+1), G(xn)),

vn ∈ F (yn) : ‖vn+1 − vn‖ ≤ D(F (yn+1), F (yn)),

z′n+1 = H1(f(xn))− S(xn − p(xn), vn) + (I − ρ−1)R
M(·,xn)
H1,ρ

(z′n),

z′′n+1 = H2(g(yn))− T (un, yn − q(yn)) + (I − γ−1)R
N(·,yn)
H2,γ

(z′′n),

n = 0, 1, 2, . . ..

3.4. Theorem. Let E1 and E2 be any two real uniformly smooth Banach spaces with
module of smoothness τE1

(t) ≤ C1t
2 and τE2

(t) ≤ C2t
2 for C2, C2 > 0, respectively.

Let G : E1 → CB(E1) and F : E2 → CB(E2) be D-Lipschitz continuous mappings
with constants λDG

and λDF
, respectively. Let H1 : E1 → E1 and H2 : E2 → E2 be

strongly accretive and Lipschitz continuous mappings with constants r1, r2 and λH1
, λH2

,
respectively. Let M : E1 ×E1 → 2E1 be an H1-accretive operator and let N : E2 ×E2 →
2E2 be an H2-accretive operator such that the H1-resolvent operator associated with M
and the H2-resolvent operator associated with N are retractions. Let f, p : E1 → E1, g, q :
E2 → E2 be strongly accretive mappings with constants δf , δp, δg and δq, respectively, and
Lipschitz continuous with constants λf , λp, λg and λq, respectively. Let S : E1×E2 → E1

and T : E1 × E2 → E2 be Lipschitz continuous in the first and second arguments, with
constants λS1

, λS2
and λT1

, λT2
, respectively.

If there exist constants ρ > 0 and γ > 0, such that

(3.11)

0 <
B′

1/2 + 1 + ρλS1

√

1− 2δp + 64C1λ2
p + γλT1

λDG

r1(1−
B′

2

2
)

< 1,

0 <
B′′

1/2 + 1 + γλT2

√

1− 2δq + 64C2λ2
q + ρλS2

λDF

r2(1−
B′′

2

2
)

< 1,

where

B′
1 = 2

√

1− 2r1λ2
f + 64C1λ2

H1
λ2
f , B′

2 = 2
√

1− 2δf + 64C1λ2
f ,

B′′
1 = 2

√

1− 2r2λ2
g + 64C2λ2

H2
λ2
f , B′′

2 = 2
√

1− 2δg + 64C2λ2
g,
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then there exist (x, y) ∈ E1 × E2, u ∈ G(x), v ∈ F (y), z′ ∈ E1, z
′′ ∈ E2 satisfying the

system of generalized H-resolvent equations (2.1) and the iterative sequences {z′n}, {z
′′
n},

{xn}, {yn}, {un} and {vn} generated by Algorithm 3.2 converge strongly to z′, z′′, x, y, u
and v, respectively.

Proof. From Algorithm 3.2, we have

(3.12)

‖z′n+1 − z′n‖ = ‖H1(f(xn))− ρS(xn − p(xn), vn)

− [H1(f(xn−1))− ρS(xn−1 − p(xn−1), vn−1)]‖

≤ ‖xn − xn−1 − (H1(f(xn))−H1(f(xn−1)))‖+ ‖xn − xn−1‖

+ ρ‖S(xn − p(xn), vn)− S(xn−1 − p(xn−1), vn−1)‖.

Since H1 is strongly accretive with constant r1 and Lipschitz continuous with constant
λH1

, f is Lipschitz continuous with constant λf and by Proposition 2.9, we have

‖xn − xn−1 − (H1(f(xn))−H1(f(xn−1)))‖
2

≤ ‖xn − xn−1‖
2 + 2〈−(H1(f(xn))−H1(f(xn−1))),

j(xn − xn−1 − (H1(f(xn))−H1(f(xn−1)))〉

= ‖xn − xn−1‖
2 + 2〈−(H1(f(xn))−H1(f(xn−1))), j(xn − xn−1)〉

+ 2〈−(H1(f(xn))−H1(f(xn−1))),

j(xn − xn−1 − (H1(f(xn))−H1(f(xn−1)))− j(xn − xn−1))〉

≤ ‖xn − xn−1‖
2 − 2r1‖f(xn)− f(xn−1)‖

2

+ 4d2τE
(4‖H1(f(xn))−H1(f(xn−1))‖

d

)

≤ ‖xn − xn−1‖
2 − 2r1λ

2
f‖xn − xn−1‖

2 + 64C1λ
2
H1

λ2
f‖xn − xn−1‖

2

≤ (1− 2r1λ
2
f + 64C1λ

2
H1

λ2
f )‖xn − xn−1‖

2.(3.13)

Since S is Lipschitz continuous in both arguments, F is D-Lipschitz continuous, we have

‖S(xn − p(xn), vn)− S(xn−1 − p(xn−1), vn−1)‖

= ‖S(xn − p(xn), vn)− S(xn−1 − p(xn−1), vn)

+ S(xn−1 − p(xn−1), vn)− S(xn−1 − p(xn−1), vn−1)‖

≤ ‖S(xn − p(xn), vn)− S(xn−1 − p(xn−1), vn)‖

+ ‖S(xn−1 − p(xn−1), vn)− S(xn−1 − p(xn−1), vn−1)‖

≤ λS1
‖xn − xn−1 − (p(xn)− p(xn−1))‖+ λS2

‖vn − vn−1‖

≤ λS1
‖xn − xn−1 − (p(xn)− p(xn−1))‖+ λS2

D(F (yn), F (yn−1))

≤ λS1
‖xn − xn−1 − (p(xn)− p(xn−1))‖+ λS2

λDF
‖yn − yn−1‖.(3.14)

By Proposition 2.9, we have (see, for example the proof of [4, Theorem 3])

(3.15) ‖xn − xn−1 − (p(xn)− p(xn−1))‖
2 ≤ (1− 2δp + 64C1λ

2
p)‖xn − xn−1‖

2.

Using (3.15), (3.14) becomes

(3.16)
‖S(xn − p(xn), vn)− S(xn−1 − p(xn−1), vn−1)‖

≤ λS1

√

1− 2δp + 64C1λ2
p‖xn − xn−1‖+ λS2

λDF
‖yn − yn−1‖.
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Using (3.13) and (3.16), (3.12) becomes

‖z′n+1 − z′n‖

≤
√

1− 2r1λ2
f + 64C1λ2

H1
λ2
f‖xn − xn−1‖+ ‖xn − xn−1‖

+ ρ(λS1

√

1− 2δp + 64C1λ2
p‖xn − xn−1‖+ λS2

λDF
‖yn − yn−1‖)

=
(√

1− 2r1λ2
f + 64C1λ2

H1
λ2
f + 1 + ρλS1

√

1− 2δp + 64C1λ2
p

)

‖xn − xn−1‖

+ ρλS2
λDF

‖yn − yn−1‖

=
(

B′
1/2 + 1 + ρλS1

√

1− 2δp + 64C1λ2
p

)

‖xn − xn−1‖

+ ρλS2
λDF

‖yn − yn−1‖,(3.17)

where B′
1 = 2

√

1− 2r1λ2
f + 64C1λ2

H1
λ2
f .

Again, from Algorithm 3.2 we have

‖z′′n+1 − z′′n‖ = ‖H2(g(yn))− γT (un, yn − q(yn))

− [H2(g(yn−1))− γT (un−1, yn−1 − q(yn−1))]‖

≤ ‖yn − yn−1 − (H2(g(yn))−H2(g(yn−1)))‖+ ‖yn − yn−1‖

+ γ‖T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))‖.(3.18)

Since H2 is strongly accretive with constant r2 and Lipschitz continuous with constant
λH2

, g is Lipschitz continuous with constant λg and by Proposition 2.9, we have

(3.19) ‖yn−yn−1−(H2(g(yn))−H2(g(yn−1)))‖
2 ≤ (1−2r2λ

2
g+64C2λ

2
H2

λ2
g)‖yn−yn−1‖

2.

Since T is Lipschitz continuous in both arguments, G is D-Lipschitz continuous, we have

‖T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))‖

≤ ‖T (un, yn − q(yn))− T (un−1, yn − q(yn))‖

+ ‖T (un−1, yn − q(yn))− T (un−1, yn−1 − q(yn−1))‖

≤ λT1
‖un − un−1‖+ λT2

‖yn − q(yn)− (yn−1 − q(yn−1))‖

≤ λT1
D(G(xn), G(xn−1)) + λT2

‖yn − yn−1 − (q(yn)− q(yn−1))‖

≤ λT1
λDG

‖xn − xn−1‖+ λT2
‖yn − yn−1 − (q(yn)− q(yn−1))‖.(3.20)

Using the same argument as for (3.15), we have

(3.21) ‖yn − yn−1 − (q(yn)− q(yn−1))‖
2 ≤ (1− 2δq + 64C2λ

2
q)‖yn − yn−1‖

2.

Using (3.21), (3.20) becomes

(3.22)
‖T (un, yn − q(yn))− T (un−1, yn−1 − q(yn−1))‖

≤ λT1
λDG

‖xn − xn−1‖+ λT2

√

1− 2δq + 64C2λ2
q‖yn − yn−1‖.
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Using (3.19) and (3.22), (3.18) becomes

‖z′′n+1 − z′′n‖

≤
√

1− 2r2λ2
g + 64C2λ2

H2
λ2
g‖yn − yn−1‖+ ‖yn − yn−1‖

+ γ
(

λT1
λDG

‖xn − xn−1‖+ λT2

√

1− 2δq + 64C2λ2
q‖yn − yn−1‖

)

=
(√

1− 2r2λ2
g + 64C2λ2

H2
λ2
g + 1 + γλT2

√

1− 2δq + 64C2λ2
q

)

‖yn − yn−1‖

+ γλT1
λDG

‖xn − xn−1‖

=
(

B′′
1 /2 + 1 + γλT2

√

1− 2δq + 64C2λ2
q

)

‖yn − yn−1‖

+ γλT1
λDG

‖xn − xn−1‖,(3.23)

where B′′
1 = 2

√

1− 2r2λ2
g + 64C2λ2

H2
λ2
g.

By (3.17) and (3.23), we have

(3.24)

‖z′n+1 − z′n‖+ ‖z′′n+1 − z′′n‖

≤ (B′
1/2 + 1 + ρλS1

√

1− 2δp + 64C1λ2
p + γλT1

λDG
)‖xn − xn−1‖

+
(

B′′
1 /2 + 1 + γλT2

√

1− 2δq + 64C2λ2
q + ρλS2

λDF

)

‖yn − yn−1‖.

Also from (3.5) and (3.6), we have

‖xn − xn−1‖ = ‖xn − xn−1 − (f(xn)− f(xn−1)) + JM
H1,ρ(z

′
n)− JM

H1,ρ(z
′
n−1)‖

≤ ‖xn − xn−1 − (f(xn)− f(xn−1))‖+ ‖JM
H1,ρ(z

′
n)− JM

H1,ρ(z
′
n−1)‖

≤ ‖xn − xn−1 − (f(xn)− f(xn−1))‖+
1

r1
‖z′n − z′n−1‖.(3.25)

Using the same argument as for (3.15), we have

(3.26) ‖xn − xn−1 − (f(xn)− f(xn−1))‖
2 ≤ (1− 2δf + 64C1λ

2
f )‖xn − xn−1‖

2.

Using (3.26), (3.25) becomes

‖xn − xn−1‖ ≤
√

(1− 2δf + 64C1λ2
f )‖xn − xn−1‖+

1

r1
‖z′n − z′n−1‖

≤
B′

2

2
‖xn − xn−1‖+

1

r1
‖z′n − z′n−1‖,

where B′
2 = 2

√

(1− 2δf + 64C1λ2
f ). This implies

(3.27) ‖xn − xn−1‖ ≤
1

r1(1−
B′

2

2
)
‖z′n − z′n−1‖,

and

‖yn − yn−1‖ = ‖yn − yn−1 − (g(yn)− g(yn−1)) + JN
H2,γ(z

′′
n)− JN

H2,γ(z
′′
n−1)‖

≤ ‖yn − yn−1 − (g(yn)− g(yn−1))‖+ ‖JN
H2,γ(z

′′
n)− JN

H2,γ(z
′′
n−1)‖

≤ ‖yn − yn−1 − (g(yn)− g(yn−1))‖+
1

r2
‖z′′n − z′′n−1‖.(3.28)

Using the same argument as for (3.15), we have

(3.29) ‖yn − yn−1 − (g(yn)− g(yn−1))‖
2 ≤ (1− 2δg + 64C2λ

2
g)‖yn − yn−1‖

2.
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Using (3.29), (3.28) becomes

‖yn − yn−1‖ ≤
√

(1− 2δg + 64C2λ2
g)‖yn − yn−1‖+

1

r2
‖z′′n − z′′n−1‖

≤
B′′

2

2
‖yn − yn−1‖+

1

r2
‖z′′n − z′′n−1‖,

where B′′
2 = 2

√

1− 2δg + 64C2λ2
g. This implies that

(3.30) ‖yn − yn−1‖ ≤
1

r2(1−
B′′

2

2
)
‖z′′n − z′′n−1‖.

Using (3.27) and (3.30), (3.24) becomes

‖z′n+1 − z′n‖+ ‖z′′n+1 − z′′n‖

≤

[

B′
1/2 + 1 + ρλS1

√

1− 2δp + 64C1λ2
p + γλT1

λDG

r1(1−
B′

2

2
)

]

‖z′n − z′n−1‖

+

[

B′′
1 /2 + 1 + γλT2

√

1− 2δq + 64C2λ2
q + ρλS2

λDF

r2(1−
B′′

2

2
)

]

‖z′′n − z′′n−1‖

≤ θ(‖z′n − z′n−1‖+ ‖z′′n − z′′n−1‖),(3.31)

where

θ = max

{

B′
1/2 + 1 + ρλS1

√

1− 2δp + 64C1λ2
p + γλT1

λDG

r1(1−
B′

2

2
)

,

B′′
1 /2 + 1 + γλT2

√

1− 2δq + 64C2λ2
q + ρλS2

λDF

r2(1−
B′′

2

2
)

}

.

By (3.11) we know that 0 < θ < 1 and so (3.31) implies that {z′n} and {z′′n} are both
Cauchy sequences. Thus, there exists z′ ∈ E1 and z′′ ∈ E2 such that z′n → z′ and
z′′n → z′′ as n → ∞.

From (3.27) and (3.30) it follows that {xn} and {yn} are also Cauchy sequences, that
is, there exists x ∈ E1 and y ∈ E2 such that xn → x and yn → y as n → ∞.

Also from (3.7) and (3.8), we have

‖un+1 − un‖ ≤ D(G(xn+1), G(xn)) ≤ λDG
‖xn+1 − xn‖,

‖vn+1 − vn‖ ≤ D(F (yn+1), F (yn)) ≤ λDF
‖yn+1 − yn‖,

and hence {un} and {vn} are also Cauchy sequences, so there exist u ∈ E1 and v ∈ E2

such that un → u and vn → v respectively.

Now, we will show that u ∈ G(x) and v ∈ F (y). In fact, since un ∈ G(xn) and

d(un, G(x)) ≤ max
{

d(un, G(x)), sup
w1∈G(x)

d(G(xn), w1)
}

≤ max
{

sup
w2∈G(xn)

d(w2, G(x)), sup
w1∈G(x)

d(G(xn), w1)
}

= D(G(xn), G(x)),

we have

d(u, G(x)) ≤ ‖u− un‖+ d(un, G(x))

≤ ‖u− un‖+D(G(xn), G(x))

≤ ‖u− un‖+ λDG
‖xn − x‖ → 0 as n → ∞.
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which implies that d(u,G(x)) = 0. Since G(x) ∈ CB(E), it follows that u ∈ G(x).
Similarly, we can show that v ∈ F (y). By continuity of f , g, p, q, H1, H2, G, F , M , N ,
S, T , JM

H1,ρ
(·, x), JN

H2,γ
(·, y) and Algorithm 3.1, we have

z′ = H1(f(x))− ρS(x− p(x), v) = H1(J
M
H1,ρ(·, x)(z

′))− ρS(x− p(x), v) ∈ E1

and

z′′ = H2(g(y))− γT (u, y − q(y)) = H2(J
N
H2,γ(·, y)(z

′′))− γT (u, y − q(y)) ∈ E2.

By Proposition 3.1, the required result follows. �
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