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Abstract

In the present paper, we introduce a new subclass of harmonic func-
tions in the unit disc U by using the Derivative operator. Also, we
obtain coefficient conditions, convolution conditions, convex combina-
tions, extreme points and some other properties.
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1. Introduction

A continuous function f = u+ iv is a complex-valued harmonic function in a complex
domain C if both u and v are real harmonic in C. In any simply connected domain
D ⊂ C, we can write f = h+ g, where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f . A necessary and sufficient condition for f to be
locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)| in D, see [4].

In 1984, Clunie and Sheil-Small [4] investigated the class SH and studied some suf-
ficient bounds. Since then, there have been several papers published related to SH and
its subclasses. In fact by introducing new subclasses Sheil-Small [13], Silverman [14],
Silverman and Silvia [15], Jahangiri [6] and Ahuja [1] presented a systematic and unified
study of harmonic univalent functions. Furthermore we refer to Duren [5], Ponnusamy
[9] and references therein for basic results on the subject.
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Denote by SH , the class of functions f = h + g that are harmonic, univalent and
sense-preserving in the unit disk U = {z : |z| < 1} with normalization f(0) = h(0) =
fz(0)− 1 = 0. Then for f = h+ g ∈ SH , we may express the analytic functions h and g

as

(1.1) h(z) = z +

∞
∑

k=2

akz
k
, g(z) =

∞
∑

k=1

bkz
k
, |b1| < 1.

Observe that SH reduces to S, the class of normalized univalent functions, if the co-
analytic part of f is zero. Also, denote by S∗

H the subclass of SH consisting of functions
f that map U onto a starlike domain.

For f = h+ g given by (1.1), Al-Shaqsi and Darus [3] introduced the operator Dn
λ as:

(1.2) D
n
λf(z) = D

n
λh(z) + (−1)nDn

λg(z), n, λ ∈ N0 = N ∪ {0}, z ∈ U,

where Dn
λh(z) = z +

∞
∑

k=2

k
n
C(λ, k)akz

k, Dn
λg(z) =

∞
∑

k=1

k
n
C(λ, k)bkz

k and C(λ, k) =

(

k+λ−1

λ

)

.

Recently Rosy et al. [10] defined the subclass GH(γ) ⊂ SH consisting of harmonic
univalent functions f(z) satisfying the condition

Re

{

(1 + e
iα)

zf ′(z)

f(z)
− e

iα

}

≥ γ, 0 ≤ γ < 1, α ∈ R.

They proved that if f = h+ g is given by (1.1) and if

(1.3)

∞
∑

n=1

[

(2n− 1− γ)

(1− γ)
|an|+

(2n+ 1 + γ)

(1− γ)
|bn|

]

≤ 2, 0 ≤ γ < 1,

then f is in GH(γ).

This condition is proved to be also necessary by Rosy et al. if h and g are of the form

(1.4) h(z) = z −
∞
∑

n=2

|an|z
n
, g(z) =

∞
∑

n=1

|bn|z
n
.

Motivated by this aforementioned work, now we introduce the class GH(n, λ, α, ρ) as the
subclass of functions of the form (1.1) that satisfy the following condition

(1.5) Re

{

(1 + ρe
ir)

Dn+1

λ f(z)

Dn
λf(z)

− ρe
ir

}

> α, 0 ≤ α < 1, r ∈ R, ρ ≥ 0,

where Dn
λf(z) is defined by (1.2).

Let GH(n, λ, α, ρ) denote that the subclasses of GH(n, λ, α, ρ) which consists of har-
monic functions fn = h+ gn such that h and gn are of the form

(1.6) h(z) = z −

∞
∑

k=2

|ak|z
k
, gn(z) = (−1)n

∞
∑

k=1

|bk|z
k
.

It is clear that the class GH(n, λ, α, ρ) includes a variety of well-known subclasses of SH ,
such as,

(i) GH(0, 0, α, 0) ≡ S∗

H(α), Jahangiri [6],

(ii) GH(0, 1, α, 0) ≡ HK(α), Jahangiri [6],

(iii) GH(n, 0, α, 0) ≡ MH(n, 0, α), Jahangiri et al. [7],



Harmonic Univalent Functions 49

(iv) GH(0, λ, α, 0) ≡ MH(0, λ, α), Murugusundaramoorthy and Vijya [8],

(v) GH(n, λ, α, 0) ≡ MH(n, λ, α), Al-Shaqsi and Darus [2],

(vi) GH(0, 1, γ, 1) ≡ GH(γ),Rosy et al. [10].

In this paper, we will give sufficient condition for functions f = h + g, where h and g

are given by (1.1), to be in the class GH(n, λ, α, ρ) and it is shown that this coefficient

condition is also necessary for functions in the class GH(n, λ, α, ρ). Also, we obtain
distortion theorems and characterize the extreme points and convolution conditions for
functions in GH(n, λ, α, ρ).

Closure theorems and an application of neighborhoods are also obtained.

2. Coefficient bound

We begin with a sufficient coefficient condition for functions in GH(n, λ, α, ρ).

2.1. Theorem. Let f = h+ g be given by (2.1). If

(2.1)

∞
∑

k=1

[{k(1 + ρ)− (α+ ρ)} |ak|+ {k(1 + ρ) + (α+ ρ)} |bk| ]

× k
n
C(λ, k) ≤ 2(1− α),

where a1 = 1, n, λ ∈ N0, C(λ, k) =
(

k+λ−1

λ

)

, ρ ≥ 0 and 0 ≤ α < 1, then f is sense-

preserving, harmonic univalent in U and f ∈ GH(n, λ, α, ρ).

Proof. If z1 6= z2, then

(2.2)

∣

∣

∣

∣

f(z1)− f(z2)

h(z1)− h(z2)

∣

∣

∣

∣

≥ 1−

∣

∣

∣

∣

g(z1)− g(z2)

h(z1)− h(z2)

∣

∣

∣

∣

= 1−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

bk(z
k
1 − z

k
2 )

(z1 − z2) +
∞
∑

k=2

ak(z
k
1 − z

k
2 )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 1−

∞
∑

k=1

k|bk|

1−

∞
∑

k=2

k|ak|

≥ 1−

∞
∑

k=1

[k(1 + ρ) + (α+ ρ)]knC(λ, k)|bk|

1− α

1−
∞
∑

k=2

[k(1 + ρ)− (α+ ρ)]knC(λ, k)|ak|

1− α

≥ 0,
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which proves univalence. Note that f is sense-preserving in U . This is because

(2.3)

|h′(z)| ≥ 1−

∞
∑

k=2

k|ak||z|
k−1

> 1−

∞
∑

k=2

{k(1 + ρ)− (α+ ρ)}knC(λ, k)|ak|

1− α

≥
∞
∑

k=1

{k(1 + ρ) + (α+ ρ)}knC(λ, k)|bk|

1− α

>

∞
∑

k=1

{k(1 + ρ) + (α+ ρ)}knC(λ, k)|bk||z|
k−1

1− α

≥

∞
∑

k=1

k|bk||z|
k−1 ≥ |g′(z)|.

Using the fact that Rew > α if and only if |1 − α+ w| ≥ |1 + α− w| it suffices to show
that

(2.4)

|(1− α) + (1 + ρe
ir)

Dn+1

λ f(z)

Dn
λf(z)

− ρe
ir|

− |(1 + α) − (1 + ρe
ir)

Dn+1

λ f(z)

Dn
λf(z)

+ ρe
ir| ≥ 0.

Substituting the value of Dn
λf(z) in (2.4) yields, by (2.1),

|(1− α− ρe
ir)Dn

λf(z) + (1 + ρe
ir)Dn+1

λ f(z)|

− | − (1 + α+ ρe
ir)Dn

λf(z) + (1 + ρe
ir)Dn+1

λ f(z)|

= |(2− α)z +

∞
∑

k=2

{k(1 + ρe
ir) + (1− α− ρe

ir)}kn
C(λ, k)

× akz
k − (−1)n

∞
∑

k=1

{k(1 + ρe
ir)− (1− α− ρe

ir)}kn
C(λ, k)bkz

k|

− | − αz +
∞
∑

k=2

{k(1 + ρe
ir)− (1 + α+ ρe

ir)}kn
C(λ, k)akz

k

− (−1)n
∞
∑

k=1

{k(1 + ρe
ir) + (1 + α+ ρe

ir)}kn
C(λ, k)bkzk

≥ 2(1− α)|z|

[

1−

∞
∑

k=2

{k(1 + ρ)− (α+ ρ)}knC(λ, k)|ak||z|
k

1− α

−

∞
∑

k=1

{k(1 + ρ) + (α+ ρ)}knC(λ, k)|bk||z|
k

1− α

]

(2.5)

≥ 2(1− α)

[

1−
∞
∑

k=2

{k(1 + ρ)− (α+ ρ)}knC(λ, k)|ak|

1− α

−
∞
∑

k=1

{k(1 + ρ) + (α+ ρ)}knC(λ, k)|bk|

1− α

]

.

This last expressions is non-negative by (2.1), and so the proof is complete. �
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The harmonic function

(2.6)

f(z) = z +
∞
∑

k=2

(1− α)

{k(1 + ρ)− (α+ ρ)}knC(λ, k)
xkz

k

+

∞
∑

k=1

(1− α)

{k(1 + ρ) + (α+ ρ)}knC(λ, k)
ykzk

where n, λ ∈ N0, o ≤ ρ ≤ 1 and
∞
∑

k=2

|xk|+
∞
∑

k=1

|yk| = 1 shows that the coefficient bound

given by (2.1) is sharp. The functions of the form (2.6) are in GH(n, λ, α, ρ) because

(2.7)

∞
∑

k=1

[

k(1 + ρ)− (α+ ρ)

1− α
|ak|+

k(1 + ρ) + (α+ ρ)

1− α
|bk|

]

k
n
C(λ, k)

= 1 +
∞
∑

k=2

|xk|+
∞
∑

k=1

|yk| = 2.

In the following theorem, it is shown that the condition (2.1) is also necessary for functions
fn = h+ gn, where h and, gn are of the form (1.6).

2.2. Theorem. Let fn = h+ gn be given by (1.6). Then fn ∈ GH(n, λ, α, ρ) if and only

if

(2.8)
∞
∑

k=1

[{k(1 + ρ)− (α+ ρ)}|ak|+ {k(1 + ρ) + (α+ ρ)}|bk|]k
n
C(λ, k) ≤ 2(1− α)

where a1 = 1, n, λ ∈ N0, C(λ, k) =
(

k+λ−1

λ

)

, ρ ≥ 0, 0 ≤ α < 1.

Proof. Since GH(n, λ, α, ρ) ⊂ GH(n, λ, α, ρ) we only need to prove the “only if” part of
Theorem 2.2. To this end, for functions fn of the form (1.6), we notice that the condition
(1.5) is equivalent to

Re

{

(1 + ρe
ir)

Dn+1

λ f(z)

Dn
λf(z)

− (ρeir + α)

}

≥ 0

=⇒

Re
{(1 + ρeir)Dn+1

λ f(z) − (ρeir + α)Dn
λf(z)}

Dn
λf(z)

≥ 0

=⇒

Re























(1 + ρeir)
(

z −
∞
∑

k=2

k
n+1

C(λ, k)|ak|z
k + (−1)2n+1

∞
∑

k=1

k
n+1|bk|C(λ, k)zk

)

z −

∞
∑

k=2

k
n
C(λ, k)|ak|z

k + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|z

k

−

(ρeir + α)(z −
∞
∑

k=2

k
n
C(λ, k)|ak|z

k + (−1)2n
∞
∑

k=1

k
n|bk|C(λ, k)zk)

z −
∞
∑

k=2

k
n
C(λ, k)|ak|z

k + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|z

k























≥ 0
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=⇒

Re























(1− α)z −
∞
∑

k=2

k
n[k(1 + ρe

ir)− (ρeir + α)]C(λ, k)|ak|z
k

z −
∞
∑

k=2

k
n
C(λ, k)|ak|z

k + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|z

k

+

(−1)2n+1

∞
∑

k=1

k
n[k(1 + ρe

ir) + (ρeir + α)]C(λ, k)|bk|z
k

z −
∞
∑

k=2

k
n
C(λ, k)|ak|z

k + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|z

k























≥ 0

=⇒

Re























(1− α)−
∞
∑

k=2

k
n[k(1 + ρe

ir)− (ρeir + α)]C(λ, k)|ak|z
k−1

1−

∞
∑

k=2

k
n
C(λ, k)|ak|z

k−1 +
z

z
(−1)2n

∞
∑

k=1

k
n
C(λ, k)|bk|z

k−1

−

z
z
(−1)2n

∞
∑

k=1

k
n[k(1 + ρe

ir) + (ρeir + α)]C(λ, k)|bk|z
k−1

1−
∞
∑

k=2

k
n
C(λ, k)|ak|z

k−1 +
z

z
(−1)2n

∞
∑

k=1

k
n
C(λ, k)|bk|z

k−1























≥ 0

(2.9)

The above condition (2.9) must hold for all values of z on the positive real axes, where,
0 ≤ |z| = γ < 1, we must have

Re























(1− α)−

∞
∑

k=2

k
n(k − α)C(λ, k)|ak|γ

k−1

1−
∞
∑

k=2

k
n
C(λ, k)|ak|γ

k−1 + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|γ

k−1

−

(−1)2n
∞
∑

k=1

k
n(k + α)C(λ, k)|bk|γ

k−1 − ρe
ir

∞
∑

k=2

k
n(k − 1)C(λ, k)|ak|γ

k−1

1−

∞
∑

k=2

k
n
C(λ, k)|ak|γ

k−1 + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|γ

k−1

−

(−1)2nρeir
∞
∑

k=1

k
n(k + 1)C(λ, k)|bk|γ

k−1

1−
∞
∑

k=2

k
n
C(λ, k)|ak|γ

k−1 + (−1)2n
∞
∑

k=1

k
n
C(λ, k)|bk|γ

k−1























≥ 0.
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Since Re(−eir) ≥ −|eir| = −1, the above inequality reduce to

(2.10)

(1− α)−

∞
∑

k=2

k
n{(k(1 + ρ)− (ρ+ α))}C(λ, k)|ak|γ

k−1

1−
∞
∑

k=2

k
n
C(λ, k)|ak|γ

k−1 +
∞
∑

k=1

k
n
C(λ, k)|bk|γ

k−1

−

∞
∑

k=1

k
n{(k(1 + ρ) + (ρ+ α))}C(λ, k)|bk|γ

k−1

1−

∞
∑

k=2

k
n
C(λ, k)|ak|γ

k−1 +

∞
∑

k=1

k
n
C(λ, k)|bk|γ

k−1

≥ 0.

If the condition (2.8) does not hold, then the numerator in (2.10) is negative for γ

sufficiently close to 1. Hence there exists a z0 = γ0 in (0, 1) for which the quotient in

(2.10) is negative. This contradicts the condition for fn ∈ GH(n, λ, α, ρ) and so the proof
is complete. �

3. Distortion bounds

In this section, we will obtain distortion bounds for functions in GH(n, λ, α, ρ).

3.1. Theorem. Let fn ∈ GH(n, λ, α, ρ). Then for |z| = γ < 1, we have

|fn(z)| ≤ (1 + |b1|)γ +
(1− α)

2n[2(1 + ρ)− (ρ+ α)](λ+ 1)

[

1−
1 + 2ρ+ α

1− α
|b1|

]

γ
2
.

|fn(z)| ≥ (1− |b1|)γ −
(1− α)

2n[2(1 + ρ)− (ρ+ α)](λ+ 1)

[

1−
1 + 2ρ+ α

1− α
|b1|

]

γ
2
.

Proof. We only prove the left-hand inequality. The proof for the right-hand inequality
is similar and is thus omitted. Let fn ∈ GH(n, λ, α, ρ). Taking the absolute value of fn,
we obtain

|fn(z)|

=
∣

∣

∣
z −

∞
∑

k=2

akz
k + (−1)n

∞
∑

k=1

bkz
k
∣

∣

∣

≤ (1 + |b1|)γ +
∞
∑

k=2

(|ak|+ |bk|)γ
k

≤ (1 + |b1|)γ +

∞
∑

k=2

(|ak|+ |bk|)γ
2

≤ (1 + |b1|)γ +
1− α

(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

×

∞
∑

k=2

(

(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

1− α
|ak|

+
(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

1− α
|bk|

)

γ
2
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≤ (1 + |b1|)γ +
1− α

(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

×

∞
∑

k=2

[

(k(1 + ρ)− (ρ+ α))knC(λ, k)

1− α
|ak|

+
(k(1 + ρ) + (ρ+ α))knC(λ, k)

1− α
|bk|

]

γ
2

≤ (1 + |b1|)γ

+
1− α

(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

[

1−
((1 + ρ) + (ρ+ α))

1− α
|b1|

]

γ
2

≤ (1 + |b1|)γ

+
1− α

(2(1 + ρ)− (ρ+ α))2n(λ+ 1)

[

1−
1 + 2ρ+ α

1− α
|b1|

]

γ
2
.

The functions

f(z) = z + |b1|z

+
1

2n(λ+ 1)

[

1− α

2(1 + ρ)− (ρ+ α)
−

1 + 2ρ+ α

2(1 + ρ)− (ρ+ α)
|b1|

]

z
2
,

f(z) = (1− |b1|)z

−
1

2n(λ+ 1)

[

1− α

2(1 + ρ)− (ρ+ α)
−

1 + 2ρ+ α

2(1 + ρ)− (ρ+ α)
|b1|

]

z
2

for |b1| ≤
1−α

1+2ρ+α
show that the bounds given in Theorem 3.1 are sharp. �

The following covering result follows from the left-hand inequality in Theorem 3.1.

3.2. Corollary. If the function fn = h + gn, where h and g given by (1.4) are in

GH(n, λ, α, ρ), then

(3.1)

{

w : |w| <
(2n(λ+ 1)(ρ+ 2)− 1− (2n(λ+ 1) − 1)α)

2n(λ+ 1)(2(1 + ρ)− (ρ+ α))

−
2n(λ+ 1)(ρ+ 2) − (2ρ+ 1)− (2n(λ+ 1) + 1)α|b1|

2n(λ+ 1)(2(1 + ρ)− (ρ+ α))

}

⊂ fn(U) �

4. Convolution, convex combinations and extreme points

In this section, we show the class GH(n, λ, α, ρ) is invariant under convolution and
convex combination.

For harmonic functions

fn(z) = z −

∞
∑

k=2

akz
k + (−1)n

∞
∑

k=1

bkz
k

and

Fn(z) = z −
∞
∑

k=2

Akz
k + (−1)n

∞
∑

k=1

Bkz
k
,

the convolution of fn and Fn is given by

(4.1) (fn ∗ Fn)(z) = fn(z) ∗ Fn(z) = z −
∞
∑

k=2

akAkz
k + (−1)n

∞
∑

k=1

bkBkz
k
.
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4.1. Theorem. For 0 ≤ β ≤ α < 1, let fn ∈ GH(n, λ, α, ρ) and Fn ∈ GH(n, λ, β, ρ).

Then fn ∗ Fn ∈ GH(n, λ, α, ρ) ⊂ GH(n, λ, β, ρ).

Proof. We wish to show that the coefficient of fn ∗ Fn satisfies the required condition
given in Theorem 2.2. For Fn ∈ GH(n, λ, β, ρ), we note that |Ak| ≤ 1 and |Bk| ≤ 1.
Now, for the convolution function fn ∗ Fn, we obtain

∞
∑

k=2

{k(1 + ρ)− (β + ρ)}knC(λ, k)

1− β
|ak||Ak|

+

∞
∑

k=1

{k(1 + ρ) + (β + ρ)}knC(λ, k)

1− β
|bk||Bk|

≤

∞
∑

k=2

{k(1 + ρ)− (β + ρ)}knC(λ, k)

1− β
|ak|

+
∞
∑

k=1

{k(1 + ρ) + (β + ρ)}knC(λ, k)

1− β
|bk|

≤
∞
∑

k=2

{k(1 + ρ)− (α+ ρ)}knC(λ, k)

1− α
|ak|

+

∞
∑

k=1

{k(1 + ρ) + (α+ ρ)}knC(λ, k)

1− α
|bk|

≤ 1.

Since 0 ≤ β ≤ α < 1 and fn ∈ GH(n, λ, α, ρ), then fn ∗ Fn ∈ GH(n, λ, α, ρ) ⊂

GH(n, λ, β, ρ). �

We now examine convex combinations of GH(n, λ, α, ρ).

Let the functions fnj
(z) be defined, for j = 1, 2, . . . ,m, by

(4.2) fnj
(z) = z −

∞
∑

k=2

|ak,j |z
k + (−1)n

∞
∑

k=1

|bk,j |z
k
.

4.2. Theorem. Let the functions fnj
(z) defined by (4.2) be in the class GH(n, λ, α, ρ)

for every j = 1, 2, . . . ,m. Then the functions tj(z) defined by

(4.3) tj(z) =

m
∑

j=1

cjfnj
(z), 0 ≤ cj ≤ 1,

are also in the class GH(n, λ, α, ρ), where
∑m

j=1
cj = 1.

Proof. According to the definition of tj , we can write

tj(z) = z −
∞
∑

k=2

( m
∑

j=1

cj |ak,j |

)

z
k + (−1)n

∞
∑

k=1

( m
∑

j=1

cj |bn,j |

)

z
k
.
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Further, since fnj
(z) are in GH(n, λ, α, ρ) for every j = 1, 2, . . . ,m, then

∞
∑

k=1

{[

(k(1 + ρ)− (α+ ρ))

( m
∑

j=1

cj |ak,j |

)

+ (k(1 + ρ) + (α+ ρ))

( m
∑

j=1

cj |bk,j |

)]

k
n
C(λ, k)

}

=
m
∑

j=1

cj

( ∞
∑

k=1

[(k(1 + ρ)− (α+ ρ))|an,j |

+ (k(1 + ρ) + (α+ ρ))|bn,j |]k
n
C(λ, k)

)

≤
m
∑

j=1

cj2(1− α) ≤ 2(1− α).

Hence Theorem 4.2 follows. �

4.3. Corollary. The class GH(n, λ,α, ρ) is closed under convex linear combinations.

Proof. Let the functions fnj
(z)(j = 1, 2 . . . ,m) defined by (4.2) be in the classGH(n, λ, α, ρ).

Then the function Ψ(z) defined by

(4.4) Ψ(z) = µfnj
(z) + (1− µ)fnj

(z), 0 ≤ µ ≤ 1

is in the class GH(n, λ, α, ρ). Also, by takingm = 2, t1 = µ and t2 = 1−µ in Theorem 4.1.
�

Next we determine the extreme points of closed convex hulls of GH(n, λ, α, ρ), denoted
by clcoGH(n, λ, α, ρ).

4.4. Theorem. Let fn be given by (1.6). Then fn ∈ GH(n, λ, α, ρ) if and only if

fn(z) =
∞
∑

k=1

(Xkhk(z) + Ykgnk
(z)),

where

h1(z) = z, hk(z) = z −

(

1− α

(k(1 + ρ)− (α+ ρ))knC(λ, k)

)

z
k
, k = 2, 3 . . . ,

gnk
(z) = z + (−1)n

(

1− α

(k(1 + ρ) + (α+ ρ))knC(λ, k)

)

z
k
, k = 1, 2, 3 . . .

and

∞
∑

k=1

(Xk+Yk) = 1, Xk ≥ 0, Yk ≥ 0. In particular, the extreme points of GH(n, λ, α, ρ)

are {hk} and {gnk
}.

Proof. For the function fn of the form (4.7), we have

fn(z) =

∞
∑

k=1

(Xkhk(z) + Ykgnk
(z))

=
∞
∑

k=1

(Xk + Yk)z −
∞
∑

k=2

1− α

(k(1 + ρ)− (α+ ρ))knC(λ, k)
Xkz

k

+ (−1)n
∞
∑

k=1

1− α

(k(1 + ρ) + (α+ ρ))knC(λ, k)
Ykz

k
.
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Then

(4.5)

∞
∑

k=2

(k(1 + ρ)− (α+ ρ))knC(λ, k)

1− α
|ak|

+
∞
∑

k=1

(k(1 + ρ) + (α+ ρ))knC(λ, k)

1− α
|bk|

=
∞
∑

k=2

Xk +
∞
∑

k=1

Yk = 1−X1 ≤ 1,

and so fn ∈ clcoGH(n, λ, α, ρ).

Conversely, suppose that fn ∈ clcoGH(n, λ, α, ρ). Setting

(4.6)
Xk =

(k(1 + ρ)− (α+ ρ))knC(λ, k)

1− α
|ak|, 0 ≤ Xk ≤ 1 k = 2, 3, . . . ,

Yk =
(k(1 + ρ) + (α+ ρ))knC(λ, k)

1− α
|bk|, 0 ≤ Yk ≤ 1 k = 1, 2, 3, . . . ,

and X1 = 1−
∞
∑

k=2

Xk +
∞
∑

k=1

Yk then fn can be written as

fn(z) = z −
∞
∑

k=2

|ak|z
k + (−1)n

∞
∑

k=1

|bk|z
k

= z −
∞
∑

k=2

(1− α)Xk

(k(1 + ρ)− (α+ ρ))knC(λ, k)
z
k

+ (−1)n
∞
∑

k=1

(1− α)Yk

(k(1 + ρ) + (α+ ρ))knC(λ, k)
z
k

= z +

∞
∑

k=2

(hk(z)− z)Xk +

∞
∑

k=1

(gnk
(z)− z)Yk

=
∞
∑

k=2

hk(z)Xk +
∞
∑

k=1

gnk
(z)Yk + z

(

1−
∞
∑

k=2

Xk −
∞
∑

k=1

Yk

)

=

∞
∑

k=1

(hk(z)Xk + gnk
(z)Yk), as required.(4.7)

Using Corollary 4.3 we have clcoGH(n, λ, α, ρ) = GH(n, λ, α, ρ). Then the statement of

Theorem 4.4 is true for f ∈ GH(n, λ, α, ρ). �
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