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Abstract

In this paper, the concepts of [0, 1]-fuzzy S-rank function and [0, 1]-
fuzzy a-rank function are presented. The set of all closed and perfect
[0, 1]-matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on E
and that of all [0,1]-fuzzy S-rank functions on E are in one-to-one
correspondence. A [0, 1]-fuzzy a-rank function on FE is equivalent to a
[0, 1]-fuzzy B-rank function on E.
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1. Introduction

In 1988, R. Goetschel and W. Voxman introduced the concept of fuzzy matroid [1].
Subsequently many scholars researched Goetschel-Voxman fuzzy matroids [2, 4, 5].

In [8], when L is a completely distributive lattice, Shi introduced a new approach
to the fuzzication of matroids, namely an L-matroid. L-matroids preserve many basic
properties of matroids and can be applied to fuzzy algebras and fuzzy graphs.

In the sequel, we shall consider L = [0,1]. A perfect [0,1]-matroid is equivalent to
a Goetschel-Voxman fuzzy matroid. In [9], we began an investigation of the [0, 1]-fuzzy
rank functions for [0, 1]-matroids. A closed and perfect [0, 1]-matroid can be characterized
by means of its [0, 1]-fuzzy rank function satisfying four fuzzy axioms (LR1)-(LR4).

This paper is a successor of [8] and [9]. It is shown that the [0, 1]-fuzzy rank function
for a closed and perfect [0, 1]-matroid can be also described via four fuzzy axioms (LR1),
(LR2), (LR3) and (LR4)".
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2. Preliminaries

Throughout this paper, F is a nonempty finite set and we denote the power set of
E by 2%, For any X C E, |X| denotes the cardinality of X. A fuzzy set A on F is a
mapping A : E — [0, 1], the set of all fuzzy sets on E is denoted by [0, 1]¥. We often do
not distinguish a crisp subset X of F from its characteristic function xx.

For A €1[0,1]%, a €[0,1] and J C [0,1]", define
Ay ={e€ E: A(e) > a}, Ay ={e€ E: Ale) > a},
Jla] = {Ap) : A €7}, I(a) = {Aw) : A €T}
In [3, 6], some properties of these cut sets can be found as follows:

Alz) = \/{a €(0,1]:z €Ay} = \/{a €0,1):z €A},

A=A =) 40 4w = An=U Aw-

b<a b<a a<b a<b
For a € [0,1] and X C E, define two fuzzy sets a A X and a vV X on E as follows:
. e€X, 1, e€X,
(@AX)(e)=" © (aV X)(e) = ¢
0, e¢X. a, e¢dX.

For b € [0,1] and e € E, the fuzzy set b A {e} is called a fuzzy point and denoted by ey.

2.1. Definition. [7] Let N denote the set of all natural numbers. A fuzzy natural number
is an antitone mapping A : N — [0, 1] satisfying

A0) =1, /\ An)=0.
neN
The set of all fuzzy natural numbers is denoted by N([0, 1]).
For any m € N, we define m € N([0, 1]) as follows:
1, ift<m,
m(t) = .
0, ift>m+1.
If we do not distinguish m and m, then N can be regarded as a subset of N([0, 1]).

2.2. Definition. [7] For any A, u € N([0,1]), define the addition XA + p of A and pu as
follows:

VneN, A+ = \/ (k) AuQ).

k+l=n
2.3. Remark. For crisp sets we may consider the correspondence n — {0,1,2,...,n}
which associates with each natural number n the subset {0,1,2,...,n} of the natural

numbers. This correspondence is clearly a bijection between the set of natural numbers
and the set of sets of the given form under which n is one less than the cardinality of the
set to which it corresponds. In the sequel, we shall not distinguish {0,1,...,n} from n.

2.4. Lemma. [7] Let A\,pu € N([0,1]). It holds that (X + p)() = M) + ) for any
a€[0,1). O

2.5. Definition. [8] Let A € [0,1]®. Then |A| € N([0, 1]) defined by
Vn €N, |Al(n) = \/{a € [0,1] : || > n}
is called the fuzzy cardinality of A.
2.6. Lemma. [8] Let A € [0,1]". It holds that |A|(q) = |A(a)| for any a € [0,1). O



[0, 1]-Fuzzy B-Rank Functions 61

2.7. Definition. [8] If J C [0, 1]¥ satisfies the following conditions:
(LI1) J is nonempty;
(L12) If A,B €[0,1]¥, A< Band B €7, then A € J;
(LI3) If A,B € J and b = |B|(n) > |A|(n) for some n € N, then there exists e €
F(A, B) such that (bAAp,)) Ve, € J, where F(A,B) = {e € E: A(e) <b< B(e)},
then the pair (E,J) is called a [0, 1]-matroid.

2.8. Theorem. [8] If (E,J) is a [0, 1]-matroid, then

(1) (E,J[a]) is a matroid for each a € (0,1].

(2) (E,3(a)) is a matroid for each a € [0, 1). O
2.9. Theorem. [9] Let (E,J) be a [0, 1]-matroid. Then there is a finite sequence 0 =
ag < a1 <az <---<ap=1 such that

(1) Ifa; < a,b < ait1, then Jja] =IJ[b], 0<i<n—1;

(2) Ifai < a < aiy1 < b < a2, then Ia] DIB], 0<i<n-—2.

The sequence ag, ai,...,an s called the fundamental sequence for (E,7J). |
2.10. Definition. [9]
(1) A [0,1]-matroid (E,J) with the fundamental sequence ag,a1,...,a, is called a

closed [0, 1]-matroid if whenever a;—1 < a < a; (1 <14 < n), then Ja] = I[a,].
(2) A [0,1]-matroid (F,J) is called a perfect [0, 1]-matroid, if it satisfies the following
condition:
(L14) VA € [0,1]%, if a A Aj) € J for all a € (0, 1], then A € J.

2.11. Theorem. [9] Let J C [0,1]F satisfy (L12) and (LI4). Then the following condi-
tions are equivalent:

(1) (E,9) is a [0, 1]-matroid;
(2) (E,J[a]) is a matroid for all a € (0, 1]. O

3. [0,1]-fuzzy B-rank functions

In this section, the concept of [0, 1]-fuzzy B-rank functions on F is presented. There
is a one-to-one correspondence between the set of all closed and perfect [0, 1]-matroids
(i.e. closed Goetschel-Voxman fuzzy matroids) on F and that of all [0, 1]-fuzzy S-rank
functions on E.

3.1. Definition. [8] Let (E,J) be a [0, 1]-matroid. The mapping Ry : [0, 1]¥ — N([0, 1])
defined by
Ry(A)=\/{|B|: B< A,B€7}

is called the [0, 1]-fuzzy rank function for (E,J).
3.2. Remark. Definition 3.1 gives a new definition of fuzzy rank function for Goetschel-
Voxman fuzzy matroids (i.e. perfect [0,1]-matroids). Based on this, the theory of
Goetschel-Voxman fuzzy matroids achieves further development.
3.3. Theorem. [7] Let (E,J) be a [0, 1]-matroid and Ry the [0, 1]-fuzzy rank function for
(E£,9). Ya € [0,1), let Ry denote the rank function for (E,I(a)). Then Ry(A),, =
Ri(a)(A(ay) for each A € [0,1]7. O
3.4. Theorem. Let (E,J) be a [0,1]-matroid and Ry the [0,1]-fuzzy rank function for
(E,J). Then Ry satisfies the following conditions: VA, B € [0,1]%, a € [0, 1),

(LR1) 0 < Ry(A) < |Af;

(LR2) A< B = Ry(A) < Ry(B);
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(LRB) RJ(A) =+ RJ(B) > RJ(A Vv B) =+ RJ(A A B);
(LR4)" Ry(Aa))(a) = Ra(A)(a)-

Proof. By [8, Theorem 3.14], Ry satisfies (LR1)—(LR3). We only need to check that Ry
satisfies (LR4)’. For any A € [0,1]F and a € [0,1), by Theorem 3.3,

Ry(A)(a) = Ry(a)(A(a)) = Ry(a) ((A(a)) (@) = R3(A(a)) (a)- 0

3.5. Definition. A mapping R : [0,1]% — N([0, 1]) satisfying conditions (LR1)—(LR3)
and (LR4)’ is called a [0, 1]-fuzzy B-rank function on E.

In the following, we will discuss the relation between the set of all [0, 1]-matroids on
E and that of all [0, 1]-fuzzy f-rank functions on E.

3.6. Lemma. Let R? be a [0, 1]-fuzzy B-rank function on E. Define R? 2P 5 N as
follows:

Va € [0,1), RI(A) = R*(A) ).

Then RS satisfies the following conditions (R1)~(R3): VA, B € 2%,

(R1) 0 < R(A) < |A;
(R2) AC B= R;(A) < R;(B);
(R3) RZ(A) +RZ(B) > RE(AUB) + RE(ANB).

Hence there ewists a matroid (E,J,s) such that R? is the rank function for (E,J48),
{A e 2P RE(A) =|A]}.

where IJRg =

Proof. (R1). By (LR1), 0 < R’(A) < |xal|, then {0} C R"(A)(,), thus 0 < Rf(A).
Moreover, by Lemma 2.6, we know that

n < R{(A) & n € R (A)) = n € xalw & n < Ixaw| =14
Hence 0 < R%(A) < |A].
(R2). Since A C B, hence R’(A) < R?(B) by (LR2). Then Vn € N,
n < RI(A) < ne R (A) ) = ne R*(B)w < n< RI(B).
This shows R%(A) < RE(B).
(R3). By Lemma 2.4 and (LR3), we have the following implications:

n<RJ(AUB)+R(ANB) <= n< R°(AUB)@ + R (AN B) .
< ne(R°(AUB)+R° (AN B)) )
— ne (R(A)+ R (B)w
= n <R (A)@m + R (B)()
< n < RJ(A)+ Ri(B).

Therefore, RZ(A) + R5(B) > R{(AUB) + RZ(ANB). O

3.7. Lemma. Ifa €0,1), then I8 = {JRg ta < b}.
a b
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Proof. Ya € [0,1), we have
A€Ts = RY(A),) = RI(A) = |4
= JRW =R A0u =4

a<b a<b
<= there exists b > a such that R} (A) = |A]
<= there exists b > a such that A € Igs-
b

This implies that 7,5 = {J,s : a < b}. 0
a b

3.8. Theorem. [7] Let {(E,Ja) : a € [0,1)} be a family of matroids. If o = J{Js : a <
b} for all a € [0,1), then there exists a fuzzifying matroid (E,J) such that Jq) =Jo.. O

By the definitions of R? and J Lemma 3.7 and Theorem 3.8, we have the following

result.

RE?

3.9. Lemma. Let R® be a [0, 1]-fuzzy B-rank function on E. Define Ips : 2% — [0,1] as
follows:

VAE€2®, Ips(A)=\/{ae[0,1): ATy}

Then
(1) (E,Igs) is a fuzzifying matroid.
(2) Va € [07 1); (jRB)(a) = jRE |

3.10. Theorem. Let R® be a [0, 1]-fuzzy B-rank function on E. Define
9% pe ={A€[0,1]” :Va €[0,1), Aqa) € I8 }-
Then (E,3° s) is a closed and perfect [0, 1]-matroid.

Proof. Obviously, I° ;s satisfies (LI1) and (LI2). Let A € [0, 1]7. IfaAA[y) € 7% s for all 0 <
a < 1, then for any b € [0,1), there exists a > b such that Ay = A, hence
Awpy = A) = (@ N Ay €7 thus A € 9% ,5. This implies that J° s satisfies
(L14).

Va € (0,1], let A € 9°zs(a]. Then a A A € 9P s, thus Vb < a, A= (a A A) € Jgs,

b
hence A € (] J,s. This means that 98 pslal € N Ips-
b<a b b<a b
Conversely, let A € [ Js. It is obvious that (a A A) ) = A € J s for each ¢ < a and
b<a b ¢

(anNA)ey=0€T,s for each ¢ > a, thusa A A € 9% g, hence A = (a A A)(y) € ° pslal.

This means that () I s C 98 psla). Therefore, 3° psla] = N Ips-
b<a b b<a b

RP»

By Lemma 3.9, 7° ps[a] = N Ips = N (Ire)@w) = (Jgs)a)- Therefore, (E,7° zs) is a
b<a P b<a
closed and perfect [0, 1]-matroid by Definition 2.10 and Theorem 2.11. g

3.11. Lemma. Let R® be a [0, 1]-fuzzy B-rank function on E. Then

Vae[0,1), 7 gsla) =Ipp.

Proof. For each a € [0,1), let A,y € 9°ps(a), where A € 3° 5. By the definition of
9% ps,y Aty € Jgs. This implies that 98 s (a) C Igs-



64 H. Lian, X. Xin

Conversely, let A € J then \/ Rf(A) =U Rﬁ(A)(b) = R/B(A)(a) = RE(A) =|A|,
a<b

RE»
a<b
thus there exists b > a such that Rf(A) =|Al,ie. A€Ts. Vee[0,1), (bANA) ) =AE€
‘b
ij - IJR? for each ¢ < b, (bAA) oy =0 € ij for each ¢ > b. Thus bA A € J*BRﬁ, hence
A= (bA A)(a) € 9°gs(a). This implies that Ips C 98 ps(a). Therefore, I° ps(a) = Jps
for each a € [0,1). O

3.12. Theorem. Let R? be a [0, 1]-fuzzy B-rank function on E. Then R® is the [0,1]-
fuzzy rank function for (E,97), i.e. Rjﬁpﬁ = R”.

Proof. YA €[0,1]%, a € (0,1]. By Theorem 3.3, Theorem 3.10, Lemma 3.11 and (LR4)’,
Rs s (A @) = By () (A) = B (A@) = RI(Aw) = R7(Aw) @ = R’ (A) )
Hence Rys (A) = RP(A) for each A € [0,1]%, thus Rys = R". O

3.13. Lemma. Let R? be a [0, 1]-fuzzy B-rank function on E. Then
P pa = {A € 0,17 R7(A) = |A]}.
Proof. Let A € 9% ps. Then for any a € [0,1), A¢, € Igs,ie. RE(Awy) = Ay = 1Al (a)-
By (LR4)’, we have R°(A)w) = R°(A(0))(a) = R5(Aw)) = |A|(a). This implies that
RP(4) = |A|.
Conversely, let A € [0,1]” with R?(A) = |A|. Then for any a € [0,1), RS(Aw,)) =
RP(A@)) @) = R*(A) 0y = |Al(a) = | Ay, thus A, € Jps. This implies that A € 98 ns.

Therefore, 7° s = {A € [0,1]% : RP(A) = |A|}. O
3.14. Lemma. [9] Let (E,J) be a closed and perfect [0, 1]-matroid and Ry the [0, 1]-fuzzy
rank function for (E,J). Then A € J< Ry(A) = |A|. O

3.15. Theorem. Let (E,J) be a closed and perfect [0, 1]-matroid, then 1°r, = J.
Proof. By Lemma 3.13 and Lemma 3.14, we have
AcPPr, <= Ry(A)=|A] < Aecl.
Therefore, I° g, = J. O

By Theorem 3.4, Theorem 3.10, Theorem 3.12 and Theorem 3.15, we have the follow-
ing result.

3.16. Theorem. The set of all closed and perfect [0, 1]-matroids on E and that of all

[0, 1]-fuzzy B-rank functions on E are in one-to-one correspondence. (|

4. [0,1]-fuzzy a-rank functions

4.1. Theorem. [9] Let (E,J) be a [0, 1]-matroid and Ry the [0, 1]-fuzzy rank function for
(E,J). Then Ry satisfies (LR1)—(LR3) and the following condition:

(LR4) VAEe [07 1]E and a € (07 1], Rj(a A A[a])[a] = Rj(A)[a]. O
4.2. Remark. (LR4) <= VA €[0,1]” and a € (0,1], Ry(Aa))[a) = Rs(A)[a)-

4.3. Definition. A mapping R : [0,1]" — N([0,1]) satisfying (LR1)—(LR4) is called a
[0, 1]-fuzzy a-rank function on E.
4.4. Theorem. A [0,1]-fuzzy a-rank function on E is equivalent to a [0, 1]-fuzzy B-rank

function on E. That is, the four fuzzy azioms (LR1)—(LR4) are equivalent to (LR1)-
(LR3) and (LR4)'.
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Proof. Let R® be a [0, 1]-fuzzy a-rank function on F. Then (F,J%g«) is a closed and
perfect [0, 1]-matroid and R® = Rja . by [9, Theorem 4.12], thus R* = Rya ,, satisfies
(LR4)" by Theorem 3.4. This implies that R* is a [0, 1]-fuzzy B-rank function on FE.

Conversely, let R® be a [0, 1]-fuzzy B-rank function on E. Then (E, % 5) is a closed
and perfect [0, 1]-matroid by Theorem 3.10, thus R® = RngB satisfies (LR4) by Theo-

rem 3.12 and [9, Theorem 4.7]. This implies that R? is a [0, 1]-fuzzy a-rank function on
E.

Therefore, a [0, 1]-fuzzy a-rank function on E is equivalent to a [0, 1]-fuzzy S-rank
function on F. |

4.5. Remark. By [9, Theorem 4.15], Theorem 3.16 and Theorem 4.4, the [0, 1]-fuzzy
rank function for a closed and perfect [0,1]-matroid is determined by the conditions
(LR1)-(LR3) and (LR4)’, or (LR1)-(LR4) completely. Therefore, (LR1)—(LR3) and
(LR4)" or (LR1)—(LR4) are called the [0, 1]-fuzzy rank function axioms for a closed and
perfect [0, 1]-matroid (i.e. closed Goetschel-Voxman fuzzy matroid).
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