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Abstract

In this paper, the concepts of [0, 1]-fuzzy β-rank function and [0, 1]-
fuzzy α-rank function are presented. The set of all closed and perfect
[0, 1]-matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on E

and that of all [0, 1]-fuzzy β-rank functions on E are in one-to-one
correspondence. A [0, 1]-fuzzy α-rank function on E is equivalent to a
[0, 1]-fuzzy β-rank function on E.
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1. Introduction

In 1988, R. Goetschel and W. Voxman introduced the concept of fuzzy matroid [1].
Subsequently many scholars researched Goetschel-Voxman fuzzy matroids [2, 4, 5].

In [8], when L is a completely distributive lattice, Shi introduced a new approach
to the fuzzication of matroids, namely an L-matroid. L-matroids preserve many basic
properties of matroids and can be applied to fuzzy algebras and fuzzy graphs.

In the sequel, we shall consider L = [0, 1]. A perfect [0,1]-matroid is equivalent to
a Goetschel-Voxman fuzzy matroid. In [9], we began an investigation of the [0, 1]-fuzzy
rank functions for [0, 1]-matroids. A closed and perfect [0, 1]-matroid can be characterized
by means of its [0, 1]-fuzzy rank function satisfying four fuzzy axioms (LR1)-(LR4).

This paper is a successor of [8] and [9]. It is shown that the [0, 1]-fuzzy rank function
for a closed and perfect [0, 1]-matroid can be also described via four fuzzy axioms (LR1),
(LR2), (LR3) and (LR4)′.
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2. Preliminaries

Throughout this paper, E is a nonempty finite set and we denote the power set of
E by 2E . For any X ⊆ E, |X| denotes the cardinality of X. A fuzzy set A on E is a
mapping A : E → [0, 1], the set of all fuzzy sets on E is denoted by [0, 1]E . We often do
not distinguish a crisp subset X of E from its characteristic function χX .

For A ∈ [0, 1]E , a ∈ [0, 1] and I ⊆ [0, 1]E , define

A[a] = {e ∈ E : A(e) ≥ a}, A(a) = {e ∈ E : A(e) > a},

I[a] = {A[a] : A ∈ I}, I(a) = {A(a) : A ∈ I}.

In [3, 6], some properties of these cut sets can be found as follows:

A(x) =
∨

{a ∈ (0, 1] : x ∈ A[a]} =
∨

{a ∈ [0, 1) : x ∈ A(a)},

A[a] =
⋂

b<a

A[b] =
⋂

b<a

A(b), A(a) =
⋃

a<b

A[b] =
⋃

a<b

A(b).

For a ∈ [0, 1] and X ⊆ E, define two fuzzy sets a ∧X and a ∨X on E as follows:

(a ∧X)(e) =

{

a, e ∈ X,

0, e 6∈ X.
(a ∨X)(e) =

{

1, e ∈ X,

a, e 6∈ X.

For b ∈ [0, 1] and e ∈ E, the fuzzy set b ∧ {e} is called a fuzzy point and denoted by eb.

2.1. Definition. [7] Let N denote the set of all natural numbers. A fuzzy natural number
is an antitone mapping λ : N → [0, 1] satisfying

λ(0) = 1,
∧

n∈N

λ(n) = 0.

The set of all fuzzy natural numbers is denoted by N([0, 1]).

For any m ∈ N, we define m ∈ N([0, 1]) as follows:

m(t) =

{

1, if t ≤ m,

0, if t ≥ m+ 1.

If we do not distinguish m and m, then N can be regarded as a subset of N([0, 1]).

2.2. Definition. [7] For any λ, µ ∈ N([0, 1]), define the addition λ + µ of λ and µ as
follows:

∀n ∈ N, (λ+ µ)(n) =
∨

k+l=n

(λ(k) ∧ µ(l)) .

2.3. Remark. For crisp sets we may consider the correspondence n 7→ {0, 1, 2, . . . , n}
which associates with each natural number n the subset {0, 1, 2, . . . , n} of the natural
numbers. This correspondence is clearly a bijection between the set of natural numbers
and the set of sets of the given form under which n is one less than the cardinality of the
set to which it corresponds. In the sequel, we shall not distinguish {0, 1, . . . , n} from n.

2.4. Lemma. [7] Let λ, µ ∈ N([0, 1]). It holds that (λ + µ)(a) = λ(a) + µ(a) for any

a ∈ [0, 1). �

2.5. Definition. [8] Let A ∈ [0, 1]E . Then |A| ∈ N([0, 1]) defined by

∀n ∈ N, |A|(n) =
∨

{a ∈ [0, 1] : |A[a]| ≥ n}

is called the fuzzy cardinality of A.

2.6. Lemma. [8] Let A ∈ [0, 1]E . It holds that |A|(a) = |A(a)| for any a ∈ [0, 1). �
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2.7. Definition. [8] If I ⊆ [0, 1]E satisfies the following conditions:

(LI1) I is nonempty;
(LI2) If A,B ∈ [0, 1]E , A ≤ B and B ∈ I, then A ∈ I;
(LI3) If A,B ∈ I and b = |B|(n) > |A|(n) for some n ∈ N, then there exists e ∈

F (A,B) such that (b∧A[b])∨eb ∈ I, where F (A,B) = {e ∈ E : A(e) < b ≤ B(e)},

then the pair (E, I) is called a [0, 1]-matroid.

2.8. Theorem. [8] If (E, I) is a [0, 1]-matroid, then

(1) (E, I[a]) is a matroid for each a ∈ (0, 1].
(2) (E, I(a)) is a matroid for each a ∈ [0, 1). �

2.9. Theorem. [9] Let (E, I) be a [0, 1]-matroid. Then there is a finite sequence 0 =
a0 < a1 < a2 < · · · < an = 1 such that

(1) If ai < a, b < ai+1, then I[a] = I[b], 0 ≤ i ≤ n− 1;
(2) If ai < a < ai+1 < b < ai+2, then I[a] ⊃ I[b], 0 ≤ i ≤ n− 2.

The sequence a0, a1, . . . , an is called the fundamental sequence for (E, I). �

2.10. Definition. [9]

(1) A [0, 1]-matroid (E, I) with the fundamental sequence a0, a1, . . . , an is called a
closed [0, 1]-matroid if whenever ai−1 < a ≤ ai (1 ≤ i ≤ n), then I[a] = I[ai].

(2) A [0, 1]-matroid (E, I) is called a perfect [0, 1]-matroid, if it satisfies the following
condition:

(LI4) ∀A ∈ [0, 1]E , if a ∧A[a] ∈ I for all a ∈ (0, 1], then A ∈ I.

2.11. Theorem. [9] Let I ⊆ [0, 1]E satisfy (LI2) and (LI4). Then the following condi-

tions are equivalent:

(1) (E, I) is a [0, 1]-matroid;

(2) (E, I[a]) is a matroid for all a ∈ (0, 1]. �

3. [0,1]-fuzzy β-rank functions

In this section, the concept of [0, 1]-fuzzy β-rank functions on E is presented. There
is a one-to-one correspondence between the set of all closed and perfect [0, 1]-matroids
(i.e. closed Goetschel-Voxman fuzzy matroids) on E and that of all [0, 1]-fuzzy β-rank
functions on E.

3.1. Definition. [8] Let (E, I) be a [0, 1]-matroid. The mapping RI : [0, 1]E → N([0, 1])
defined by

RI(A) =
∨

{|B| : B ≤ A,B ∈ I}

is called the [0, 1]-fuzzy rank function for (E, I).

3.2. Remark. Definition 3.1 gives a new definition of fuzzy rank function for Goetschel-
Voxman fuzzy matroids (i.e. perfect [0, 1]-matroids). Based on this, the theory of
Goetschel-Voxman fuzzy matroids achieves further development.

3.3. Theorem. [7] Let (E, I) be a [0, 1]-matroid and RI the [0, 1]-fuzzy rank function for

(E, I). ∀ a ∈ [0, 1), let RI(a) denote the rank function for (E, I(a)). Then RI(A)(a) =

RI(a)(A(a)) for each A ∈ [0, 1]E . �

3.4. Theorem. Let (E, I) be a [0, 1]-matroid and RI the [0, 1]-fuzzy rank function for

(E, I). Then RI satisfies the following conditions: ∀A,B ∈ [0, 1]E , a ∈ [0, 1),

(LR1) 0 ≤ RI(A) ≤ |A|;
(LR2) A ≤ B ⇒ RI(A) ≤ RI(B);
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(LR3) RI(A) +RI(B) ≥ RI(A ∨B) +RI(A ∧ B);
(LR4)′ RI(A(a))(a) = RI(A)(a).

Proof. By [8, Theorem 3.14], RI satisfies (LR1)–(LR3). We only need to check that RI

satisfies (LR4)′. For any A ∈ [0, 1]E and a ∈ [0, 1), by Theorem 3.3,

RI(A)(a) = RI(a)(A(a)) = RI(a)((A(a))(a)) = RI(A(a))(a). �

3.5. Definition. A mapping R : [0, 1]E → N([0, 1]) satisfying conditions (LR1)–(LR3)
and (LR4)′ is called a [0, 1]-fuzzy β-rank function on E.

In the following, we will discuss the relation between the set of all [0, 1]-matroids on
E and that of all [0, 1]-fuzzy β-rank functions on E.

3.6. Lemma. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Define Rβ
a : 2E → N as

follows:

∀a ∈ [0, 1), R
β
a(A) = R

β(A)(a).

Then Rβ
a satisfies the following conditions (R1)–(R3): ∀A,B ∈ 2E ,

(R1) 0 ≤ Rβ
a(A) ≤ |A|;

(R2) A ⊆ B ⇒ Rβ
a(A) ≤ Rβ

a (B);
(R3) Rβ

a(A) +Rβ
a(B) ≥ Rβ

a(A ∪ B) +Rβ
a(A ∩B).

Hence there exists a matroid (E, I
R

β
a
) such that Rβ

a is the rank function for (E, I
R

β
a
),

where I
R

β
a
= {A ∈ 2E : Rβ

a(A) = |A|}.

Proof. (R1). By (LR1), 0 ≤ Rβ(A) ≤ |χA|, then {0} ⊆ Rβ(A)(a), thus 0 ≤ Rβ
a(A).

Moreover, by Lemma 2.6, we know that

n ≤ R
β
a(A) ⇔ n ∈ R

β(A)(a) ⇒ n ∈ |χA|(a) ⇔ n ≤ |χA(a)| = |A|.

Hence 0 ≤ Rβ
a(A) ≤ |A|.

(R2). Since A ⊆ B, hence Rβ(A) ≤ Rβ(B) by (LR2). Then ∀n ∈ N,

n ≤ R
β
a(A) ⇔ n ∈ R

β(A)(a) ⇒ n ∈ R
β(B)(a) ⇔ n ≤ R

β
a(B).

This shows Rβ
a(A) ≤ Rβ

a(B).

(R3). By Lemma 2.4 and (LR3), we have the following implications:

n ≤ R
β
a(A ∪B) +R

β
a (A ∩B) ⇐⇒ n ≤ R

β(A ∪B)(a) +R
β(A ∩B)(a)

⇐⇒ n ∈ (Rβ(A ∪B) +R
β(A ∩ B))(a)

=⇒ n ∈ (Rβ(A) +R
β(B))(a)

⇐⇒ n ≤ R
β(A)(a) +R

β(B)(a)

⇐⇒ n ≤ R
β
a(A) +R

β
a(B).

Therefore, Rβ
a(A) +Rβ

a(B) ≥ Rβ
a (A ∪B) +Rβ

a(A ∩B). �

3.7. Lemma. If a ∈ [0, 1), then I
R

β
a
=

⋃
{

I
R

β
b

: a < b
}

.
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Proof. ∀a ∈ [0, 1), we have

A ∈ I
R

β
a

⇐⇒ R
β(A)(a) = R

β
a(A) = |A|

⇐⇒
⋃

a<b

R
β

b (A) =
⋃

a<b

R
β(A)(b) = |A|

⇐⇒ there exists b > a such that Rβ

b (A) = |A|

⇐⇒ there exists b > a such that A ∈ I
R

β
b

.

This implies that I
R

β
a
=

⋃
{

I
R

β
b

: a < b
}

. �

3.8. Theorem. [7] Let {(E, Ia) : a ∈ [0, 1)} be a family of matroids. If Ia =
⋃

{Ib : a <

b} for all a ∈ [0, 1), then there exists a fuzzifying matroid (E, I) such that I(a) = Ia. �

By the definitions of Rβ
a and I

R
β
a
, Lemma 3.7 and Theorem 3.8, we have the following

result.

3.9. Lemma. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Define IRβ : 2E → [0, 1] as
follows:

∀A ∈ 2E , IRβ (A) =
∨

{a ∈ [0, 1) : A ∈ I
R

β
a
}.

Then

(1) (E, IRβ ) is a fuzzifying matroid.

(2) ∀a ∈ [0, 1), (IRβ )(a) = I
R

β
a
. �

3.10. Theorem. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Define

I
β
Rβ = {A ∈ [0, 1]E : ∀a ∈ [0, 1), A(a) ∈ I

R
β
a
}.

Then (E, IβRβ ) is a closed and perfect [0, 1]-matroid.

Proof. Obviously, IβRβ satisfies (LI1) and (LI2). LetA ∈ [0, 1]E . If a∧A[a] ∈ I
β
Rβ for all 0 <

a ≤ 1, then for any b ∈ [0, 1), there exists a > b such that A(b) = A[a], hence

A(b) = A[a] = (a ∧ A[a])(b) ∈ I
R

β
b

, thus A ∈ I
β
Rβ . This implies that I

β
Rβ satisfies

(LI4).

∀a ∈ (0, 1], let A ∈ I
β
Rβ [a]. Then a ∧ A ∈ I

β
Rβ , thus ∀b < a, A = (a ∧ A)(b) ∈ I

R
β

b

,

hence A ∈
⋂

b<a

I
R

β
b

. This means that IβRβ [a] ⊆
⋂

b<a

I
R

β
b

.

Conversely, let A ∈
⋂

b<a

I
R

β

b

. It is obvious that (a∧A)(c) = A ∈ I
R

β
c
for each c < a and

(a ∧ A)(c) = ∅ ∈ I
R

β
c
for each c ≥ a, thus a ∧A ∈ I

β
Rβ , hence A = (a ∧ A)[a] ∈ I

β
Rβ [a].

This means that
⋂

b<a

I
R

β

b

⊆ I
β
Rβ [a]. Therefore, IβRβ [a] =

⋂

b<a

I
R

β

b

.

By Lemma 3.9, IβRβ [a] =
⋂

b<a

I
R

β

b

=
⋂

b<a

(IRβ )(b) = (IRβ )[a]. Therefore, (E, IβRβ ) is a

closed and perfect [0, 1]-matroid by Definition 2.10 and Theorem 2.11. �

3.11. Lemma. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Then

∀ a ∈ [0, 1), I
β
Rβ (a) = I

R
β
a
.

Proof. For each a ∈ [0, 1), let A(a) ∈ I
β
Rβ (a), where A ∈ I

β
Rβ . By the definition of

I
β
Rβ , A(a) ∈ I

R
β
a
. This implies that IβRβ (a) ⊆ I

R
β
a
.
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Conversely, let A ∈ I
R

β
a
, then

∨

a<b

R
β

b (A) =
⋃

a<b

Rβ(A)(b) = Rβ(A)(a) = Rβ
a(A) = |A|,

thus there exists b > a such that Rβ

b (A) = |A|, i.e. A ∈ I
R

β
b

. ∀ c ∈ [0, 1), (b∧A)(c) = A ∈

I
R

β

b

⊆ I
R

β
c
for each c < b, (b ∧A)(c) = ∅ ∈ I

R
β
c
for each c ≥ b. Thus b ∧A ∈ I

β
Rβ , hence

A = (b ∧ A)(a) ∈ I
β
Rβ (a). This implies that I

R
β
a
⊆ I

β
Rβ (a). Therefore, IβRβ (a) = I

R
β
a

for each a ∈ [0, 1). �

3.12. Theorem. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Then Rβ is the [0, 1]-
fuzzy rank function for (E, Iβ), i.e. RIβ

Rβ
= Rβ.

Proof. ∀A ∈ [0, 1]E , a ∈ (0, 1]. By Theorem 3.3, Theorem 3.10, Lemma 3.11 and (LR4)′,

RIβ
Rβ

(A)(a) = RIβ
Rβ (a)(A(a)) = RI

R
β
a

(A(a)) = Rβ
a(A(a)) = Rβ(A(a))(a) = Rβ(A)(a).

Hence R
Iβ

Rβ
(A) = Rβ(A) for each A ∈ [0, 1]E , thus R

Iβ
Rβ

= Rβ. �

3.13. Lemma. Let Rβ be a [0, 1]-fuzzy β-rank function on E. Then

I
β
Rβ = {A ∈ [0, 1]E : Rβ(A) = |A|}.

Proof. Let A ∈ I
β
Rβ . Then for any a ∈ [0, 1), A(a) ∈ I

R
β
a
, i.e. Rβ

a(A(a)) = |A(a)| = |A|(a).

By (LR4)′, we have Rβ(A)(a) = Rβ(A(a))(a) = Rβ
a(A(a)) = |A|(a). This implies that

Rβ(A) = |A|.

Conversely, let A ∈ [0, 1]E with Rβ(A) = |A|. Then for any a ∈ [0, 1), Rβ
a(A(a)) =

Rβ(A(a))(a) = Rβ(A)(a) = |A|(a) = |A(a)|, thus A(a) ∈ I
R

β
a
. This implies that A ∈ I

β
Rβ .

Therefore, IβRβ = {A ∈ [0, 1]E : Rβ(A) = |A|}. �

3.14. Lemma. [9] Let (E, I) be a closed and perfect [0, 1]-matroid and RI the [0, 1]-fuzzy
rank function for (E, I). Then A ∈ I ⇔ RI(A) = |A|. �

3.15. Theorem. Let (E, I) be a closed and perfect [0, 1]-matroid, then I
β
RI

= I.

Proof. By Lemma 3.13 and Lemma 3.14, we have

A ∈ I
β
RI

⇐⇒ RI(A) = |A| ⇐⇒ A ∈ I.

Therefore, IβRI
= I. �

By Theorem 3.4, Theorem 3.10, Theorem 3.12 and Theorem 3.15, we have the follow-
ing result.

3.16. Theorem. The set of all closed and perfect [0, 1]-matroids on E and that of all

[0, 1]-fuzzy β-rank functions on E are in one-to-one correspondence. �

4. [0,1]-fuzzy α-rank functions

4.1. Theorem. [9] Let (E, I) be a [0, 1]-matroid and RI the [0, 1]-fuzzy rank function for

(E, I). Then RI satisfies (LR1)–(LR3) and the following condition:

(LR4) ∀A ∈ [0, 1]E and a ∈ (0, 1], RI(a ∧A[a])[a] = RI(A)[a]. �

4.2. Remark. (LR4) ⇐⇒ ∀A ∈ [0, 1]E and a ∈ (0, 1], RI(A[a])[a] = RI(A)[a].

4.3. Definition. A mapping R : [0, 1]E → N([0, 1]) satisfying (LR1)–(LR4) is called a
[0, 1]-fuzzy α-rank function on E.

4.4. Theorem. A [0, 1]-fuzzy α-rank function on E is equivalent to a [0, 1]-fuzzy β-rank

function on E. That is, the four fuzzy axioms (LR1)–(LR4) are equivalent to (LR1)–
(LR3) and (LR4)′.
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Proof. Let Rα be a [0, 1]-fuzzy α-rank function on E. Then (E, IαRα) is a closed and
perfect [0, 1]-matroid and Rα = RIαRα by [9, Theorem 4.12], thus Rα = RIαRα satisfies
(LR4)′ by Theorem 3.4. This implies that Rα is a [0, 1]-fuzzy β-rank function on E.

Conversely, let Rβ be a [0, 1]-fuzzy β-rank function on E. Then (E, IβRβ ) is a closed
and perfect [0, 1]-matroid by Theorem 3.10, thus Rβ = R

Iβ
Rβ

satisfies (LR4) by Theo-

rem 3.12 and [9, Theorem 4.7]. This implies that Rβ is a [0, 1]-fuzzy α-rank function on
E.

Therefore, a [0, 1]-fuzzy α-rank function on E is equivalent to a [0, 1]-fuzzy β-rank
function on E. �

4.5. Remark. By [9, Theorem 4.15], Theorem 3.16 and Theorem 4.4, the [0, 1]-fuzzy
rank function for a closed and perfect [0, 1]-matroid is determined by the conditions
(LR1)–(LR3) and (LR4)′, or (LR1)–(LR4) completely. Therefore, (LR1)–(LR3) and
(LR4)′ or (LR1)–(LR4) are called the [0, 1]-fuzzy rank function axioms for a closed and
perfect [0, 1]-matroid (i.e. closed Goetschel-Voxman fuzzy matroid).
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