[0, 1]-FUZZY β -RANK FUNCTIONS⁸

Huan Lian* and Xiu Xin^{†‡}

Received 02:08:2010 : Accepted 09:08:2011

Abstract

In this paper, the concepts of [0, 1]-fuzzy β -rank function and [0, 1]fuzzy α -rank function are presented. The set of all closed and perfect [0, 1]-matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on Eand that of all [0, 1]-fuzzy β -rank functions on E are in one-to-one correspondence. A [0, 1]-fuzzy α -rank function on E is equivalent to a [0, 1]-fuzzy β -rank function on E.

Keywords: [0, 1]-matroid, Goetschel-Voxman fuzzy matroid, [0, 1]-fuzzy β -rank function, [0, 1]-fuzzy α -rank function.

2000 AMS Classification: 03 E 70, 05 B 35, 52 B 40.

1. Introduction

In 1988, R. Goetschel and W. Voxman introduced the concept of fuzzy matroid [1]. Subsequently many scholars researched Goetschel-Voxman fuzzy matroids [2, 4, 5].

In [8], when L is a completely distributive lattice, Shi introduced a new approach to the fuzzication of matroids, namely an L-matroid. L-matroids preserve many basic properties of matroids and can be applied to fuzzy algebras and fuzzy graphs.

In the sequel, we shall consider L = [0, 1]. A perfect [0,1]-matroid is equivalent to a Goetschel-Voxman fuzzy matroid. In [9], we began an investigation of the [0, 1]-fuzzy rank functions for [0, 1]-matroids. A closed and perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function satisfying four fuzzy axioms (LR1)-(LR4).

This paper is a successor of [8] and [9]. It is shown that the [0, 1]-fuzzy rank function for a closed and perfect [0, 1]-matroid can be also described via four fuzzy axioms (LR1), (LR2), (LR3) and (LR4)'.

[§]The project is supported by the National Natural Science Foundation of China (10971242) *Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China. E-mail: lianhuan369@163.com

 [†] Department of Mathematics, Tianjin University of Technology, Tianjin 300384, P.R. China. E-mail: xinxiu5180163.com

[‡]Corresponding Author.

2. Preliminaries

Throughout this paper, E is a nonempty finite set and we denote the power set of E by 2^E . For any $X \subseteq E$, |X| denotes the cardinality of X. A fuzzy set A on E is a mapping $A: E \to [0, 1]$, the set of all fuzzy sets on E is denoted by $[0, 1]^E$. We often do not distinguish a crisp subset X of E from its characteristic function χ_X .

For $A \in [0, 1]^E$, $a \in [0, 1]$ and $\mathcal{I} \subseteq [0, 1]^E$, define

In [3, 6], some properties of these cut sets can be found as follows:

$$A(x) = \bigvee \{a \in (0,1] : x \in A_{[a]}\} = \bigvee \{a \in [0,1] : x \in A_{(a)}\},\$$
$$A_{[a]} = \bigcap_{b < a} A_{[b]} = \bigcap_{b < a} A_{(b)}, \ A_{(a)} = \bigcup_{a < b} A_{[b]} = \bigcup_{a < b} A_{(b)}.$$

For $a \in [0, 1]$ and $X \subseteq E$, define two fuzzy sets $a \wedge X$ and $a \vee X$ on E as follows:

$$(a \wedge X)(e) = \begin{cases} a, & e \in X, \\ 0, & e \notin X. \end{cases} \quad (a \lor X)(e) = \begin{cases} 1, & e \in X, \\ a, & e \notin X. \end{cases}$$

For $b \in [0, 1]$ and $e \in E$, the fuzzy set $b \land \{e\}$ is called a fuzzy point and denoted by e_b .

2.1. Definition. [7] Let \mathbb{N} denote the set of all natural numbers. A fuzzy natural number is an antitone mapping $\lambda : \mathbb{N} \to [0, 1]$ satisfying

$$\lambda(0) = 1, \ \bigwedge_{n \in \mathbb{N}} \lambda(n) = 0$$

The set of all fuzzy natural numbers is denoted by $\mathbb{N}([0,1])$.

For any $m \in \mathbb{N}$, we define $\underline{m} \in \mathbb{N}([0, 1])$ as follows:

$$\underline{m}(t) = \begin{cases} 1, & \text{if } t \le m, \\ 0, & \text{if } t \ge m+1. \end{cases}$$

If we do not distinguish m and <u>m</u>, then \mathbb{N} can be regarded as a subset of $\mathbb{N}([0,1])$.

2.2. Definition. [7] For any $\lambda, \mu \in \mathbb{N}([0,1])$, define the addition $\lambda + \mu$ of λ and μ as follows:

$$\forall n \in \mathbb{N}, \ (\lambda + \mu)(n) = \bigvee_{k+l=n} (\lambda(k) \wedge \mu(l)).$$

2.3. Remark. For crisp sets we may consider the correspondence $n \mapsto \{0, 1, 2, ..., n\}$ which associates with each natural number n the subset $\{0, 1, 2, ..., n\}$ of the natural numbers. This correspondence is clearly a bijection between the set of natural numbers and the set of sets of the given form under which n is one less than the cardinality of the set to which it corresponds. In the sequel, we shall not distinguish $\{0, 1, ..., n\}$ from n.

2.4. Lemma. [7] Let $\lambda, \mu \in \mathbb{N}([0,1])$. It holds that $(\lambda + \mu)_{(a)} = \lambda_{(a)} + \mu_{(a)}$ for any $a \in [0,1)$.

2.5. Definition. [8] Let $A \in [0, 1]^E$. Then $|A| \in \mathbb{N}([0, 1])$ defined by

$$\forall n \in \mathbb{N}, \ |A|(n) = \bigvee \{a \in [0,1] : |A_{[a]}| \ge n\}$$

is called the fuzzy cardinality of A.

2.6. Lemma. [8] Let $A \in [0,1]^E$. It holds that $|A|_{(a)} = |A_{(a)}|$ for any $a \in [0,1)$.

2.7. Definition. [8] If $\mathcal{I} \subseteq [0,1]^E$ satisfies the following conditions:

- (LI1) \mathcal{I} is nonempty;
- (LI2) If $A, B \in [0, 1]^E$, $A \leq B$ and $B \in J$, then $A \in J$;
- (LI3) If $A, B \in \mathcal{I}$ and b = |B|(n) > |A|(n) for some $n \in \mathbb{N}$, then there exists $e \in F(A, B)$ such that $(b \land A_{[b]}) \lor e_b \in \mathcal{I}$, where $F(A, B) = \{e \in E : A(e) < b \le B(e)\}$,

then the pair (E, \mathfrak{I}) is called a [0, 1]-matroid.

2.8. Theorem. [8] If (E, \mathcal{I}) is a [0, 1]-matroid, then

(1) $(E, \mathcal{I}[a])$ is a matroid for each $a \in (0, 1]$.

(2) $(E, \mathfrak{I}(a))$ is a matroid for each $a \in [0, 1)$.

2.9. Theorem. [9] Let (E, J) be a [0, 1]-matroid. Then there is a finite sequence $0 = a_0 < a_1 < a_2 < \cdots < a_n = 1$ such that

(1) If $a_i < a, b < a_{i+1}$, then $\mathfrak{I}[a] = \mathfrak{I}[b], 0 \le i \le n-1$;

(2) If $a_i < a < a_{i+1} < b < a_{i+2}$, then $\mathfrak{I}[a] \supset \mathfrak{I}[b], \ 0 \le i \le n-2$.

The sequence a_0, a_1, \ldots, a_n is called the fundamental sequence for (E, \mathcal{I}) .

2.10. Definition. [9]

- (1) A [0,1]-matroid (E, \mathfrak{I}) with the fundamental sequence a_0, a_1, \ldots, a_n is called a closed [0,1]-matroid if whenever $a_{i-1} < a \leq a_i$ $(1 \leq i \leq n)$, then $\mathfrak{I}[a] = \mathfrak{I}[a_i]$.
- (2) A [0, 1]-matroid (E, J) is called a *perfect* [0, 1]-matroid, if it satisfies the following condition:

(LI4) $\forall A \in [0,1]^E$, if $a \wedge A_{[a]} \in \mathcal{I}$ for all $a \in (0,1]$, then $A \in \mathcal{I}$.

2.11. Theorem. [9] Let $\mathcal{I} \subseteq [0,1]^E$ satisfy (LI2) and (LI4). Then the following conditions are equivalent:

(1) (E, J) is a [0, 1]-matroid;

(2) $(E, \mathbb{J}[a])$ is a matroid for all $a \in (0, 1]$.

3. [0,1]-fuzzy β -rank functions

In this section, the concept of [0, 1]-fuzzy β -rank functions on E is presented. There is a one-to-one correspondence between the set of all closed and perfect [0, 1]-matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on E and that of all [0, 1]-fuzzy β -rank functions on E.

3.1. Definition. [8] Let (E, \mathcal{I}) be a [0, 1]-matroid. The mapping $R_{\mathcal{I}} : [0, 1]^E \to \mathbb{N}([0, 1])$ defined by

 $R_{\mathfrak{I}}(A) = \bigvee \{ |B| : B \le A, B \in \mathfrak{I} \}$

is called the [0, 1]-fuzzy rank function for (E, \mathcal{I}) .

3.2. Remark. Definition 3.1 gives a new definition of fuzzy rank function for Goetschel-Voxman fuzzy matroids (i.e. perfect [0, 1]-matroids). Based on this, the theory of Goetschel-Voxman fuzzy matroids achieves further development.

3.3. Theorem. [7] Let (E, \mathfrak{I}) be a [0, 1]-matroid and $R_{\mathfrak{I}}$ the [0, 1]-fuzzy rank function for (E, \mathfrak{I}) . $\forall a \in [0, 1)$, let $R_{\mathfrak{I}(a)}$ denote the rank function for $(E, \mathfrak{I}(a))$. Then $R_{\mathfrak{I}}(A)_{(a)} = R_{\mathfrak{I}(a)}(A_{(a)})$ for each $A \in [0, 1]^E$.

3.4. Theorem. Let (E, \mathcal{J}) be a [0, 1]-matroid and $R_{\mathcal{J}}$ the [0, 1]-fuzzy rank function for (E, \mathcal{J}) . Then $R_{\mathcal{J}}$ satisfies the following conditions: $\forall A, B \in [0, 1]^E$, $a \in [0, 1)$,

(LR1)
$$\underline{0} \leq R_{\mathfrak{I}}(A) \leq |A|;$$

(LR2) $A \leq B \Rightarrow R_{\mathfrak{I}}(A) \leq R_{\mathfrak{I}}(B);$

(LR3) $R_{\mathfrak{I}}(A) + R_{\mathfrak{I}}(B) \ge R_{\mathfrak{I}}(A \lor B) + R_{\mathfrak{I}}(A \land B);$ $(LR4)' R_{\mathfrak{I}}(A_{(a)})_{(a)} = R_{\mathfrak{I}}(A)_{(a)}.$

Proof. By [8, Theorem 3.14], $R_{\mathcal{I}}$ satisfies (LR1)–(LR3). We only need to check that $R_{\mathcal{I}}$ satisfies (LR4)'. For any $A \in [0, 1]^E$ and $a \in [0, 1)$, by Theorem 3.3,

$$R_{\mathfrak{I}}(A)_{(a)} = R_{\mathfrak{I}(a)}(A_{(a)}) = R_{\mathfrak{I}(a)}((A_{(a)})_{(a)}) = R_{\mathfrak{I}}(A_{(a)})_{(a)}.$$

3.5. Definition. A mapping $R: [0,1]^E \to \mathbb{N}([0,1])$ satisfying conditions (LR1)–(LR3) and (LR4)' is called a [0, 1]-fuzzy β -rank function on E.

In the following, we will discuss the relation between the set of all [0, 1]-matroids on *E* and that of all [0, 1]-fuzzy β -rank functions on *E*.

3.6. Lemma. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Define $R^{\beta}_a: 2^E \to \mathbb{N}$ as follows:

$$\forall a \in [0, 1), \ R_a^\beta(A) = R^\beta(A)_{(a)}.$$

Then R_a^{β} satisfies the following conditions (R1)–(R3): $\forall A, B \in 2^E$,

- (R1) $0 \leq R_a^\beta(A) \leq |A|;$

(R2) $A \subseteq B \Rightarrow R_a^{\overline{\beta}}(A) \leq R_a^{\beta}(B);$ (R3) $R_a^{\beta}(A) + R_a^{\beta}(B) \geq R_a^{\beta}(A \cup B) + R_a^{\beta}(A \cap B).$

Hence there exists a matroid $(E, \mathbb{J}_{R_a^{\beta}})$ such that R_a^{β} is the rank function for $(E, \mathbb{J}_{R_a^{\beta}})$, where $\mathbb{I}_{R_a^\beta} = \{A \in 2^E : R_a^\beta(A) = |A|\}.$

Proof. (R1). By (LR1), $\underline{0} \leq R^{\beta}(A) \leq |\chi_A|$, then $\{0\} \subseteq R^{\beta}(A)_{(a)}$, thus $0 \leq R_a^{\beta}(A)$. Moreover, by Lemma 2.6, we know that

$$n \le R_a^\beta(A) \Leftrightarrow n \in R^\beta(A)_{(a)} \Rightarrow n \in |\chi_A|_{(a)} \Leftrightarrow n \le |\chi_A|_{(a)}| = |A|$$

Hence $0 \leq R_a^\beta(A) \leq |A|$.

(R2). Since
$$A \subseteq B$$
, hence $R^{\beta}(A) \leq R^{\beta}(B)$ by (LR2). Then $\forall n \in \mathbb{N}$,

$$n \leq R_a^\beta(A) \Leftrightarrow n \in R^\beta(A)_{(a)} \Rightarrow n \in R^\beta(B)_{(a)} \Leftrightarrow n \leq R_a^\beta(B)$$

This shows $R_a^\beta(A) \leq R_a^\beta(B)$.

(R3). By Lemma 2.4 and (LR3), we have the following implications:

$$n \leq R_a^\beta (A \cup B) + R_a^\beta (A \cap B) \iff n \leq R^\beta (A \cup B)_{(a)} + R^\beta (A \cap B)_{(a)}$$
$$\iff n \in (R^\beta (A \cup B) + R^\beta (A \cap B))_{(a)}$$
$$\implies n \in (R^\beta (A) + R^\beta (B))_{(a)}$$
$$\iff n \leq R^\beta (A)_{(a)} + R^\beta (B)_{(a)}$$
$$\iff n \leq R_a^\beta (A) + R_a^\beta (B).$$

Therefore, $R_a^{\beta}(A) + R_a^{\beta}(B) \ge R_a^{\beta}(A \cup B) + R_a^{\beta}(A \cap B).$

3.7. Lemma. If $a \in [0, 1)$, then $\mathfrak{I}_{R_a^\beta} = \bigcup \{\mathfrak{I}_{R_a^\beta} : a < b\}$.

Proof. $\forall a \in [0, 1)$, we have

$$\begin{split} A \in \mathcal{I}_{R_{a}^{\beta}} &\iff R^{\beta}(A)_{(a)} = R_{a}^{\beta}(A) = |A| \\ &\iff \bigcup_{a < b} R_{b}^{\beta}(A) = \bigcup_{a < b} R^{\beta}(A)_{(b)} = |A| \\ &\iff \text{ there exists } b > a \text{ such that } R_{b}^{\beta}(A) = |A| \\ &\iff \text{ there exists } b > a \text{ such that } A \in \mathcal{I}_{R_{b}^{\beta}}. \end{split}$$

This implies that $\mathfrak{I}_{R_a^\beta} = \bigcup \left\{ \mathfrak{I}_{R_a^\beta} : a < b \right\}.$

3.8. Theorem. [7] Let $\{(E, J_a) : a \in [0, 1)\}$ be a family of matroids. If $J_a = \bigcup \{J_b : a < b\}$ for all $a \in [0, 1)$, then there exists a fuzzifying matroid (E, J) such that $J_{(a)} = J_a$. \Box

By the definitions of R_a^{β} and $\mathcal{I}_{R_a^{\beta}}$, Lemma 3.7 and Theorem 3.8, we have the following result.

3.9. Lemma. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Define $\mathbb{J}_{R^{\beta}}: 2^{E} \to [0,1]$ as follows:

$$\forall A \in 2^E, \ \mathfrak{I}_{R^\beta}(A) = \bigvee \{ a \in [0,1) : A \in \mathfrak{I}_{R^\beta_a} \}.$$

Then

(1)
$$(E, \mathbb{J}_{R^{\beta}})$$
 is a fuzzifying matroid.
(2) $\forall a \in [0, 1), \ (\mathbb{J}_{R^{\beta}})_{(a)} = \mathbb{J}_{R^{\beta}_{a}}.$

3.10. Theorem. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Define

$$\mathfrak{I}^{\beta}{}_{R^{\beta}} = \{A \in [0,1]^{E} : \forall a \in [0,1), A_{(a)} \in \mathfrak{I}_{R^{\beta}_{\alpha}}\}.$$

Then $(E, \mathcal{I}^{\beta}{}_{R^{\beta}})$ is a closed and perfect [0, 1]-matroid.

Proof. Obviously, $\mathfrak{I}^{\beta}{}_{R^{\beta}}$ satisfies (L11) and (L12). Let $A \in [0,1]^{E}$. If $a \wedge A_{[a]} \in \mathfrak{I}^{\beta}{}_{R^{\beta}}$ for all $0 < a \leq 1$, then for any $b \in [0,1)$, there exists a > b such that $A_{(b)} = A_{[a]}$, hence $A_{(b)} = A_{[a]} = (a \wedge A_{[a]})_{(b)} \in \mathfrak{I}_{R^{\beta}_{b}}$, thus $A \in \mathfrak{I}^{\beta}{}_{R^{\beta}}$. This implies that $\mathfrak{I}^{\beta}{}_{R^{\beta}}$ satisfies (L14).

 $\forall a \in (0,1], \text{ let } A \in \mathcal{I}^{\beta}{}_{R^{\beta}}[a]. \text{ Then } a \wedge A \in \mathcal{I}^{\beta}{}_{R^{\beta}}, \text{ thus } \forall b < a, A = (a \wedge A)_{(b)} \in \mathcal{I}_{R^{\beta}_{b}},$ hence $A \in \bigcap_{b \leq a} \mathcal{I}_{R^{\beta}_{b}}.$ This means that $\mathcal{I}^{\beta}{}_{R^{\beta}}[a] \subseteq \bigcap_{b \leq a} \mathcal{I}_{R^{\beta}_{b}}.$

Conversely, let $A \in \bigcap_{b < a} \mathfrak{I}_{R_b^{\beta}}$. It is obvious that $(a \wedge A)_{(c)} = A \in \mathfrak{I}_{R_c^{\beta}}$ for each c < a and $(a \wedge A)_{(c)} = \emptyset \in \mathfrak{I}_{R_c^{\beta}}$ for each $c \geq a$, thus $a \wedge A \in \mathfrak{I}^{\beta}_{R^{\beta}}$, hence $A = (a \wedge A)_{[a]} \in \mathfrak{I}^{\beta}_{R^{\beta}}[a]$. This means that $\bigcap_{b < a} \mathfrak{I}_{R_b^{\beta}} \subseteq \mathfrak{I}^{\beta}_{R^{\beta}}[a]$. Therefore, $\mathfrak{I}^{\beta}_{R^{\beta}}[a] = \bigcap_{b < a} \mathfrak{I}_{R_b^{\beta}}$.

By Lemma 3.9, $\mathcal{I}^{\beta}_{R^{\beta}}[a] = \bigcap_{b < a} \mathcal{I}_{R^{\beta}_{b}} = \bigcap_{b < a} (\mathcal{I}_{R^{\beta}})_{(b)} = (\mathcal{I}_{R^{\beta}})_{[a]}$. Therefore, $(E, \mathcal{I}^{\beta}_{R^{\beta}})$ is a closed and perfect [0, 1]-matroid by Definition 2.10 and Theorem 2.11.

3.11. Lemma. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Then

 $\forall a \in [0,1), \ \mathfrak{I}^{\beta}{}_{R^{\beta}}(a) = \mathfrak{I}_{R^{\beta}}.$

Proof. For each $a \in [0, 1)$, let $A_{(a)} \in \mathcal{I}^{\beta}{}_{R^{\beta}}(a)$, where $A \in \mathcal{I}^{\beta}{}_{R^{\beta}}$. By the definition of $\mathcal{I}^{\beta}{}_{R^{\beta}}, A_{(a)} \in \mathcal{I}_{R^{\beta}}$. This implies that $\mathcal{I}^{\beta}{}_{R^{\beta}}(a) \subseteq \mathcal{I}_{R^{\beta}}$.

Conversely, let $A \in \mathcal{I}_{R_a^{\beta}}$, then $\bigvee_{a < b} R_b^{\beta}(A) = \bigcup_{a < b} R^{\beta}(A)_{(b)} = R^{\beta}(A)_{(a)} = R_a^{\beta}(A) = |A|$, thus there exists b > a such that $R_b^{\beta}(A) = |A|$, i.e. $A \in \mathcal{I}_{R_b^{\beta}}$. $\forall c \in [0, 1), (b \land A)_{(c)} = A \in \mathcal{I}_{R_b^{\beta}} \subseteq \mathcal{I}_{R_c^{\beta}}$ for each $c < b, (b \land A)_{(c)} = \emptyset \in \mathcal{I}_{R_c^{\beta}}$ for each $c \ge b$. Thus $b \land A \in \mathcal{I}_{R_\beta}^{\beta}$, hence $A = (b \land A)_{(a)} \in \mathcal{I}_{R_\beta}^{\beta}(a)$. This implies that $\mathcal{I}_{R_a^{\beta}} \subseteq \mathcal{I}_{R_\beta}^{\beta}(a)$. Therefore, $\mathcal{I}_{R_\beta}^{\beta}(a) = \mathcal{I}_{R_a^{\beta}}^{\beta}$ for each $a \in [0, 1)$.

3.12. Theorem. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Then R^{β} is the [0,1]-fuzzy rank function for $(E, \mathfrak{I}^{\beta})$, i.e. $R_{\mathfrak{I}^{\beta}}{}_{R^{\beta}} = R^{\beta}$.

 $\begin{array}{l} Proof. \ \forall A \in [0,1]^E, \ a \in (0,1]. \ \text{By Theorem 3.3, Theorem 3.10, Lemma 3.11 and (LR4)',} \\ R_{\mathcal{I}^{\beta}{}_{R^{\beta}}}(A)_{(a)} = R_{\mathcal{I}^{\beta}{}_{R^{\beta}}(a)}(A_{(a)}) = R_{\mathcal{I}^{\beta}{}_{R^{\alpha}}}(A_{(a)}) = R_{a}^{\beta}(A_{(a)}) = R^{\beta}(A_{(a)})_{(a)} = R^{\beta}(A)_{(a)}. \\ \text{Hence } R_{\mathcal{I}^{\beta}{}_{R^{\beta}}}(A) = R^{\beta}(A) \text{ for each } A \in [0,1]^E, \text{ thus } R_{\mathcal{I}^{\beta}{}_{R^{\beta}}} = R^{\beta}. \end{array}$

3.13. Lemma. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Then

 $\mathcal{I}^{\beta}_{R^{\beta}} = \{ A \in [0,1]^{E} : R^{\beta}(A) = |A| \}.$

Proof. Let $A \in \mathcal{I}^{\beta}{}_{R^{\beta}}$. Then for any $a \in [0, 1)$, $A_{(a)} \in \mathcal{I}_{R^{\beta}_{a}}$, i.e. $R^{\beta}_{a}(A_{(a)}) = |A_{(a)}| = |A|_{(a)}$. By (LR4)', we have $R^{\beta}(A)_{(a)} = R^{\beta}(A_{(a)})_{(a)} = R^{\beta}_{a}(A_{(a)}) = |A|_{(a)}$. This implies that $R^{\beta}(A) = |A|$.

Conversely, let $A \in [0,1]^E$ with $R^{\beta}(A) = |A|$. Then for any $a \in [0,1)$, $R_a^{\beta}(A_{(a)}) = R^{\beta}(A_{(a)})_{(a)} = R^{\beta}(A)_{(a)} = |A|_{(a)} = |A_{(a)}|$, thus $A_{(a)} \in \mathcal{I}_{R_a^{\beta}}^{\beta}$. This implies that $A \in \mathcal{I}_{R_a^{\beta}}^{\beta}$. Therefore, $\mathcal{I}_{R_{\beta}}^{\beta} = \{A \in [0,1]^E : R^{\beta}(A) = |A|\}$.

3.14. Lemma. [9] Let (E, J) be a closed and perfect [0, 1]-matroid and R_J the [0, 1]-fuzzy rank function for (E, J). Then $A \in J \Leftrightarrow R_J(A) = |A|$.

3.15. Theorem. Let (E, \mathbb{J}) be a closed and perfect [0, 1]-matroid, then $\mathbb{J}^{\beta}_{R_{\mathfrak{I}}} = \mathbb{J}$.

Proof. By Lemma 3.13 and Lemma 3.14, we have

$$A \in \mathcal{I}^{\beta}{}_{R_{\mathcal{I}}} \iff R_{\mathcal{I}}(A) = |A| \iff A \in \mathcal{I}.$$

Therefore, $\mathcal{I}^{\beta}_{R_{\mathfrak{T}}} = \mathcal{I}.$

By Theorem 3.4, Theorem 3.10, Theorem 3.12 and Theorem 3.15, we have the following result.

3.16. Theorem. The set of all closed and perfect [0, 1]-matroids on E and that of all [0, 1]-fuzzy β -rank functions on E are in one-to-one correspondence.

4. [0,1]-fuzzy α -rank functions

4.1. Theorem. [9] Let (E, J) be a [0, 1]-matroid and R_J the [0, 1]-fuzzy rank function for (E, J). Then R_J satisfies (LR1)–(LR3) and the following condition:

(LR4)
$$\forall A \in [0,1]^E$$
 and $a \in (0,1]$, $R_{\mathcal{I}}(a \wedge A_{[a]})_{[a]} = R_{\mathcal{I}}(A)_{[a]}$.

4.2. Remark. (LR4) $\iff \forall A \in [0,1]^E$ and $a \in (0,1], R_{\mathcal{I}}(A_{[a]})_{[a]} = R_{\mathcal{I}}(A)_{[a]}$.

4.3. Definition. A mapping $R : [0,1]^E \to \mathbb{N}([0,1])$ satisfying (LR1)–(LR4) is called a [0,1]-fuzzy α -rank function on E.

4.4. Theorem. A [0,1]-fuzzy α -rank function on E is equivalent to a [0,1]-fuzzy β -rank function on E. That is, the four fuzzy axioms (LR1)–(LR4) are equivalent to (LR1)–(LR3) and (LR4)'.

Proof. Let R^{α} be a [0, 1]-fuzzy α -rank function on E. Then $(E, \mathcal{I}^{\alpha}{}_{R^{\alpha}})$ is a closed and perfect [0, 1]-matroid and $R^{\alpha} = R_{\mathcal{I}^{\alpha}{}_{R^{\alpha}}}$ by [9, Theorem 4.12], thus $R^{\alpha} = R_{\mathcal{I}^{\alpha}{}_{R^{\alpha}}}$ satisfies (LR4)' by Theorem 3.4. This implies that R^{α} is a [0, 1]-fuzzy β -rank function on E.

Conversely, let R^{β} be a [0, 1]-fuzzy β -rank function on E. Then $(E, \mathcal{I}^{\beta}_{R^{\beta}})$ is a closed and perfect [0, 1]-matroid by Theorem 3.10, thus $R^{\beta} = R_{\mathcal{I}^{\beta}_{R^{\beta}}}$ satisfies (LR4) by Theorem 3.12 and [9, Theorem 4.7]. This implies that R^{β} is a [0, 1]-fuzzy α -rank function on E.

Therefore, a [0, 1]-fuzzy α -rank function on E is equivalent to a [0, 1]-fuzzy β -rank function on E.

4.5. Remark. By [9, Theorem 4.15], Theorem 3.16 and Theorem 4.4, the [0, 1]-fuzzy rank function for a closed and perfect [0, 1]-matroid is determined by the conditions (LR1)–(LR3) and (LR4)', or (LR1)–(LR4) completely. Therefore, (LR1)–(LR3) and (LR4)' or (LR1)–(LR4) are called the [0, 1]-fuzzy rank function axioms for a closed and perfect [0, 1]-matroid (i.e. closed Goetschel-Voxman fuzzy matroid).

References

- [1] Goetschel, R. and Voxman, W. Fuzzy matroids, Fuzzy Sets and Systems 27, 291–302, 1988.
- [2] Hsueh, I.-C. On fuzzication of matroids, Fuzzy Sets and Systems 53, 319–327, 1993.
- [3] Huang, H.L. and Shi, F.-G. L-fuzzy numbers and their properties, Information Sciences 178, 1141–1151, 2008.
- [4] Novak, L. A. On fuzzy independence set systems, Fuzzy Sets and Systems 91, 365–374, 1997.
- [5] Novak, L. A. On Goetschel and Voxman fuzzy matroids, Fuzzy Sets and Systems 117, 407–412, 2001.
- [6] Shi, F.-G. L-fuzzy relation and L-fuzzy subgroup, Journal of Fuzzy Mathematics 8, 491–499, 2000.
- [7] Shi, F.-G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems 160, 696-705, 2009.
- [8] Shi, F.-G. (L, M)-fuzzy matroids, Fuzzy Sets and Systems 160, 2387–2400, 2009.
- Xin, X. and Shi, F.-G. Rank functions for closed and perfect [0, 1]-matroids, Hacet. J. Math. Stat. 39 (1), 31–39, 2010.