[0, 1]-FUZZY β -RANK FUNCTIONS[§]

Huan Lian[∗] and Xiu Xin†‡

Received 02 : 08 : 2010 : Accepted 09 : 08 : 2011

Abstract

In this paper, the concepts of [0, 1]-fuzzy β -rank function and [0, 1]fuzzy α -rank function are presented. The set of all closed and perfect $[0, 1]$ -matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on E and that of all [0, 1]-fuzzy β -rank functions on E are in one-to-one correspondence. A [0, 1]-fuzzy α -rank function on E is equivalent to a [0, 1]-fuzzy β -rank function on E.

Keywords: [0, 1]-matroid, Goetschel-Voxman fuzzy matroid, [0, 1]-fuzzy β -rank function, [0, 1]-fuzzy α -rank function.

2000 AMS Classification: 03 E 70, 05 B 35, 52 B 40.

1. Introduction

In 1988, R. Goetschel and W. Voxman introduced the concept of fuzzy matroid [1]. Subsequently many scholars researched Goetschel-Voxman fuzzy matroids [2, 4, 5].

In $[8]$, when L is a completely distributive lattice, Shi introduced a new approach to the fuzzication of matroids, namely an L-matroid. L-matroids preserve many basic properties of matroids and can be applied to fuzzy algebras and fuzzy graphs.

In the sequel, we shall consider $L = [0, 1]$. A perfect $[0, 1]$ -matroid is equivalent to a Goetschel-Voxman fuzzy matroid. In [9], we began an investigation of the $[0, 1]$ -fuzzy rank functions for [0, 1]-matroids. A closed and perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function satisfying four fuzzy axioms (LR1)-(LR4).

This paper is a successor of $[8]$ and $[9]$. It is shown that the $[0, 1]$ -fuzzy rank function for a closed and perfect [0, 1]-matroid can be also described via four fuzzy axioms (LR1), (LR2), (LR3) and (LR4)′ .

 \S The project is supported by the National Natural Science Foundation of China (10971242) [∗]Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China. E-mail: lianhuan369@163.com

[†]Department of Mathematics, Tianjin University of Technology, Tianjin 300384, P.R. China. E-mail: xinxiu518@163.com

[‡]Corresponding Author.

2. Preliminaries

Throughout this paper, E is a nonempty finite set and we denote the power set of E by 2^E . For any $X \subseteq E$, |X| denotes the cardinality of X. A fuzzy set A on E is a mapping $A: E \to [0, 1]$, the set of all fuzzy sets on E is denoted by $[0, 1]^E$. We often do not distinguish a crisp subset X of E from its characteristic function χ_X .

For $A \in [0, 1]^E$, $a \in [0, 1]$ and $\mathcal{I} \subseteq [0, 1]^E$, define

$$
A_{[a]} = \{e \in E : A(e) \ge a\}, \qquad A_{(a)} = \{e \in E : A(e) > a\},
$$

\n
$$
\mathcal{I}[a] = \{A_{[a]} : A \in \mathcal{I}\}, \qquad \mathcal{I}(a) = \{A_{(a)} : A \in \mathcal{I}\}.
$$

In [3, 6], some properties of these cut sets can be found as follows:

$$
A(x) = \bigvee \{a \in (0, 1] : x \in A_{[a]}\} = \bigvee \{a \in [0, 1) : x \in A_{(a)}\},
$$

$$
A_{[a]} = \bigcap_{b < a} A_{[b]} = \bigcap_{b < a} A_{(b)}, \ A_{(a)} = \bigcup_{a < b} A_{[b]} = \bigcup_{a < b} A_{(b)}.
$$

For $a \in [0,1]$ and $X \subseteq E$, define two fuzzy sets $a \wedge X$ and $a \vee X$ on E as follows:

$$
(a \wedge X)(e) = \begin{cases} a, & e \in X, \\ 0, & e \notin X. \end{cases} \quad (a \vee X)(e) = \begin{cases} 1, & e \in X, \\ a, & e \notin X. \end{cases}
$$

For $b \in [0, 1]$ and $e \in E$, the fuzzy set $b \wedge \{e\}$ is called a fuzzy point and denoted by e_b .

2.1. Definition. [7] Let N denote the set of all natural numbers. A fuzzy natural number is an antitone mapping $\lambda : \mathbb{N} \to [0, 1]$ satisfying

$$
\lambda(0) = 1, \ \bigwedge_{n \in \mathbb{N}} \lambda(n) = 0.
$$

The set of all fuzzy natural numbers is denoted by $\mathbb{N}([0,1])$.

For any $m \in \mathbb{N}$, we define $m \in \mathbb{N}([0,1])$ as follows:

$$
\underline{m}(t) = \begin{cases} 1, & \text{if } t \le m, \\ 0, & \text{if } t \ge m+1. \end{cases}
$$

If we do not distinguish m and m , then N can be regarded as a subset of $N([0, 1])$.

2.2. Definition. [7] For any $\lambda, \mu \in \mathbb{N}([0,1])$, define the addition $\lambda + \mu$ of λ and μ as follows:

$$
\forall n \in \mathbb{N}, \ (\lambda + \mu)(n) = \bigvee_{k+l=n} (\lambda(k) \wedge \mu(l)).
$$

2.3. Remark. For crisp sets we may consider the correspondence $n \mapsto \{0, 1, 2, \ldots, n\}$ which associates with each natural number n the subset $\{0, 1, 2, \ldots, n\}$ of the natural numbers. This correspondence is clearly a bijection between the set of natural numbers and the set of sets of the given form under which n is one less than the cardinality of the set to which it corresponds. In the sequel, we shall not distinguish $\{0, 1, \ldots, n\}$ from n.

2.4. Lemma. [7] Let $\lambda, \mu \in \mathbb{N}([0,1])$. It holds that $(\lambda + \mu)_{(a)} = \lambda_{(a)} + \mu_{(a)}$ for any $a \in [0,1).$

2.5. Definition. [8] Let $A \in [0,1]^E$. Then $|A| \in \mathbb{N}([0,1])$ defined by

$$
\forall n \in \mathbb{N}, \ |A|(n) = \bigvee \{a \in [0,1] : |A_{[a]}| \ge n\}
$$

is called the fuzzy cardinality of A.

2.6. Lemma. [8] Let $A \in [0,1]^E$. It holds that $|A|_{(a)} = |A_{(a)}|$ for any $a \in [0,1)$.

2.7. Definition. [8] If $\mathcal{I} \subseteq [0,1]^E$ satisfies the following conditions:

- $(LI1)$ J is nonempty;
- (LI2) If $A, B \in [0,1]^E$, $A \leq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$;
- (LI3) If $A, B \in \mathcal{I}$ and $b = |B|(n) > |A|(n)$ for some $n \in \mathbb{N}$, then there exists $e \in \mathcal{I}$ $F(A, B)$ such that $(b \wedge A_{[b]}) \vee e_b \in \mathcal{I}$, where $F(A, B) = \{e \in E : A(e) < b \leq B(e)\},\$

then the pair (E, \mathcal{I}) is called a $[0, 1]$ -matroid.

2.8. Theorem. [8] If (E, \mathcal{I}) is a [0,1]-matroid, then

- (1) $(E, \mathcal{I}[a])$ is a matroid for each $a \in (0,1]$.
- (2) $(E, \mathcal{I}(a))$ is a matroid for each $a \in [0, 1)$.

2.9. Theorem. [9] Let (E, \mathcal{I}) be a [0, 1]-matroid. Then there is a finite sequence $0 =$ $a_0 < a_1 < a_2 < \cdots < a_n = 1$ such that

(1) If $a_i < a, b < a_{i+1}$, then $\mathbb{I}[a] = \mathbb{I}[b]$, $0 \le i \le n-1$;

(2) If $a_i < a < a_{i+1} < b < a_{i+2}$, then $\mathbb{I}[a] \supset \mathbb{I}[b]$, $0 \le i \le n-2$.

The sequence a_0, a_1, \ldots, a_n is called the fundamental sequence for (E, \mathcal{I}) .

2.10. Definition. [9]

- (1) A [0, 1]-matroid (E, \mathcal{I}) with the fundamental sequence a_0, a_1, \ldots, a_n is called a closed [0, 1]-matroid if whenever $a_{i-1} < a \le a_i$ ($1 \le i \le n$), then $\mathcal{I}[a] = \mathcal{I}[a_i]$.
- (2) A [0, 1]-matroid (E, \mathcal{I}) is called a *perfect* [0, 1]-matroid, if it satisfies the following condition:

(LI4) $\forall A \in [0,1]^E$, if $a \wedge A_{[a]} \in \mathcal{I}$ for all $a \in (0,1]$, then $A \in \mathcal{I}$.

2.11. Theorem. [9] Let $\mathcal{I} \subseteq [0,1]^E$ satisfy (LI2) and (LI4). Then the following conditions are equivalent:

- (1) (E, \mathcal{I}) is a $[0, 1]$ -matroid;
- (2) $(E, \mathcal{I}[a])$ is a matroid for all $a \in (0,1]$.

3. [0, 1]-fuzzy β -rank functions

In this section, the concept of [0, 1]-fuzzy β -rank functions on E is presented. There is a one-to-one correspondence between the set of all closed and perfect [0, 1]-matroids (i.e. closed Goetschel-Voxman fuzzy matroids) on E and that of all $[0, 1]$ -fuzzy β -rank functions on E.

3.1. Definition. [8] Let (E, \mathcal{I}) be a [0, 1]-matroid. The mapping $R_{\mathcal{I}} : [0, 1]^E \to \mathbb{N}([0, 1])$ defined by

 $R_{\mathcal{I}}(A) = \bigvee \{|B| : B \leq A, B \in \mathcal{I}\}\$

is called the [0, 1]-fuzzy rank function for (E, \mathcal{I}) .

3.2. Remark. Definition 3.1 gives a new definition of fuzzy rank function for Goetschel-Voxman fuzzy matroids (i.e. perfect [0, 1]-matroids). Based on this, the theory of Goetschel-Voxman fuzzy matroids achieves further development.

3.3. Theorem. [7] Let (E, \mathcal{I}) be a [0, 1]-matroid and R₁ the [0, 1]-fuzzy rank function for (E, \mathcal{I}) . $\forall a \in [0, 1)$, let $R_{\mathcal{I}(a)}$ denote the rank function for $(E, \mathcal{I}(a))$. Then $R_{\mathcal{I}}(A)_{(a)} =$ $R_{\mathfrak{I}(a)}(A_{(a)})$ for each $A \in [0,1]^E$.

3.4. Theorem. Let (E, \mathcal{I}) be a $[0, 1]$ -matroid and $R_{\mathcal{I}}$ the $[0, 1]$ -fuzzy rank function for (E, J). Then R_1 satisfies the following conditions: $\forall A, B \in [0,1]^E$, $a \in [0,1)$,

$$
(LR1) \ \underline{0} \le R_{\mathfrak{I}}(A) \le |A|;
$$

 $(LR2)$ $A \leq B \Rightarrow R_{\mathcal{I}}(A) \leq R_{\mathcal{I}}(B);$

(LR3) $R_1(A) + R_1(B) \geq R_1(A \vee B) + R_1(A \wedge B);$ $(LR4)'$ $R_{\mathcal{I}}(A_{(a)})_{(a)} = R_{\mathcal{I}}(A)_{(a)}.$

Proof. By [8, Theorem 3.14], R_J satisfies (LR1)–(LR3). We only need to check that R_J satisfies $(LR4)'$. For any $A \in [0,1]^E$ and $a \in [0,1)$, by Theorem 3.3,

$$
R_{\mathfrak{I}}(A)_{(a)} = R_{\mathfrak{I}(a)}(A_{(a)}) = R_{\mathfrak{I}(a)}((A_{(a)})_{(a)}) = R_{\mathfrak{I}}(A_{(a)})_{(a)}.
$$

3.5. Definition. A mapping $R : [0,1]^E \to \mathbb{N}([0,1])$ satisfying conditions (LR1)–(LR3) and $(LR4)'$ is called a [0, 1]-fuzzy β -rank function on E.

In the following, we will discuss the relation between the set of all [0, 1]-matroids on E and that of all [0, 1]-fuzzy β -rank functions on E.

3.6. Lemma. Let R^{β} be a [0, 1]-fuzzy β -rank function on E. Define $R^{\beta}_a : 2^E \to \mathbb{N}$ as follows:

$$
\forall a \in [0,1), \ R_a^{\beta}(A) = R^{\beta}(A)_{(a)}.
$$

Then R_a^{β} satisfies the following conditions (R1)–(R3): $\forall A, B \in 2^E$,

 $(R1) \ \ 0 \leq R_a^{\beta}(A) \leq |A|;$ $(R2)$ $A \subseteq B \Rightarrow R_a^{\beta}(A) \leq R_a^{\beta}(B);$

(R3) $R_a^{\beta}(A) + R_a^{\beta}(B) \geq R_a^{\beta}(A \cup B) + R_a^{\beta}(A \cap B).$

Hence there exists a matroid $(E, \mathcal{I}_{R_a^{\beta}})$ such that R_a^{β} is the rank function for $(E, \mathcal{I}_{R_a^{\beta}})$, where $\mathcal{I}_{R_a^{\beta}} = \{ A \in 2^E : R_a^{\beta}(A) = |A| \}.$

Proof. (R1). By (LR1), $\underline{0} \leq R^{\beta}(A) \leq |\chi_A|$, then $\{0\} \subseteq R^{\beta}(A)_{(a)}$, thus $0 \leq R^{\beta}(A)$. Moreover, by Lemma 2.6, we know that

$$
n \leq R_a^{\beta}(A) \Leftrightarrow n \in R^{\beta}(A)_{(a)} \Rightarrow n \in |\chi_A|_{(a)} \Leftrightarrow n \leq |\chi_{A(a)}| = |A|.
$$

Hence $0 \leq R_a^{\beta}(A) \leq |A|$.

(R2). Since
$$
A \subseteq B
$$
, hence $R^{\beta}(A) \le R^{\beta}(B)$ by (LR2). Then $\forall n \in \mathbb{N}$,

$$
n \leq R_a^{\beta}(A) \Leftrightarrow n \in R^{\beta}(A)_{(a)} \Rightarrow n \in R^{\beta}(B)_{(a)} \Leftrightarrow n \leq R_a^{\beta}(B).
$$

This shows $R_a^{\beta}(A) \leq R_a^{\beta}(B)$.

(R3). By Lemma 2.4 and (LR3), we have the following implications:

$$
n \leq R_a^{\beta}(A \cup B) + R_a^{\beta}(A \cap B) \iff n \leq R^{\beta}(A \cup B)_{(a)} + R^{\beta}(A \cap B)_{(a)}
$$

\n
$$
\iff n \in (R^{\beta}(A \cup B) + R^{\beta}(A \cap B))_{(a)}
$$

\n
$$
\iff n \in (R^{\beta}(A) + R^{\beta}(B))_{(a)}
$$

\n
$$
\iff n \leq R^{\beta}(A)_{(a)} + R^{\beta}(B)_{(a)}
$$

\n
$$
\iff n \leq R_a^{\beta}(A) + R_a^{\beta}(B).
$$

Therefore, $R_a^{\beta}(A) + R_a^{\beta}(B) \geq R_a^{\beta}(A \cup B) + R_a^{\beta}(A \cap B)$.

3.7. Lemma. If $a \in [0, 1)$, then $\mathcal{I}_{R_a^{\beta}} = \bigcup \{ \mathcal{I}_{R_b^{\beta}} : a < b \}$.

Proof. $\forall a \in [0, 1)$, we have

$$
A \in \mathcal{I}_{R_a^{\beta}} \iff R^{\beta}(A)_{(a)} = R_a^{\beta}(A) = |A|
$$

\n
$$
\iff \bigcup_{a < b} R_b^{\beta}(A) = \bigcup_{a < b} R^{\beta}(A)_{(b)} = |A|
$$

\n
$$
\iff \text{there exists } b > a \text{ such that } R_b^{\beta}(A) = |A|
$$

\n
$$
\iff \text{there exists } b > a \text{ such that } A \in \mathcal{I}_{R_b^{\beta}}.
$$

This implies that $\mathbb{J}_{R_a^\beta} = \bigcup \left\{ \mathbb{J}_{R_b^\beta} : a < b \right\}$

3.8. Theorem. [7] Let $\{(E, \mathcal{I}_a) : a \in [0, 1)\}$ be a family of matroids. If $\mathcal{I}_a = \bigcup \{\mathcal{I}_b : a <$ b} for all $a \in [0, 1)$, then there exists a fuzzifying matroid (E, \mathcal{I}) such that $\mathcal{I}_{(a)} = \mathcal{I}_{a}$. \Box

By the definitions of R^{β}_a and $\mathbb{I}_{R^{\beta}_a}$, Lemma 3.7 and Theorem 3.8, we have the following result.

3.9. Lemma. Let R^{β} be a [0, 1]-fuzzy β -rank function on E. Define $\mathfrak{I}_{R^{\beta}} : 2^E \to [0,1]$ as follows:

$$
\forall A \in 2^{E}, \ \mathcal{I}_{R^{\beta}}(A) = \bigvee \{a \in [0,1) : A \in \mathcal{I}_{R^{\beta}_{a}}\}.
$$

Then

(1) $(E, \mathcal{I}_{R^{\beta}})$ is a fuzzifying matroid. . В последните поставите на селото на се
Селото на селото на

(2) $\forall a \in [0, 1), (\mathcal{I}_{R^{\beta}})_{(a)} = \mathcal{I}_{R^{\beta}_{a}}$

3.10. Theorem. Let R^{β} be a [0, 1]-fuzzy β -rank function on E. Define

$$
\mathcal{I}_{R^{\beta}}^{\beta} = \{ A \in [0,1]^{E} : \forall a \in [0,1), A_{(a)} \in \mathcal{I}_{R_a^{\beta}} \}.
$$

Then $(E, \mathcal{I}_{R^{\beta}})$ is a closed and perfect $[0, 1]$ -matroid.

Proof. Obviously, $J^{\beta}{}_{R^{\beta}}$ satisfies (LI1) and (LI2). Let $A \in [0,1]^E$. If $a \wedge A_{[a]} \in J^{\beta}{}_{R^{\beta}}$ for all $0 <$ $a \leq 1$, then for any $b \in [0,1)$, there exists $a > b$ such that $A_{(b)} = A_{[a]}$, hence $A_{(b)} = A_{[a]} = (a \wedge A_{[a]})_{(b)} \in \mathcal{I}_{R_b^{\beta}}$, thus $A \in \mathcal{I}_{R^{\beta}}^{\beta}$. This implies that $\mathcal{I}_{R^{\beta}}^{\beta}$ satisfies (LI4).

 $\forall a \in (0,1], \text{ let } A \in \mathcal{I}_{R^{\beta}}^{\beta}[a]. \text{ Then } a \wedge A \in \mathcal{I}_{R^{\beta}}^{\beta}, \text{ thus } \forall b \lt a, A = (a \wedge A)_{(b)} \in \mathcal{I}_{R^{\beta}_b},$ hence $A \in \bigcap_{b < a} \mathcal{I}_{R_b^{\beta}}$. This means that $\mathcal{I}_{R^{\beta}}^{\beta}[a] \subseteq \bigcap_{b < a} \mathcal{I}_{R_b^{\beta}}$.

Conversely, let $A \in \bigcap_{b. It is obvious that $(a \wedge A)_{(c)} = A \in \mathcal{I}_{R_c^{\beta}}$ for each $c < a$ and$ $(a \wedge A)_{(c)} = \emptyset \in \mathcal{I}_{R_c^{\beta}}$ for each $c \geq a$, thus $a \wedge A \in \mathcal{I}_{R^{\beta}}^{\beta}$, hence $A = (a \wedge A)_{[a]} \in \mathcal{I}_{R^{\beta}}^{\beta}[a]$. This means that $\bigcap_{b. Therefore, $\mathbb{J}^{\beta}{}_{R^{\beta}}[a] = \bigcap_{b.$$

By Lemma 3.9, $\mathcal{I}_{R^{\beta}}[a] = \bigcap_{b. Therefore, $(E, \mathcal{I}_{R^{\beta}}^{\beta})$ is a$ closed and perfect $[0, 1]$ -matroid by Definition 2.10 and Theorem 2.11.

3.11. Lemma. Let R^{β} be a [0, 1]-fuzzy β -rank function on E. Then

 $\forall a \in [0,1), \mathcal{I}_{R^{\beta}}^{\beta}(a) = \mathcal{I}_{R^{\beta}_{a}}.$

Proof. For each $a \in [0,1)$, let $A_{(a)} \in \mathcal{I}_{R^{\beta}}^{\beta}(a)$, where $A \in \mathcal{I}_{R^{\beta}}^{\beta}$. By the definition of $\mathcal{I}_{R^{\beta}}^{\beta}, A_{(a)} \in \mathcal{I}_{R^{\beta}_{a}}$. This implies that $\mathcal{I}_{R^{\beta}}^{\beta}(a) \subseteq \mathcal{I}_{R^{\beta}_{a}}$.

. В последните последните последните последните последните последните последните последните последните последн
В 1990 година от селото на сел

Conversely, let $A \in \mathcal{I}_{R_a^{\beta}}$, then $\bigvee_{a,$ thus there exists $b > a$ such that $R_b^{\beta}(A) = |A|$, i.e. $A \in \mathcal{I}_{R_b^{\beta}}$. $\forall c \in [0,1)$, $(b \wedge A)_{(c)} = A \in$ $\mathcal{I}_{R_b^{\beta}} \subseteq \mathcal{I}_{R_c^{\beta}}$ for each $c < b$, $(b \wedge A)_{(c)} = \emptyset \in \mathcal{I}_{R_c^{\beta}}$ for each $c \geq b$. Thus $b \wedge A \in \mathcal{I}_{R_c^{\beta}}^{\beta}$, hence $A = (b \wedge A)_{(a)} \in \mathcal{I}_{R^{\beta}}^{\beta}(a)$. This implies that $\mathcal{I}_{R^{\beta}_{a}} \subseteq \mathcal{I}_{R^{\beta}}^{\beta}(a)$. Therefore, $\mathcal{I}_{R^{\beta}}^{\beta}(a) = \mathcal{I}_{R^{\beta}_{a}}$ for each $a \in [0, 1)$.

3.12. Theorem. Let R^{β} be a [0,1]-fuzzy β -rank function on E. Then R^{β} is the [0,1]fuzzy rank function for (E, \mathcal{I}^{β}) , i.e. $R_{\mathcal{I}^{\beta} R^{\beta}} = R^{\beta}$.

Proof. ∀ $A \in [0, 1]^E$, $a \in (0, 1]$. By Theorem 3.3, Theorem 3.10, Lemma 3.11 and $(LR4)'$, $R_{\mathcal{I}^{\beta}R_{\beta}}(A)_{(a)} = R_{\mathcal{I}^{\beta}R_{\beta}}(a)(A_{(a)}) = R_{\mathcal{I}_{R^{\beta}}_{a}}(A_{(a)}) = R^{\beta}(A_{(a)}) = R^{\beta}(A_{(a)})_{(a)} = R^{\beta}(A)_{(a)}.$ Hence $R_{\mathcal{I}^{\beta}R^{\beta}}(A) = R^{\beta}(A)$ for each $A \in [0, 1]^E$, thus $R_{\mathcal{I}^{\beta}R^{\beta}} = R^{\beta}$. — Процессиональные производствование и производствование и производствование и производствование и производс
В соответствование и производствование и производствование и производствование и производствование и производс

3.13. Lemma. Let R^{β} be a [0, 1]-fuzzy β -rank function on E. Then

 $\mathcal{I}_{R^{\beta}}^{\beta} = \{A \in [0,1]^{E} : R^{\beta}(A) = |A|\}.$

Proof. Let $A \in \mathcal{I}_{R^\beta}^{\beta}$. Then for any $a \in [0, 1), A_{(a)} \in \mathcal{I}_{R_a^\beta}$, i.e. $R_a^\beta(A_{(a)}) = |A_{(a)}| = |A|_{(a)}$. By (LR4)', we have $R^{\beta}(A)_{(a)} = R^{\beta}(A_{(a)})_{(a)} = R^{\beta}(A_{(a)}) = |A|_{(a)}$. This implies that $R^{\beta}(A) = |A|.$

Conversely, let $A \in [0,1]^E$ with $R^{\beta}(A) = |A|$. Then for any $a \in [0,1)$, $R^{\beta}_a(A_{(a)}) =$ $R^{\beta}(A_{(a)})_{(a)} = R^{\beta}(A)_{(a)} = |A|_{(a)} = |A_{(a)}|$, thus $A_{(a)} \in \mathcal{I}_{R^{\beta}_{a}}$. This implies that $A \in \mathcal{I}^{\beta}_{R^{\beta}}$. Therefore, $J^{\beta}_{R^{\beta}} = \{A \in [0,1]^E : R^{\beta}(A) = |A|\}.$

3.14. Lemma. [9] Let (E, \mathcal{I}) be a closed and perfect $[0, 1]$ -matroid and $R_{\mathcal{I}}$ the $[0, 1]$ -fuzzy rank function for (E, \mathcal{I}) . Then $A \in \mathcal{I} \Leftrightarrow R_{\mathcal{I}}(A) = |A|$.

3.15. Theorem. Let (E, \mathcal{I}) be a closed and perfect $[0, 1]$ -matroid, then $\mathcal{I}_{R_1}^{\beta} = \mathcal{I}$.

Proof. By Lemma 3.13 and Lemma 3.14, we have

$$
A \in \mathcal{I}^{\beta}{}_{R_{\mathcal{I}}} \iff R_{\mathcal{I}}(A) = |A| \iff A \in \mathcal{I}.
$$

Therefore, J^{β} $R_1 = 1$.

By Theorem 3.4, Theorem 3.10, Theorem 3.12 and Theorem 3.15, we have the following result.

3.16. Theorem. The set of all closed and perfect $[0, 1]$ -matroids on E and that of all $[0, 1]$ -fuzzy β -rank functions on E are in one-to-one correspondence.

4. $[0, 1]$ -fuzzy α -rank functions

4.1. Theorem. [9] Let (E, \mathcal{I}) be a [0, 1]-matroid and $R_{\mathcal{I}}$ the [0, 1]-fuzzy rank function for (E, \mathcal{I}) . Then $R_{\mathcal{I}}$ satisfies (LR1)–(LR3) and the following condition:

(LR4) $\forall A \in [0,1]^E$ and $a \in (0,1], R_{\mathcal{I}}(a \wedge A_{[a]})_{[a]} = R_{\mathcal{I}}(A)_{[a]}$. . — Первый производительный производительный производительный производительный производительный прои
В 1990 году в 1990 году в
Примечание

4.2. Remark. (LR4) $\iff \forall A \in [0,1]^E$ and $a \in (0,1], R_{\mathcal{I}}(A_{[a]})_{[a]} = R_{\mathcal{I}}(A)_{[a]}$.

4.3. Definition. A mapping $R : [0,1]^E \to \mathbb{N}([0,1])$ satisfying (LR1)–(LR4) is called a [0, 1]-fuzzy α -rank function on E.

4.4. Theorem. A [0, 1]-fuzzy α -rank function on E is equivalent to a [0, 1]-fuzzy β -rank function on E. That is, the four fuzzy axioms $(LR1)$ – $(LR4)$ are equivalent to $(LR1)$ – $(LR3)$ and $(LR4)'$.

$$
\Box
$$

Proof. Let R^{α} be a [0, 1]-fuzzy α -rank function on E. Then $(E, \mathcal{I}^{\alpha}{}_{R^{\alpha}})$ is a closed and perfect [0, 1]-matroid and $R^{\alpha} = R_{\mathcal{I}^{\alpha}R^{\alpha}}$ by [9, Theorem 4.12], thus $R^{\alpha} = R_{\mathcal{I}^{\alpha}R^{\alpha}}$ satisfies (LR4)' by Theorem 3.4. This implies that R^{α} is a [0, 1]-fuzzy β -rank function on E.

Conversely, let R^{β} be a [0, 1]-fuzzy β -rank function on E. Then $(E, \mathcal{I}_{R^{\beta}}^{\beta})$ is a closed and perfect [0, 1]-matroid by Theorem 3.10, thus $R^{\beta} = R_{\beta \beta}$ satisfies (LR4) by Theorem 3.12 and [9, Theorem 4.7]. This implies that R^{β} is a [0, 1]-fuzzy α -rank function on E.

Therefore, a [0, 1]-fuzzy α -rank function on E is equivalent to a [0, 1]-fuzzy β -rank function on E .

4.5. Remark. By [9, Theorem 4.15], Theorem 3.16 and Theorem 4.4, the $[0, 1]$ -fuzzy rank function for a closed and perfect $[0, 1]$ -matroid is determined by the conditions (LR1)–(LR3) and (LR4)′ , or (LR1)–(LR4) completely. Therefore, (LR1)–(LR3) and (LR4)′ or (LR1)–(LR4) are called the [0, 1]-fuzzy rank function axioms for a closed and perfect [0, 1]-matroid (i.e. closed Goetschel-Voxman fuzzy matroid).

References

- [1] Goetschel, R. and Voxman, W. Fuzzy matroids, Fuzzy Sets and Systems 27, 291–302, 1988.
- [2] Hsueh, I. -C. On fuzzication of matroids, Fuzzy Sets and Systems 53, 319–327, 1993.
- [3] Huang, H. L. and Shi, F. -G. *L*-fuzzy numbers and their properties, Information Sciences 178, 1141–1151, 2008.
- [4] Novak, L. A. On fuzzy independence set systems, Fuzzy Sets and Systems 91, 365–374, 1997.
- [5] Novak, L. A. On Goetschel and Voxman fuzzy matroids, Fuzzy Sets and Systems 117, 407– 412, 2001.
- [6] Shi, F. -G. L-fuzzy relation and L-fuzzy subgroup, Journal of Fuzzy Mathematics 8, 491–499, 2000.
- [7] Shi, F. -G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems 160, 696–705, 2009.
- [8] Shi, F. -G. (L, M)-fuzzy matroids, Fuzzy Sets and Systems 160, 2387–2400, 2009.
- [9] Xin, X. and Shi, F. -G. Rank functions for closed and perfect [0, 1]-matroids, Hacet. J. Math. Stat. 39 (1), 31–39, 2010.