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Abstract

A general framework for the concepts of compactness, countable com-
pactness, and the Lindelöf property are introduced in L-topological
spaces by means of several kinds of open L-sets and their inequalities
when L is a complete DeMorgan algebra. The method used in this
paper shows that these results are valid for any kind of open L-sets and
thus we do not need to repeat it for each kind separately.
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1. Introduction

The concept of compactness of an I-topological space was first introduced by Chang
[6] in terms of open covers. Chang’s compactness has been greatly extended to the
variable-basis case by Rodabaugh [12], and it can be regarded as a successful definition
of compactness in poslat topology from the categorical point of view (see [12, 18]). More-
over, Gantner et al. introduced α-compactness [8], Lowen introduced fuzzy compactness,
strong fuzzy compactness and ultra-fuzzy compactness [17, 16], Chadwick [5] general-
ized Lowen’s compactness, Liu introduced Q-compactness [15], Li introduced strong Q-
compactness [13] which is equivalent to the strong fuzzy compactness in [16], Wang and
Zhao introduced N-compactness [29, 31], and Shi introduced S∗-compactness [24].

Recently, Shi presented a new definition of fuzzy compactness in L-topological spaces
[20, 25] by means of open L-sets and their inequality where L is a complete DeMorgan
algebra. The new definition does not depend on the structure of L. When L is completely
distributive, it is equivalent to the notion of fuzzy compactness in [14, 17, 28].

In this paper, following the lines of [20, 24, 25], we will introduce a general framework
of compactness in L-topological spaces by means of m-open L-sets and their inequality,
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where m means the kind of openness of the L-sets. We also introduce countable m-
compactness and the m-Lindelöf property in L-topology.

2. Preliminaries

Throughout this paper (L,≤,
∧

,
∨

, ′ ) is a complete DeMorgan algebra, X a nonempty
set. The smallest element and the largest element in L are denoted by 0 and 1, respec-
tively. By L0 and L1 we mean L\{0} and L\{1}, respectively. LX is the set of all L-fuzzy
sets (or L-sets, for short) on X. The smallest element and the largest element in LX are
denoted by χ∅ and χX , respectively. We often do not distinguish a crisp subset A of X
and its character function χA.

A complete lattice L is a complete Heyting algebra if it satisfies the following infinite
distributive law: For all a ∈ L and all B ⊂ L, a ∧

∨

B =
∨

{a∧ | b ∈ B}.

An element a in L is called a prime element if a ≥ b ∧ c implies a ≥ b or a ≥ c. An
element a in L is called co-prime if a′ is prime [9]. The set of non-unit prime elements in
L is denoted by P (L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if for
every subset D ⊆ L, the relation b ≤ supD always implies the existence of d ∈ D with
a ≤ d [7]. In a completely distributive DeMorgan algebra L, each element b is a sup of
{a ∈ L | a ≺ b}. A set {a ∈ L | a ≺ b} is called the greatest minimal family of b in the
sense of [14, 28], denoted by β(b), and β∗(b) = β(b) ∩M(L). Moreover, for b ∈ L, we
define α(b) = {a ∈ L | a′ ≺ b′} and α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX , we use the following notations from [26].

A[a] = {x ∈ X | A(x) ≥ a}, A(a) = {x ∈ X | A(x) 6≤ a},

A(a) = {x ∈ X | a ∈ β(A(x))}.

An L-topological space (or L-space, for short) is a pair (X,T), where T is a subfamily of
LX which contains χ∅; χX and is closed for any suprema and finite infima. T is called
an L-topology on X. Members of T are called open L-sets and their complements are
called closed L-sets.

2.1. Definition. [14, 28] An L-space (X, T) is called weakly induced if ∀ a ∈ L, A ∈ LX ,

it follows that A(a) ∈ [T], where [T] denotes the topology formed by all the crisp sets in
T.

2.2. Definition. [14, 28] For a topological space (X, τ ), let ωL(τ ) denote the family of all

lower semi-continuous maps from (X, τ ) to L, i.e., ωL(τ ) = {A ∈ LX | A(a) ∈ τ, a ∈ L}.
Then ωL(τ ) is an L-topology on X; in this case, (X,ωL(τ )) is said to be topologically
generated by (X, τ ). A topologically generated L-space is also called an induced L-space.

2.3. Definition. [21] Let (X,T) be an L-space, a ∈ L0 and G ∈ LX . A family U ⊆ LX

is called a βa-cover of G if for any x ∈ X, it follows that a ∈ β(G′(x) ∨
∨

A∈UA(x)). U

is called a strong βa-cover of G if a ∈ β(
∧

x∈X(G′(x) ∨
∨

A∈UA(x))).

2.4. Definition. [21] Let (X,T) be an L-space, a ∈ L0 and G ∈ LX . A family U ⊆ LX

is called a Qa-cover of G if for any x ∈ X, it follows that G′(x) ∨
∨

A∈UA(x) ≥ a.

It is obvious that a strong βa-cover of G is a βa-cover of G, and a βa-cover of G is
a Qa-cover of G. For a ∈ L and a crisp subset D ⊂ X, we define a ∧ D and a ∨ D as
follows:

(a ∧D)(x) =

{

a, x ∈ D;

0, x 6∈ D.
(a ∨D)(x) =

{

1, x ∈ D;

0, x 6∈ D.
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2.5. Theorem. [26] For an L-set A ∈ LX , the following facts are true:

(1) A =
∨

a∈L(a ∧ A(a)) =
∨

a∈L(a ∧ A[a]).

(2) A =
∧

a∈L(a ∨ A
(a)) =

∧

a∈L(a ∨ A
[a]). �

2.6. Theorem. [26] Let (X,ωL(τ )) be the L-space topologically generated by (X, τ ) and
A ∈ LX . Then the following facts hold:

(1) cl(A) =
∨

a∈L(a ∧ (A(a))
−) =

∨

a∈L(a ∧ (A[a])
−);

(2) cl(A)(a) ⊂ (A(a))
− ⊂ (A[a])

− ⊂ cl(A)[a];

(3) cl(A) =
∧

a∈L(a ∨ (A(a))−) =
∧

a∈L(a ∨ (A[a])−);

(4) cl(A)(a) ⊂ (A(a))− ⊂ (A[a])− ⊂ cl(A)[a];
(5) int(A) =

∨

a∈L(a ∧ (A(a))
◦) =

∨

a∈L(a ∧ (A[a])
◦);

(6) int(A)(a) ⊂ (A(a))
◦ ⊂ (A[a])

◦ ⊂ int(A)[a];

(7) int(A) =
∧

a∈L(a ∨ (A(a))◦) =
∧

a∈L(a ∨ (A[a])◦);

(8) int(A)(a) ⊂ (A(a))◦ ⊂ (A[a])◦ ⊂ int(A)[a];

where (A(a))
− and (A(a))

◦ denote respectively the closure and the interior of A(a) in
(X, τ ) and so on, cl(A) and int(A) denote respectively the closure and the interior of A
in (X,ωL(τ )). �

2.7. Definition. [21] Let (X,T) be an L-space, a ∈ L1 and G ∈ LX . A family A ⊆ LX

is said to be:

(1) An a-shading of G if for any x ∈ X,
(

G′(x) ∨
∨

A∈AA(x)
)

� a.

(2) A strong a-shading of G if
∧

x∈X

(

G′(x) ∨
∨

A∈AA(x)
)

� a.

(3) An a-remote family of G if for any x ∈ X,
(

G(x) ∧
∧

B∈AB(x)
)

� a.

(4) A strong a-remote family of G if
∨

x∈X

(

G(x) ∧
∧

B∈A B(x)
)

� a.

2.8. Definition. [21] Let a ∈ L0 and G ∈ LX . A subfamily U of LX is said to have
a weak a-nonempty intersection in G if

∨

x∈X

(

G(x) ∧
∧

A∈UA(x)
)

≥ a. U is said to
have the finite (countable) weak a-intersection property in G if every finite (countable)
subfamily P of U has a weak a-nonempty intersection in G.

2.9. Definition. [21] Let a ∈ L0 and G ∈ LX . A subfamily U of LX is said to be a weak
a-filter relative to G if any finite intersection of members in U is weak a-nonempty in G.
A subfamily B of LX is said to be a weak a-filterbase relative to G if

{A ∈ L
X | there exists B ∈ B such that B ≤ A}

is a weak a-filter relative to G.

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ and 2[Φ]

the set of all countable subfamilies of Φ.

2.10. Definition. Let G be an L-set of an L-space (X,T). G is called a semiopen
L-set [2] (resp. a preopen L-set [27], α-open L-set [4], β-open L-set [3], γ-open L-set
[11]) if G ≤ cl(int(G)) (resp. G ≤ int(cl(G)), G ≤ int(cl(int(G))), G ≤ cl(int(cl(G))),
G ≤ cl(int(G)) ∨ int(cl(G))).

The set of all semiopen L-sets (resp. preopen L-sets, α-open L-sets, β-open L-
sets, γ-open L-sets) in (X,T) will be denoted by SO(X,T) (resp. PO(X, T), αO(X, T),
βO(X,T), γO(X, T)). Generally, mO(X,T) denotes the set of all m-open L-sets.

2.11. Lemma. [25] Let (X,T1) and (Y,T2) be two L-spaces, where L is a complete
Heyting algebra, let f : X → Y be a mapping, f→L : LX → LY the extension of f . Then
for any P ⊂ LY , we have that

∨

y∈Y

(

f
→
L (G)(y) ∧

∧

B∈P

B(y)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈P

f
←
L (B)(x)

)

. �
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3. A notion of m-compactness

3.1. Definition. Let (X,T) be an L-space. G ∈ LX is called (countably) m-compact if
for every (countable) family U ⊆ LX of m-open L-sets, it follows that

∧

x∈X

(

G
′(x) ∨

∨

A∈U

A(x)

)

≤
∨

ψ∈2(U)

∧

x∈X

(

G
′(x) ∨

∨

A∈ψ

A(x)

)

.

3.2. Definition. Let (X,T) be an L-space. G ∈ LX is said to have the m-Lindelöf
property (or to be an m-Lindelöf L-set) if for every family U of m-open L-sets, it follows
that

∧

x∈X

(

G
′(x) ∨

∨

A∈U

A(x)

)

≤
∨

ψ∈2[U]

∧

x∈X

(

G
′(x) ∨

∨

A∈ψ

A(x)

)

.

3.3. Remark. m-compactness implies countable m-compactness and the m-Lindelöf
property. Moreover, an L-set having the m-Lindelöf property is m-compact if and only
if it is countably m-compact.

3.4. Theorem. Let (X,T) be an L-space. Then G ∈ LX is (countably) m-compact if
and only if for every (countable) family B of m-closed L-sets, it follows that

∨

x∈X

(

G(x) ∧
∧

B∈B

B(x)

)

≥
∧

ϑ∈2(B)

∨

x∈X

(

G(x) ∧
∧

B∈ϑ

B(x)

)

.

Proof. Straightforward. �

3.5. Theorem. Let (X,T) be an L-space. Then G ∈ LX has the m-Lindelöf property if
and only if for every family B of m-closed L-sets, it follows that

∨

x∈X

(

G(x) ∧
∧

B∈B

B(x)

)

≥
∧

ϑ∈2[B]

∨

x∈X

(

G(x) ∧
∧

B∈ϑ

B(x)

)

.

Proof. Straightforward. �

3.6. Theorem. Let (X,T) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is a (countably) m-compact.
(2) For any a ∈ L1, each (countable) m-open strong a-shading U of G has a finite

subfamily which is a strong a-shading of G.
(3) For any a ∈ L0, each (countable) m-closed strong a-remote family P of G has a

finite subfamily which is a strong a-remote family of G.
(4) For any a ∈ L0, each (countable) family of m-closed L-sets which has the finite

weak a-intersection property in G has a weak a-nonempty intersection in G.
(5) For each a ∈ L0, every m-closed (countable) weak a-filterbase relative to G has

a weak a-nonempty intersection in G. �

3.7. Theorem. Let (X,T) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G has the m-Lindelöf property.
(2) For any a ∈ L1, each m-open strong a-shading U of G has a countable subfamily

which is a strong a-shading of G.
(3) For any a ∈ L0, each m-closed strong a-remote family P of G has a countable

subfamily which is a strong a-remote family of G.
(4) For any a ∈ L0, each family of m-closed L-sets which has the countable weak

a-intersection property in G has a weak a-nonempty intersection in G. �



Compactness in L-Topological Spaces 71

4. Properties of (countable) m-compactness

4.1. Theorem. Let L be a complete Heyting algebra. If both G and H are (countably)
m-compact, then G ∨H is (countably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

∨

x∈X

(

(G ∨H)(x)∧
∧

B∈B

B(x)

)

=

{

∨

x∈X

(

G(x) ∧
∧

B∈B

B(x)

)}

∨

{

∨

x∈X

(

H(x) ∧
∧

B∈B

B(x)

)}

≥

{

∧

ϑ∈2(B)

∨

x∈X

(

G(x) ∧
∧

B∈ϑ

B(x)

)

}

∨

{

∧

ϑ∈2(B)

∨

x∈X

(

H(x) ∧
∧

B∈ϑ

B(x)

)

}

=
∧

ϑ∈2(B)

∨

x∈X

(

(G ∨H)(x) ∧
∧

B∈ϑ

B(x)

)

.

This shows that G ∨H is (countably) m-compact. �

Analogously we have the following result.

4.2. Theorem. Let L be a complete Heyting algebra. If both G and H have the m-
Lindelöf property, then G ∨H has the m-Lindelöf property. �

4.3. Theorem. If G is (countably) m-compact and H is m-closed, then G∧H is (count-
ably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

∨

x∈X

(

(G ∧H)(x)∧
∧

B∈B

B(x)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈B∪{H}

B(x)

)

≥
∧

ϑ∈2(B∪{H})

∨

x∈X

(

G(x) ∧
∧

B∈ϑ

B(x)

)

=

{

∧

ϑ∈2(B)

∨

x∈X

(

G(x) ∧
∧

B∈ϑ

B(x)

)

}

∧

{

∧

ϑ∈2(B)

∨

x∈X

(

G(x) ∧H(x)∧
∧

B∈ϑ

B(x)

)

}

=

{

∧

ϑ∈2(B)

∨

x∈X

(

G(x) ∧H(x) ∧
∧

B∈ϑ

B(x)

)

}

=

{

∧

ϑ∈2(B)

∨

x∈X

(

(G ∧H)(x) ∧
∧

B∈ϑ

B(x)

)

}

.

This shows that G ∧H is (countably) m-compact. �

4.4. Theorem. If G has the m-Lindelöf property and H is m-closed, then G ∧ H has
the m-Lindelöf property.

Proof. Similar to Theorem 4.3. �
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4.5. Definition. Let (X,T1) and (Y,T2) be two L-spaces. A map f : (X,T1) → (Y,T2)
is called m-irresolute if f←L (G) is m-open for each m-open L-set G.

4.6. Theorem. Let L be a complete Heyting algebra and let f : (X,T1) → (Y,T2) be an
m-irresolute map. If G is an m-compact (or, countably m-compact, m- Lindelöf ) L-set
in (X,T1), then so is f→L (G) in (Y,T2).

Proof. Suppose that P is a family of m-closed L-sets, then

∨

y∈Y

(

f
→
L (G)(y) ∧

∧

B∈P

B(y)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈P

f
←
L (B)(x)

)

≥
∧

ϑ∈2(P)

∨

x∈X

(

G(x) ∧
∧

B∈P

f
←
L (B)(x)

)

=
∧

ϑ∈2(P)

∨

y∈Y

(

f
←
L (G)(y) ∧

∧

B∈P

B(y)

)

.

Therefore f→L (G) is m-compact. �

4.7. Theorem. Let L be a complete Heyting algebra and let f : (X,T1) → (Y,T2) be an
m-continuous map. If G is an m-compact (a countably m-compact, m-Lindelöf ) L-set in
(X,T1), then f

→
L (G) is a compact (countably compact, Lindelöf ) L-set in (Y,T2).

Proof. Straightforward. �

4.8. Definition. Let (X,T1) and (Y,T2) be two L-spaces. A map f : (X,T1) → (Y,T2)
is called strongly m-irresolute if f←L (G) is open in (X,T1) for every m-open L-set G in
(Y,T2).

It is obvious that a strongly m-irresolute map ism-irresolute andm-continuous. Anal-
ogously we have the following result.

4.9. Theorem. Let L be a complete Heyting algebra and f : (X,T1) → (Y,T2) a strongly
m-irresolute map. If G is a compact (countably compact, Lindelöf ) L-set in (X,T1), then
f→L (G) is an m-compact (a countably m-compact, m-Lindelöf ) L-set in (Y,T2).

Proof. Straightforward. �

5. Good extensions

5.1. Theorem. Let (X,T) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is m-compact.
(2) For any a ∈ L0 (a ∈ M(L)), each m-closed strong a-remote family of G has a

finite subfamily which is an a-remote (a strong a-remote) family of G.
(2) For any a ∈ L0 (a ∈ M(L)) and any m-closed strong a-remote family P of G,

there exists a finite subfamily F of P and b ∈ β(a) (b ∈ β∗(a)) such that F is a
(strong) b-remote family of G.

(3) For any a ∈ L1 (a ∈ P (L)), each m-open strong a-shading of G has a finite
subfamily which is an a-shading (a strong a-shading) of G.

(4) For any a ∈ L1 (a ∈ P (L)) and any m-open strong a-shading U of G, there
exists a finite subfamily V of U and b ∈ β(a) (b ∈ β∗(a)) such that V is a
(strong) b-shading of G.

(5) For any a ∈ L0 (a ∈ M(L)), each m-open strong βa-cover of G has a finite
subfamily which is a (strong) βa-cover of G.
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(6) For any a ∈ L0 (a ∈M(L)) and any m-open strong βa-cover U of G, there exists
a finite subfamily V of U and b ∈ L (b ∈ M(L)) with a ∈ β(b) such that V is a
(strong) βb-cover of G.

(7) For any a ∈ L0 (a ∈M(L)) and any b ∈ β(a) \ {0}, each m-open Qa-cover of G
has a finite subfamily which is a Qb-cover of G.

(8) For any a ∈ L0 (a ∈ M(L)) and any b ∈ β(a) \ {0} (b ∈ β∗(a)), each m-open
Qa-cover of G has a finite subfamily which is a (strong) Qb-cover of G. �

Analogously we also can present characterizations of countable m-compactness and
the m-Lindelöf property.

If mO(X, T) denotes the set of m-open L-sets in (X,T), we will denote the corre-
sponding set in (X, τ ) by MO(X, τ ). The following lemma can be proved separately
using Theorem 2.6 for the special cases of mO(X,T) and MO(X, τ ).

5.2. Lemma. Let (X,ω(L)) be generated topologically by (X, τ ). If A is an M-open
set in (X, τ ), then χA is an m-open L-set in (X, ωL(τ )). If B is an m-open L-set in
(X,ωL(τ )), then B(a) is an M-open set in (X, τ ) for every a ∈ L. �

The next two theorems show that m-compactness, countable m-compactness and the
m-Lindelöf property are good extensions.

5.3. Theorem. Let (X,ωL(τ )) be generated topologically by (X, τ ). Then (X,ωL(τ )) is
(countably) m-compact if and only if (X, τ ) is (countably) M-compact.

Proof. Necessity. Let A be an M-open cover (a countable M-open cover) of (X, τ ). Then
{χA : A ∈ A} is a family of m-open L-sets in (X,ωL(τ )) with

∧

x∈X

(

∨

A∈U

χA(x)

)

= 1.

From the (countable) m-compactness of (X,ωL(τ )) we know that

1 ≥
∨

ψ∈2(U)

∧

x∈X

(

∨

A∈ψ

χA(x)

)

≥
∧

x∈X

(

∨

A∈U

χA(x)

)

= 1.

This implies that there exists ψ ∈ 2(U) such that
∧

x∈X(
∨

A∈ψ χA(x)) = 1. Hence ψ is a

cover of (X, τ ). Therefore (X, τ ) is (countably) M-compact.

Sufficiency. Let U be a (countable) family of m-open L-sets in (X,ωL(τ )) and let
∧

x∈X

(

∨

B∈UB(x)

)

= a. If a = 0, then we obviously have

∧

x∈X

(

∨

B∈U

B(x)

)

≤
∨

ψ∈2(U)

∧

x∈X

(

∨

A∈ψ

B(x)

)

.

Now we suppose that a 6= 0. In this case, for any b ∈ β(a) \ {0} we have

b ∈ β

(

∧

x∈X

(

∨

B∈U

B(x)

))

⊆
⋂

x∈X

β

(

∨

B∈U

B(x)

)

=
⋂

x∈X

⋃

B∈U

β(B(x)).

By Lemma 5.2 this implies that {B(b) | B ∈ U} is an M-open cover of (X, τ ). From

the (countable) M-compactness of (X, τ ) we know that there exists ψ ∈ 2(U) such that
{B(b) | B ∈ ψ} is a cover of (X, τ ). Hence b ≤

∨

x∈X(
∧

B∈ψ B(x)). Furthermore we have

b ≤
∧

x∈X

(

∨

B∈ψ

B(x)

)

≤
∨

ψ∈2(U)

∧

x∈X

(

∨

B∈ψ

B(x)

)

.
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This implies that

∧

x∈X

(

∨

B∈U

B(x)

)

= a =
∨

{b : b ∈ β(a)} ≤
∨

ψ∈2(U)

∧

x∈X

(

∨

B∈ψ

B(x)

)

.

Therefore (X,ωL(τ )) is (countably) m-compact. �

Analogously we have the following theorem.

5.4. Theorem. Let (X,ωL(τ )) be generated topologically by (X, τ ). Then (X,ωL(τ ))
has the m-Lindelöf property if and only if (X, τ ) has the M-Lindelöf property. �

6. Conclusion and remarks

In this paper, we give a general framework for the concept of compactness in L-
topological spaces. Instead of studying compactness for each type of open L-sets O(X, T)
separately, we examine the compactness for open sets of type mO(X, T).

If mO(X,T) = SO(X, T), we get the study of Shi [23], when mO(X,T) = PO(X,T),
we get the study of Shi [19]. In the case of mO(X,T) = αO(X, T) we have the study of
Shi [21]. This method can be applied for the cases ofmO(X,T) = βO(X,T), mO(X, T) =
γO(X,T), and so on.

We conclude from this that there are no benefits from repeating the same study on
other kinds of L-sets where we can get any kind of compactness by choosing a suitable
type m.
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