A GENERAL FRAMEWORK FOR COMPACTNESS IN L-TOPOLOGICAL SPACES

A. Ghareeb∗

Received 23 : 08 : 2010 : Accepted 14 : 07 : 2011

Abstract

A general framework for the concepts of compactness, countable compactness, and the Lindelöf property are introduced in L -topological spaces by means of several kinds of open L-sets and their inequalities when L is a complete DeMorgan algebra. The method used in this paper shows that these results are valid for any kind of open L-sets and thus we do not need to repeat it for each kind separately.

Keywords: L-topological space, Compactness, Countable compactness, Lindelöf property.

2000 AMS Classification: 54 A 40.

1. Introduction

The concept of compactness of an I-topological space was first introduced by Chang [6] in terms of open covers. Chang's compactness has been greatly extended to the variable-basis case by Rodabaugh [12], and it can be regarded as a successful definition of compactness in poslat topology from the categorical point of view (see [12, 18]). Moreover, Gantner *et al.* introduced α -compactness [8], Lowen introduced fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [17, 16], Chadwick [5] generalized Lowen's compactness, Liu introduced Q-compactness [15], Li introduced strong Qcompactness [13] which is equivalent to the strong fuzzy compactness in [16], Wang and Zhao introduced N-compactness [29, 31], and Shi introduced S^* -compactness [24].

Recently, Shi presented a new definition of fuzzy compactness in L-topological spaces [20, 25] by means of open L-sets and their inequality where L is a complete DeMorgan algebra. The new definition does not depend on the structure of L . When L is completely distributive, it is equivalent to the notion of fuzzy compactness in [14, 17, 28].

In this paper, following the lines of [20, 24, 25], we will introduce a general framework of compactness in L -topological spaces by means of m -open L -sets and their inequality,

[∗]Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt. E-mail: nasserfuzt@aim.com

where m means the kind of openness of the L-sets. We also introduce countable m compactness and the m -Lindelöf property in L -topology.

2. Preliminaries

Throughout this paper $(L, \leq, \wedge, \vee, \prime)$ is a complete DeMorgan algebra, X a nonempty set. The smallest element and the largest element in L are denoted by 0 and 1, respectively. By L_0 and L_1 we mean $L \setminus \{0\}$ and $L \setminus \{1\}$, respectively. L^X is the set of all L-fuzzy sets (or L-sets, for short) on X. The smallest element and the largest element in L^X are denoted by χ_{\emptyset} and χ_X , respectively. We often do not distinguish a crisp subset A of X and its character function χ_A .

A complete lattice L is a complete Heyting algebra if it satisfies the following infinite distributive law: For all $a \in L$ and all $B \subset L$, $a \wedge \bigvee B = \bigvee \{a \wedge | b \in B\}.$

An element a in L is called a prime element if $a \geq b \wedge c$ implies $a \geq b$ or $a \geq c$. An element a in L is called co-prime if a' is prime [9]. The set of non-unit prime elements in L is denoted by $P(L)$. The set of non-zero co-prime elements in L is denoted by $M(L)$.

The binary relation \prec in L is defined as follows: for a, $b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [7]. In a completely distributive DeMorgan algebra L, each element b is a sup of ${a \in L \mid a \prec b}$. A set ${a \in L \mid a \prec b}$ is called the greatest minimal family of b in the sense of [14, 28], denoted by $\beta(b)$, and $\beta^*(b) = \beta(b) \cap M(L)$. Moreover, for $b \in L$, we define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we use the following notations from [26].

$$
A_{[a]} = \{x \in X \mid A(x) \ge a\}, \ A^{(a)} = \{x \in X \mid A(x) \not\le a\},\
$$

$$
A_{(a)} = \{x \in X \mid a \in \beta(A(x))\}.
$$

An L-topological space (or L-space, for short) is a pair (X, \mathcal{T}) , where $\mathcal T$ is a subfamily of L^X which contains χ_{\emptyset} ; χ_X and is closed for any suprema and finite infima. T is called an L-topology on X . Members of $\mathcal T$ are called open L-sets and their complements are called closed L-sets.

2.1. Definition. [14, 28] An L-space (X, \mathcal{T}) is called weakly induced if $\forall a \in L, A \in L^X$, it follows that $A^{(a)} \in [\mathfrak{T}]$, where $[\mathfrak{T}]$ denotes the topology formed by all the crisp sets in T.

2.2. Definition. [14, 28] For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X \mid A^{(a)} \in \tau, a \in L\}.$ Then $\omega_L(\tau)$ is an *L*-topology on *X*; in this case, $(X, \omega_L(\tau))$ is said to be *topologically* generated by (X, τ) . A topologically generated L-space is also called an *induced L-space*.

2.3. Definition. [21] Let (X, \mathcal{T}) be an *L*-space, $a \in L_0$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a β_a -cover of G if for any $x \in X$, it follows that $a \in \beta(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x))$. U is called a *strong* β_a -cover of G if $a \in \beta(\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x)))$.

2.4. Definition. [21] Let (X, \mathcal{T}) be an *L*-space, $a \in L_0$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a Q_a -cover of G if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \ge a$.

It is obvious that a strong β_a -cover of G is a β_a -cover of G, and a β_a -cover of G is a Q_a -cover of G. For $a \in L$ and a crisp subset $D \subset X$, we define $a \wedge D$ and $a \vee D$ as follows:

$$
(a \wedge D)(x) = \begin{cases} a, & x \in D; \\ 0, & x \notin D. \end{cases} \quad (a \vee D)(x) = \begin{cases} 1, & x \in D; \\ 0, & x \notin D. \end{cases}
$$

2.5. Theorem. [26] For an L-set $A \in L^X$, the following facts are true:

(1)
$$
A = \bigvee_{a \in L} (a \wedge A_{(a)}) = \bigvee_{a \in L} (a \wedge A_{[a]}).
$$

(2) $A = \bigwedge_{a \in L} (a \vee A^{(a)}) = \bigwedge_{a \in L} (a \vee A^{[a]}).$

2.6. Theorem. [26] Let $(X, \omega_L(\tau))$ be the L-space topologically generated by (X, τ) and $A \in L^X$. Then the following facts hold:

- (1) $\text{cl}(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{-}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{-})$;
- (2) $\text{cl}(A)_{(a)} \subset (A_{(a)})^- \subset (A_{[a]})^- \subset \text{cl}(A)_{[a]};$
- (3) $\text{cl}(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^-) = \bigwedge_{a \in L} (a \vee (A^{[a]})^-);$
- (4) $\text{cl}(A)^{(a)} \subset (A^{(a)})^- \subset (A^{[a]})^- \subset \text{cl}(A)^{[a]};$
- (5) $\text{int}(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{\circ}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{\circ});$
- (6) $\text{int}(A)_{(a)} \subset (\overline{A}_{(a)})^{\circ} \subset (\overline{A}_{[a]})^{\circ} \subset \text{int}(\overline{A})_{[a]};$
- (7) $\text{int}(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^{\circ}) = \bigwedge_{a \in L} (a \vee (A^{[a]})^{\circ});$
- (8) $\text{int}(A)^{(a)} \subset (A^{(a)})^{\circ} \subset (A^{[a]})^{\circ} \subset \text{int}(A)^{[a]};$

where $(A_{(a)})^-$ and $(A_{(a)})^{\circ}$ denote respectively the closure and the interior of $A_{(a)}$ in (X, τ) and so on, cl(A) and int(A) denote respectively the closure and the interior of A in $(X, \omega_L(\tau))$.

2.7. Definition. [21] Let (X, \mathcal{T}) be an *L*-space, $a \in L_1$ and $G \in L^X$. A family $A \subseteq L^X$ is said to be:

- (1) An a-shading of G if for any $x \in X$, $(G'(x) \vee \bigvee_{A \in \mathcal{A}} A(x)) \nleq a$.
- (2) A strong a-shading of G if $\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathcal{A}} A(x)) \nleq a$.
- (3) An a-remote family of G if for any $x \in X$, $(G(x) \wedge \bigwedge_{B \in A} B(x)) \ngeq a$.
- (4) A strong *a*-remote family of G if $\bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in A} B(x)) \ngeq a$.

2.8. Definition. [21] Let $a \in L_0$ and $G \in L^X$. A subfamily U of L^X is said to have a weak a-nonempty intersection in G if $\bigvee_{x\in X} (G(x) \wedge \bigwedge_{A\in \mathfrak{U}} A(x)) \geq a$. U is said to have the finite (countable) weak a-intersection property in \tilde{G} if every finite (countable) subfamily P of U has a weak a-nonempty intersection in G .

2.9. Definition. [21] Let $a \in L_0$ and $G \in L^X$. A subfamily U of L^X is said to be a weak a -filter relative to G if any finite intersection of members in U is weak a-nonempty in G. A subfamily B of L^X is said to be a *weak a-filterbase* relative to G if

 ${A \in L^X \mid \text{there exists } B \in \mathcal{B} \text{ such that } B \leq A}$

is a weak a -filter relative to G .

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ and $2^{[\Phi]}$ the set of all countable subfamilies of Φ.

2.10. Definition. Let G be an L-set of an L-space (X, \mathcal{T}) . G is called a semiopen L-set [2] (resp. a preopen L-set [27], α -open L-set [4], β -open L-set [3], γ -open L-set [11]) if $G \leq \text{cl}(\text{int}(G))$ (resp. $G \leq \text{int}(\text{cl}(G)), G \leq \text{int}(\text{cl}(\text{int}(G))), G \leq \text{cl}(\text{int}(\text{cl}(G))),$ $G \leq cl(int(G)) \vee int(cl(G))).$

The set of all semiopen L-sets (resp. preopen L-sets, α -open L-sets, β -open Lsets, γ -open L-sets) in (X, \mathcal{T}) will be denoted by $SO(X, \mathcal{T})$ (resp. $PO(X, \mathcal{T})$, $\alpha O(X, \mathcal{T})$, $\beta O(X, \mathcal{T}), \gamma O(X, \mathcal{T})$. Generally, $mO(X, \mathcal{T})$ denotes the set of all m-open L-sets.

2.11. Lemma. [25] Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces, where L is a complete Heyting algebra, let $f: X \to Y$ be a mapping, $f_L^{\to} : L^X \to L^Y$ the extension of f. Then for any $P \subset L^Y$, we have that

$$
\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right) . \qquad \Box
$$

3. A notion of m -compactness

3.1. Definition. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ is called (countably) m-compact if for every (countable) family $\mathcal{U} \subseteq L^X$ of m-open L-sets, it follows that

$$
\bigwedge_{x\in X}\bigg(G'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\bigg)\leq\bigvee_{\psi\in2^{(\mathcal{U})}}\bigwedge_{x\in X}\bigg(G'(x)\vee\bigvee_{A\in\psi}A(x)\bigg).
$$

3.2. Definition. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ is said to have the *m*-Lindelöj property (or to be an m -Lindelöf L-set) if for every family U of m-open L-sets, it follows that

$$
\bigwedge_{x\in X}\bigg(G'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\bigg)\leq\bigvee_{\psi\in2^{[\mathcal{U}]}}\bigwedge_{x\in X}\bigg(G'(x)\vee\bigvee_{A\in\psi}A(x)\bigg).
$$

3.3. Remark. m-compactness implies countable m-compactness and the m-Lindelöf property. Moreover, an L -set having the m-Lindelöf property is m-compact if and only if it is countably m-compact.

3.4. Theorem. Let (X, \mathcal{T}) be an L-space. Then $G \in L^X$ is (countably) m-compact if and only if for every (countable) family B of m-closed L-sets, it follows that

$$
\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\vartheta \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \vartheta} B(x) \right).
$$

Proof. Straightforward.

3.5. Theorem. Let (X, \mathcal{T}) be an L-space. Then $G \in L^X$ has the m-Lindelöf property if and only if for every family B of m-closed L-sets, it follows that

$$
\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \geq \bigwedge_{\vartheta \in 2^{[{\mathcal{B}}]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \vartheta} B(x) \right).
$$

Proof. Straightforward. □

3.6. Theorem. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G is a (countably) m-compact.
- (2) For any $a \in L_1$, each (countable) m-open strong a-shading U of G has a finite subfamily which is a strong a-shading of G.
- (3) For any $a \in L_0$, each (countable) m-closed strong a-remote family P of G has a finite subfamily which is a strong a-remote family of G.
- (4) For any $a \in L_0$, each (countable) family of m-closed L-sets which has the finite weak a-intersection property in G has a weak a-nonempty intersection in G.
- (5) For each $a \in L_0$, every m-closed (countable) weak a-filterbase relative to G has a weak a-nonempty intersection in G .

3.7. Theorem. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G has the m-Lindelöf property.
- (2) For any $a \in L_1$, each m-open strong a-shading U of G has a countable subfamily which is a strong a-shading of G.
- (3) For any $a \in L_0$, each m-closed strong a-remote family P of G has a countable subfamily which is a strong a-remote family of G.
- (4) For any $a \in L_0$, each family of m-closed L-sets which has the countable weak a-intersection property in G has a weak a-nonempty intersection in G .

$$
\overline{a}
$$

4. Properties of (countable) m-compactness

4.1. Theorem. Let L be a complete Heyting algebra. If both G and H are (countably) m-compact, then $G \vee H$ is (countably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

$$
\begin{split}\n\bigvee_{x \in X} \left((G \vee H)(x) \wedge \bigwedge_{B \in \mathcal{B}} B(x) \right) \\
&= \left\{ \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{B}} B(x) \right) \right\} \vee \left\{ \bigvee_{x \in X} \left(H(x) \wedge \bigwedge_{B \in \mathcal{B}} B(x) \right) \right\} \\
&\geq \left\{ \bigwedge_{\vartheta \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} \vee \left\{ \bigwedge_{\vartheta \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left(H(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} \\
&= \bigwedge_{\vartheta \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left((G \vee H)(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right).\n\end{split}
$$

This shows that $G \vee H$ is (countably) m-compact.

Analogously we have the following result.

4.2. Theorem. Let L be a complete Heyting algebra. If both G and H have the m-Lindelöf property, then $G \vee H$ has the m-Lindelöf property.

4.3. Theorem. If G is (countably) m-compact and H is m-closed, then $G \wedge H$ is (countably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

$$
\bigvee_{x \in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in B} B(x) \right)
$$
\n
$$
= \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in B \cup \{H\}} B(x) \right)
$$
\n
$$
\geq \bigwedge_{\vartheta \in 2^{(B \cup \{H\})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right)
$$
\n
$$
= \left\{ \bigwedge_{\vartheta \in 2^{(B)}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\}
$$
\n
$$
\wedge \left\{ \bigwedge_{\vartheta \in 2^{(B)}} \bigvee_{x \in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\}
$$
\n
$$
= \left\{ \bigwedge_{\vartheta \in 2^{(B)}} \bigvee_{x \in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\}
$$
\n
$$
= \left\{ \bigwedge_{\vartheta \in 2^{(B)}} \bigvee_{x \in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\}.
$$

This shows that $G \wedge H$ is (countably) m-compact. \square

4.4. Theorem. If G has the m-Lindelöf property and H is m-closed, then $G \wedge H$ has $the m-Lindel\ddot{o}f property.$

Proof. Similar to Theorem 4.3.

4.5. Definition. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called *m*-irresolute if $f_L^{\leftarrow}(G)$ is *m*-open for each *m*-open *L*-set *G*.

4.6. Theorem. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be an m-irresolute map. If G is an m-compact (or, countably m-compact, m- Lindelöf) L-set in (X, \mathfrak{T}_1) , then so is $f_L^{\rightarrow}(G)$ in (Y, \mathfrak{T}_2) .

Proof. Suppose that P is a family of m-closed L-sets, then

$$
\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right)
$$

$$
\geq \bigwedge_{\vartheta \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right)
$$

$$
= \bigwedge_{\vartheta \in 2^{(\mathcal{P})}} \bigvee_{y \in Y} \left(f_L^{\leftarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right).
$$
Therefore $f_L^{\rightarrow}(G)$ is *m*-compact.

4.7. Theorem. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be an m -continuous map. If G is an m-compact (a countably m-compact, m-Lindelöf) L-set in (X, \mathfrak{T}_1) , then $f_L^{\rightarrow}(G)$ is a compact (countably compact, Lindelöf) L-set in (Y, \mathfrak{T}_2) .

Proof. Straightforward.

$$
\qquad \qquad \Box
$$

4.8. Definition. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called *strongly m-irresolute* if $f_L^{\leftarrow}(G)$ is open in (X, \mathcal{T}_1) for every m-open L-set G in (Y, \mathcal{T}_2) .

It is obvious that a strongly m-irresolute map is m-irresolute and m-continuous. Analogously we have the following result.

4.9. Theorem. Let L be a complete Heyting algebra and $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ a strongly m-irresolute map. If G is a compact (countably compact, Lindelöf) L-set in (X, \mathcal{I}_1) , then $f_L^{\rightarrow}(G)$ is an m-compact (a countably m-compact, m-Lindelöf) L-set in (Y, \mathfrak{T}_2) .

Proof. Straightforward. □

5. Good extensions

5.1. Theorem. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G is m-compact.
- (2) For any $a \in L_0$ $(a \in M(L))$, each m-closed strong a-remote family of G has a finite subfamily which is an a-remote (a strong a-remote) family of G.
- (2) For any $a \in L_0$ $(a \in M(L))$ and any m-closed strong a-remote family $\mathcal P$ of G , there exists a finite subfamily $\mathfrak F$ of $\mathfrak P$ and $b \in \beta(a)$ $(b \in \beta^*(a))$ such that $\mathfrak F$ is a $(strong)$ b-remote family of G .
- (3) For any $a \in L_1$ $(a \in P(L))$, each m-open strong a-shading of G has a finite subfamily which is an a-shading (a strong a-shading) of G.
- (4) For any $a \in L_1$ $(a \in P(L))$ and any m-open strong a-shading U of G, there exists a finite subfamily $\mathcal V$ of $\mathcal U$ and $b \in \beta(a)$ ($b \in \beta^*(a)$) such that $\mathcal V$ is a (strong) b-shading of G.
- (5) For any $a \in L_0$ $(a \in M(L))$, each m-open strong β_a -cover of G has a finite subfamily which is a (strong) β_a -cover of G.
- (6) For any $a \in L_0$ $(a \in M(L))$ and any m-open strong β_a -cover U of G, there exists a finite subfamily $\mathcal V$ of $\mathcal U$ and $b \in L$ ($b \in M(L)$) with $a \in \beta(b)$ such that $\mathcal V$ is a (strong) β_b -cover of G.
- (7) For any $a \in L_0$ $(a \in M(L))$ and any $b \in \beta(a) \setminus \{0\}$, each m-open Q_a -cover of G has a finite subfamily which is a Q_b -cover of G .
- (8) For any $a \in L_0$ $(a \in M(L))$ and any $b \in \beta(a) \setminus \{0\}$ $(b \in \beta^*(a))$, each m-open Q_a -cover of G has a finite subfamily which is a (strong) Q_b -cover of G.

Analogously we also can present characterizations of countable m-compactness and the m -Lindelöf property.

If $mO(X, \mathcal{T})$ denotes the set of m-open L-sets in (X, \mathcal{T}) , we will denote the corresponding set in (X, τ) by $MO(X, \tau)$. The following lemma can be proved separately using Theorem 2.6 for the special cases of $mO(X, \mathcal{T})$ and $MO(X, \tau)$.

5.2. Lemma. Let $(X, \omega(L))$ be generated topologically by (X, τ) . If A is an M-open set in (X, τ) , then χ_A is an m-open L-set in $(X, \omega_L(\tau))$. If B is an m-open L-set in $(X, \omega_L(\tau))$, then $B_{(a)}$ is an M-open set in (X, τ) for every $a \in L$.

The next two theorems show that m -compactness, countable m -compactness and the m -Lindelöf property are good extensions.

5.3. Theorem. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ is (countably) m-compact if and only if (X, τ) is (countably) M-compact.

Proof. Necessity. Let A be an M-open cover (a countable M-open cover) of (X, τ) . Then $\{\chi_A : A \in \mathcal{A}\}\$ is a family of m-open L-sets in $(X, \omega_L(\tau))$ with

$$
\bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{U}} \chi_A(x) \right) = 1.
$$

From the (countable) m-compactness of $(X, \omega_L(\tau))$ we know that

$$
1 \geq \bigvee_{\psi \in 2^{(11)}} \bigwedge_{x \in X} \bigg(\bigvee_{A \in \psi} \chi_A(x) \bigg) \geq \bigwedge_{x \in X} \bigg(\bigvee_{A \in \mathcal{U}} \chi_A(x) \bigg) = 1.
$$

This implies that there exists $\psi \in 2^{(u)}$ such that $\bigwedge_{x \in X} (\bigvee_{A \in \psi} \chi_A(x)) = 1$. Hence ψ is a cover of (X, τ) . Therefore (X, τ) is (countably) M-compact.

Sufficiency. Let U be a (countable) family of m-open L-sets in $(X, \omega_L(\tau))$ and let $\bigwedge_{x\in X}\bigg(\bigvee_{B\in\mathfrak{U}}B(x)\bigg)=a.$ If $a=0$, then we obviously have

$$
\bigwedge_{x \in X} \bigg(\bigvee_{B \in \mathfrak{U}} B(x) \bigg) \leq \bigvee_{\psi \in 2^{(\mathfrak{U})}} \bigwedge_{x \in X} \bigg(\bigvee_{A \in \psi} B(x) \bigg).
$$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$ we have

$$
b \in \beta \bigg(\bigwedge_{x \in X} \bigg(\bigvee_{B \in \mathcal{U}} B(x) \bigg) \bigg) \subseteq \bigcap_{x \in X} \beta \bigg(\bigvee_{B \in \mathcal{U}} B(x) \bigg) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta(B(x)).
$$

By Lemma 5.2 this implies that ${B_{(b)} \mid B \in \mathcal{U}}$ is an M-open cover of (X, τ) . From the (countable) M-compactness of (X, τ) we know that there exists $\psi \in 2^{(U)}$ such that ${B_{(b)} \mid B \in \psi}$ is a cover of (X, τ) . Hence $b \leq \bigvee_{x \in X} (\bigwedge_{B \in \psi} B(x))$. Furthermore we have

$$
b \leq \bigwedge_{x \in X} \bigg(\bigvee_{B \in \psi} B(x)\bigg) \leq \bigvee_{\psi \in 2^{(1)}} \bigwedge_{x \in X} \bigg(\bigvee_{B \in \psi} B(x)\bigg).
$$

This implies that

$$
\bigwedge_{x \in X} \left(\bigvee_{B \in \mathfrak{U}} B(x) \right) = a = \bigvee \{b : b \in \beta(a)\} \leq \bigvee_{\psi \in 2^{(\mathfrak{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \psi} B(x) \right).
$$

Therefore $(X, \omega_L(\tau))$ is (countably) *m*-compact.

Analogously we have the following theorem.

5.4. Theorem. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ has the m-Lindelöf property if and only if (X, τ) has the M-Lindelöf property.

6. Conclusion and remarks

In this paper, we give a general framework for the concept of compactness in Ltopological spaces. Instead of studying compactness for each type of open L-sets $O(X, \mathcal{T})$ separately, we examine the compactness for open sets of type $mO(X, \mathcal{T})$.

If $mO(X, \mathcal{T}) = SO(X, \mathcal{T})$, we get the study of Shi [23], when $mO(X, \mathcal{T}) = PO(X, \mathcal{T})$, we get the study of Shi [19]. In the case of $mO(X, \mathcal{T}) = \alpha O(X, \mathcal{T})$ we have the study of Shi [21]. This method can be applied for the cases of $mO(X, \mathcal{T}) = \beta O(X, \mathcal{T})$, $mO(X, \mathcal{T}) =$ $\gamma O(X, \mathcal{T})$, and so on.

We conclude from this that there are no benefits from repeating the same study on other kinds of L-sets where we can get any kind of compactness by choosing a suitable type m.

References

- [1] Andrijević, D. On b-open sets, Mat. Vesnik 48, 59û-64, 1996.
- [2] Azad, K. K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82, 14–32, 1981.
- [3] Balasubäsamanian, G. On fuzzy β -compact spaces and fuzzy β -extremally disconnected spaces, Kybernetika 33, 271–277, 1997.
- [4] Bin Shahna, A. S. On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44, 303–308, 1991.
- [5] Chadwick, J. J. A generalized form of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 162, 92–110, 1991.
- [6] Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 39–90, 1968.
- [7] Dwinger, P. Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings) 85, 403–414, 1982.
- [8] Gantner, T. E., and Steinlage, R. C. and Warren, R. H. Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62, 547–562, 1978.
- [9] Gierz, G. et al. A Compendium of Continuous Lattices (Springer Verlag, Berlin, 1980).
- [10] Hanafy, I. M. βS^* -compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl. 9, 27–37, 2009.
- [11] Hanafy, I. M. Fuzzy γ -open sets and fuzzy γ -continuity, J. Fuzzy Math. 7, 419–430, 1999.
- [12] Höhle, U. and Rodabaugh, S. E. S. E. Rodabaugh, Ed. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory 3 (Kluwer Academic Publishers, Boston/Dordrecht/London, 1999).
- [13] Li, Z. F. Compactness in fuzzy topological spaces, Chinese Kexue Tongbao 6, 321–323, 1983.
- [14] Liu, Y. M. and Luo, M. K. Fuzzy Topology (World Scientific, Singapore, 1997).
- [15] Liu, Y. M. Compactness and Tychnoff theorem in fuzzy topological spaces, Acta Mathematica Sinica 24, 260–268, 1981.
- [16] Lowen, R. A comparsion of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64, 446–454, 1978.
- [17] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, 621– 633, 1976.

$$
\Box
$$

- [18] Rodabaugh, S. E. Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40, 297–345, 1991.
- [19] Shi, F. -G. P-compactness in L-topological spaces, J. Nonlinear Sci. Appl. 2, 225–233, 2009.
- [20] Shi, F.-G. A new definition of fuzzy compactness, Fuzzy Sets and Systems 158, 1486–1495, 2007.
- [21] Shi, F. -G. A new form of fuzzy α-compactness, Mathematica Bohemica 131, 15–28, 2006.
- [22] Shi, F. -G. Semicompactness in L-topological spaces, International Journal of Mathematics and Mathematical Sciences 12, 1869–1878, 2005.
- [23] Shi, F. -G. Semicompactness in L-topological spaces, Int. J. Math. Math. Sci. 12, 1869–1878, 2005.
- [24] Shi, F. -G. A new notion of fuzzy compactness in L-topological spaces, Information Sciences 173, 35–48, 2005.
- [25] Shi, F.-G. Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems 1, 79–88, 2004.
- [26] Shi, F. -G. Theory of L_β -nested sets and L_α -nested and their applications, Fuzzy Systems and Mathematics (In Chinese) 4, 65–72, 1995.
- [27] Singal, M. K. and Prakash, N. Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44, 273–281, 1991.
- [28] Wang, G. -J. Theory of L-Fuzzy Topological Space (in Chinese) (Shaanxi Normal University Press, Xi'an, 1988).
- [29] Wang, G. J. A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. **94**, 1–23, 1983.
- [30] Zadeh, L. A. Fuzzy sets, Inform. Control 8, 338–353, 1965.
- [31] Zhao, D.S. The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128, 64–70, 1987.