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Abstract

A general framework for the concepts of compactness, countable com-
pactness, and the Lindel6f property are introduced in L-topological
spaces by means of several kinds of open L-sets and their inequalities
when L is a complete DeMorgan algebra. The method used in this
paper shows that these results are valid for any kind of open L-sets and
thus we do not need to repeat it for each kind separately.
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1. Introduction

The concept of compactness of an I-topological space was first introduced by Chang
[6] in terms of open covers. Chang’s compactness has been greatly extended to the
variable-basis case by Rodabaugh [12], and it can be regarded as a successful definition
of compactness in poslat topology from the categorical point of view (see [12, 18]). More-
over, Gantner et al. introduced a-compactness [8], Lowen introduced fuzzy compactness,
strong fuzzy compactness and ultra-fuzzy compactness [17, 16], Chadwick [5] general-
ized Lowen’s compactness, Liu introduced @Q-compactness [15], Li introduced strong Q-
compactness [13] which is equivalent to the strong fuzzy compactness in [16], Wang and
Zhao introduced N-compactness [29, 31], and Shi introduced S*-compactness [24].

Recently, Shi presented a new definition of fuzzy compactness in L-topological spaces
[20, 25] by means of open L-sets and their inequality where L is a complete DeMorgan
algebra. The new definition does not depend on the structure of L. When L is completely
distributive, it is equivalent to the notion of fuzzy compactness in [14, 17, 28].

In this paper, following the lines of [20, 24, 25], we will introduce a general framework
of compactness in L-topological spaces by means of m-open L-sets and their inequality,
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where m means the kind of openness of the L-sets. We also introduce countable m-
compactness and the m-Lindel6f property in L-topology.

2. Preliminaries

Throughout this paper (L, <, A, \/, /) is a complete DeMorgan algebra, X a nonempty
set. The smallest element and the largest element in L are denoted by 0 and 1, respec-
tively. By Lo and L; we mean L\{0} and L\{1}, respectively. L* is the set of all L-fuzzy
sets (or L-sets, for short) on X. The smallest element and the largest element in L™ are
denoted by xp and xx, respectively. We often do not distinguish a crisp subset A of X
and its character function 4.

A complete lattice L is a complete Heyting algebra if it satisfies the following infinite
distributive law: For all a € L and all B C L, aA\/ B = \/{aA | b € B}.

An element a in L is called a prime element if a > b A ¢ implies a > b or a > ¢. An
element a in L is called co-prime if a’ is prime [9]. The set of non-unit prime elements in
L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M (L).

The binary relation < in L is defined as follows: for a, b € L, a < b if and only if for
every subset D C L, the relation b < sup D always implies the existence of d € D with
a < d [7]. In a completely distributive DeMorgan algebra L, each element b is a sup of
{a € L|a<0b}. Aset{a€ L|a=<b}is called the greatest minimal family of b in the
sense of [14, 28], denoted by B(b), and 5*(b) = B(b) N M(L). Moreover, for b € L, we
define a(b) ={a € L | a’ < b’} and a*(b) = a(b) N P(L).

For a € L and A € L*, we use the following notations from [26].

Ay ={z e X | Alz) > a}, A ={z e X|Ax) £ a},
Ay ={z € X |ac p(A(x))}.

An L-topological space (or L-space, for short) is a pair (X, 7), where T is a subfamily of
L which contains xg; xx and is closed for any suprema and finite infima. 7 is called
an L-topology on X. Members of T are called open L-sets and their complements are
called closed L-sets.

2.1. Definition. [14, 28] An L-space (X, T) is called weakly induced if Va € L, A € L,
it follows that A(®) € [J], where [J] denotes the topology formed by all the crisp sets in
7.

2.2. Definition. [14, 28] For a topological space (X, 1), let wr,(7) denote the family of all
lower semi-continuous maps from (X, 7) to L, i.e., wr(r) = {A € L | A €7, a € L}.
Then wr(7) is an L-topology on X; in this case, (X,wr(7)) is said to be topologically
generated by (X, 7). A topologically generated L-space is also called an induced L-space.

2.3. Definition. [21] Let (X,T) be an L-space, a € Lo and G € L¥. A family U C L*
is called a Bq-cover of G if for any x € X, it follows that a € B(G'(x) V \/ 4o Alz)). U
is called a strong Bq-cover of G if a € B(A,cx(G' () V V 4y A()))-

2.4. Definition. [21] Let (X,T) be an L-space, a € Lo and G € L*. A family U C L
is called a Qq-cover of G if for any x € X, it follows that G'(z) V' \/ 4. A(x) > a.

It is obvious that a strong (B,-cover of GG is a fq-cover of G, and a [,-cover of G is
a Qq-cover of G. For a € L and a crisp subset D C X, we define a A D and a V D as
follows:
a, x € D;
0, z¢D.

1, xe€ D;

(a/\D)(x)—{ 0. z¢D.

(aV D)(a) —{
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2.5. Theorem. [26] For an L-set A € L, the following facts are true:
(1) A=Vaep(anAw) = Vaep(an Ap).
(2) A:/\aeL(avA(a)):/\aeL(a\/A[“]). d

2.6. Theorem. [26] Let (X,wr(7)) be the L-space topologically generated by (X, T) and
A € L*. Then the following facts hold:

(1) el(A) = Viaer(a A (Aw@) ) = Vaer (@A (Aa) )

(2) cl(A)(a) C (Aw)” C (Aa)~ C cl(A)a);
(3) cl(A) = Ayep(aV (A9)7) = A, p(av (A7),
(4) c(A)™ c (A“)” c (A~ c Cl( )l
(5) int(A) :VaeL(a/\(A(a>) ) = Vacr(an (A)?);
(6) int(A)a) C (Ag)® C (Ajq)® C int(A)(q);
(7) int(A) = Ager(aV (AD)°) = A cp(av (A9)°);
(8) int(A)@ c (A@)° ¢ (Ale)e ¢ int(A)];

where (A))” and (A(,))° denote respectively the closure and the interior of A,y in
(X, 7) and so on, cl(A) and int(A) denote respectively the closure and the interior of A
n (X,wr(71)). O
2.7. Definition. [21] Let (X,T) be an L-space, a € Ly and G € L*. A family A C L*
is said to be:
(1) An a-shading of G if for any = € X, (G'(z) VV 44 A(z)) £ a.
(2) A strong a-shading of G if A\ .y (G'(z) VV 404 A(2)) £ a.
(3) An a-remote family of G if for any = € X, (G(z) A Apeq B(z)) # a.

(4) A strong a-remote family of G if \/ .y (G(z) A Ageq B(z)) # a.
2.8. Definition. [21] Let a € Lo and G € L*. A subfamily U of L is said to have
a weak a-nonempty intersection in G if \/ _ (G(z) A\ e Ax)) > a. U is said to
have the finite (countable) weak a-intersection property in G if every finite (countable)
subfamily P of U has a weak a-nonempty intersection in G.

2.9. Definition. [21] Let a € Lo and G € L. A subfamily U of L¥ is said to be a weak
a-filter relative to G if any finite intersection of members in U is weak a-nonempty in G.
A subfamily B of L* is said to be a weak a-filterbase relative to G if

{A € L | there exists B € B such that B < A}
is a weak a-filter relative to G.

For a subfamily ® C L%, 2(®) denotes the set of all finite subfamilies of ® and 2®!
the set of all countable subfamilies of ®.

2.10. Definition. Let G be an L-set of an L-space (X,7). G is called a semiopen
L-set [2] (resp. a preopen L-set [27], a-open L-set [4], S-open L-set [3], y-open L-set
[11)) if G < cl(int(GQ)) (resp. G < int(cl(G)), G < int(cl(int(G))), G < cl(int(cl(@))),
G < cl(int(G)) V int(cl(@))).

The set of all semiopen L-sets (resp. preopen L-sets, a-open L-sets, (-open L-
sets, y-open L-sets) in (X, T) will be denoted by SO(X,T) (resp. PO(X,7), aO(X,T),
BO(X,T), vO(X,T)). Generally, mO(X,T) denotes the set of all m-open L-sets.

2.11. Lemma. [25] Let (X,T1) and (Y,T2) be two L-spaces, where L is a complete
Heyting algebm, let f: X —Y be a mapping, : L% — LY the extension of f. Then
for any P C LY, we have that

V (im@wn A Bw) =V (G(x)A A i (B)@). o

yey Be? zeX Be?
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3. A notion of m-compactness

3.1. Definition. Let (X,T) be an L-space. G € L is called (countably) m-compact if
for every (countable) family U C L~ of m-open L-sets, it follows that

A (G'(:c)\/ \ A(:c)) <V A (G'(:c)\/ \/ A(:c)).

zeX AclU pe2(W) z€X Aey

3.2. Definition. Let (X,T) be an L-space. G € L~ is said to have the m-Lindeldf
property (or to be an m-Lindeldf L-set) if for every family U of m-open L-sets, it follows

that
A (G'(:c)\/ \/ A(:c)) <V (G'(:c)\/ \/ A(:c)).

zeX AeU pelu]l zeX A€y

3.3. Remark. m-compactness implies countable m-compactness and the m-Lindel6f
property. Moreover, an L-set having the m-Lindel6f property is m-compact if and only
if it is countably m-compact.

3.4. Theorem. Let (X,T) be an L-space. Then G € L™ is (countably) m-compact if
and only if for every (countable) family B of m-closed L-sets, it follows that

\/ (G(:c)/\ N B(x)) > ANV (G(:c)/\ A B(x)).

zeX BeB 9e2(B) zeX Bev
Proof. Straightforward. |

3.5. Theorem. Let (X,7T) be an L-space. Then G € L has the m-Lindelsf property if
and only if for every family B of m-closed L-sets, it follows that

\ (G(x)/\ N B(x)> > AV <G(:c)/\ N B(x)).

rzeX BeB ve2lBlzeX Be9
Proof. Straightforward. ]

3.6. Theorem. Let (X,T) be an L-space and G € L. Then the following conditions
are equivalent:

(1) G is a (countably) m-compact.

(2) For any a € L1, each (countable) m-open strong a-shading U of G has a finite
subfamily which is a strong a-shading of G.

(3) For any a € Lo, each (countable) m-closed strong a-remote family P of G has a
finite subfamily which is a strong a-remote family of G.

(4) For any a € Lo, each (countable) family of m-closed L-sets which has the finite
weak a-intersection property in G has a weak a-nonempty intersection in G.

(5) For each a € Lo, every m-closed (countable) weak a-filterbase relative to G has
a weak a-nonempty intersection in G. O

3.7. Theorem. Let (X,T) be an L-space and G € L*. Then the following conditions
are equivalent:

(1) G has the m-Lindeldf property.

(2) For any a € L1, each m-open strong a-shading U of G has a countable subfamily
which is a strong a-shading of G.

(3) For any a € Lo, each m-closed strong a-remote family P of G has a countable
subfamily which is a strong a-remote family of G.

(4) For any a € Lo, each family of m-closed L-sets which has the countable weak
a-intersection property in G has a weak a-nonempty intersection in G. O
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4. Properties of (countable) m-compactness

4.1. Theorem. Let L be a complete Heyting algebra. If both G and H are (countably)
m-compact, then GV H is (countably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

\/((G\/H AN Bl )

zeX BeB

={ZEVX<GWM RINRACEIE)

{
{ 196/;5) x\e/X ( Beﬁ ) { 9e2(B) zEX <H(x) : B/E\ﬂB(x)>}
B(z

AV (Gvm@a A
This shows that GV H is (countably) m-compact. O

Y
<

9e2(B) z€X Bev )

Analogously we have the following result.

4.2. Theorem. Let L be a complete Heyting algebra. If both G and H have the m-
Lindelof property, then GV H has the m-Lindeldf property. a

4.3. Theorem. If G is (countably) m-compact and H is m-closed, then GAH 1is (count-
ably) m-compact.

Proof. For any (countable) family B of m-closed L-sets, we have by Theorem 3.4 that

\/((GAH A N B )

zeX BeB

\/(G(x)/\ A B(x))

reX BeBU{H}

AV (G(x)/\ /\ B()

9ea(BULHY) z€X >
))}
V

{4, v (o p
A{ V (6@nmen B/e\ﬂB(x)>}

_ { AV ceer A B(a) ) }

_{ AV (@nm@n A Be )}

9e2(B) zeX Bev

Y

B(z
(

This shows that G A H is (countably) m-compact. O

4.4. Theorem. If G has the m-Lindeldf property and H is m-closed, then G AN H has
the m-Lindelof property.

Proof. Similar to Theorem 4.3. ]
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4.5. Definition. Let (X,71) and (Y, J2) be two L-spaces. A map f: (X,T1) — (Y, T2)
is called m-irresolute if fi (G) is m-open for each m-open L-set G.

4.6. Theorem. Let L be a complete Heyting algebra and let f: (X,T1) — (Y,T2) be an
m-irresolute map. If G is an m-compact (or, countably m-compact, m- Lindelof) L-set
in (X,T1), then so is fi’ (G) in (Y, T2).

Proof. Suppose that P is a family of m-closed L-sets, then

V (im@wn A Bw) =V (6@n A s 3)@)

yey Be?P zeX Be?P
> AV (6n A st @)
9ea(®) zEX Be?
= AV (fr@wn A Bw).
ve2(P) yey Be?
Therefore f7’(G) is m-compact. O

4.7. Theorem. Let L be a complete Heyting algebra and let f : (X,T1) — (Y,T2) be an
m-continuous map. If G is an m-compact (a countably m-compact, m-Lindeldf) L-set in
(X,T1), then f17(G) is a compact (countably compact, Lindelof) L-set in (Y, T2).

Proof. Straightforward. ]

4.8. Definition. Let (X,T1) and (Y, J2) be two L-spaces. A map f: (X,T1) — (Y, T2)
is called strongly m-irresolute if fi (G) is open in (X, T1) for every m-open L-set G in
(Y7 r‘TZ)

It is obvious that a strongly m-irresolute map is m-irresolute and m-continuous. Anal-
ogously we have the following result.

4.9. Theorem. Let L be a complete Heyting algebra and f : (X,T1) — (Y, T2) a strongly
m-irresolute map. If G is a compact (countably compact, Lindeldf) L-set in (X, T1), then
i’ (G) is an m-compact (a countably m-compact, m-Lindelof) L-set in (Y,T2).

Proof. Straightforward. |

5. Good extensions

5.1. Theorem. Let (X,7) be an L-space and G € L*. Then the following conditions
are equivalent:

(1) G is m-compact.

(2) For any a € Lo (a € M(L)), each m-closed strong a-remote family of G has a
finite subfamily which is an a-remote (a strong a-remote) family of G.

(2) For any a € Lo (a € M(L)) and any m-closed strong a-remote family P of G,
there extists a finite subfamily I of P and b € B(a) (b € B (a)) such that F is a
(strong) b-remote family of G.

(3) For any a € L1 (a € P(L)), each m-open strong a-shading of G has a finite
subfamily which is an a-shading (a strong a-shading) of G.

(4) For any a € L1 (a € P(L)) and any m-open strong a-shading U of G, there
exists a finite subfamily V of U and b € B(a) (b € B*(a)) such that V is a
(strong) b-shading of G.

(5) For any a € Lo (a € M(L)), each m-open strong fa-cover of G has a finite
subfamily which is a (strong) Ba-cover of G.
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(6) For anya € Lo (a € M(L)) and any m-open strong Ba-cover U of G, there exists
a finite subfamily V of W and b € L (b € M (L)) with a € B(b) such that V is a
(strong) By-cover of G.

(7) For anya € Lo (a € M(L)) and any b € B(a) \ {0}, each m-open Qq-cover of G
has a finite subfamily which is a Qy-cover of G.

(8) For any a € Lo (a € M(L)) and any b € B(a) \ {0} (b € B*(a)), each m-open
Qa-cover of G has a finite subfamily which is a (strong) Qu-cover of G. a

Analogously we also can present characterizations of countable m-compactness and
the m-Lindelof property.

If mO(X,T) denotes the set of m-open L-sets in (X,7T), we will denote the corre-
sponding set in (X,7) by MO(X, 7). The following lemma can be proved separately
using Theorem 2.6 for the special cases of mO(X,T) and MO(X, 7).

5.2. Lemma. Let (X,w(L)) be generated topologically by (X,7). If A is an M-open
set in (X,7), then xa is an m-open L-set in (X,wr(7)). If B is an m-open L-set in
(X, wr(7)), then B is an M-open set in (X, T) for every a € L. O

The next two theorems show that m-compactness, countable m-compactness and the
m-Lindel6f property are good extensions.

5.3. Theorem. Let (X,wr(7)) be generated topologically by (X, 7). Then (X,wr (7)) is
(countably) m-compact if and only if (X,7) is (countably) M-compact.

Proof. Necessity. Let A be an M-open cover (a countable M-open cover) of (X, 7). Then
{xa : A € A} is a family of m-open L-sets in (X,wr (7)) with

A (V@) -1
rzeX MAeU
From the (countable) m-compactness of (X, wr (7)) we know that

1> \/ A (\/XA(:C))Z A (\/XA(:C)):L

pea(W) z€X N Ay zeX N AU
This implies that there exists ¢ € 2 such that Neex(Vacy xa(z)) = 1. Hence 7 is a
cover of (X, 7). Therefore (X, 7) is (countably) M-compact.

Sufficiency. Let U be a (countable) family of m-open L-sets in (X,wr (7)) and let
Nocx (VBeu B(:c)) = a. If a = 0, then we obviously have

A(Ve@)< V A(VBW)

zeX “BelU pe2(l) zeX ™A€y
Now we suppose that a # 0. In this case, for any b € 8(a) \ {0} we have
ves( A (VE@)) e Ns(VB@) =N U seo),
zeX NBelUu rzeX Beu zeX BeU

By Lemma 5.2 this implies that {B) | B € U} is an M-open cover of (X,7). From
the (countable) M-compactness of (X, 7) we know that there exists ¢» € 2(") such that
{Bw) | B € ¢} is a cover of (X, 7). Hence b <V . (Apc, B(z)). Furthermore we have

b< A\ <\/B(x)>§ VoA <\/B(x)>.

zeX ~Bewy pe2(W) zeX *Bey
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This implies that

A\ (\/ B(l’)>=a=\/{b:be/3(a)}§ V A (\/ B(x)).

rzeX BeUu w€2(u) reX Bey

Therefore (X,wr(7)) is (countably) m-compact. O
Analogously we have the following theorem.

5.4. Theorem. Let (X,wr (7)) be generated topologically by (X, 7). Then (X,wr(7T))
has the m-Lindelof property if and only if (X, 7) has the M-Lindelof property. |

6. Conclusion and remarks

In this paper, we give a general framework for the concept of compactness in L-
topological spaces. Instead of studying compactness for each type of open L-sets O(X, T)
separately, we examine the compactness for open sets of type mO(X, 7).

If mO(X,T) = SO(X,T), we get the study of Shi [23], when mO(X,T) = PO(X,7),
we get the study of Shi [19]. In the case of mO(X,T) = aO(X,T) we have the study of
Shi [21]. This method can be applied for the cases of mO(X,T) = BO(X,T), mO(X,T) =
~O(X,T), and so on.

We conclude from this that there are no benefits from repeating the same study on
other kinds of L-sets where we can get any kind of compactness by choosing a suitable
type m.
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