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Abstract

Grills and clusters have featured quite significantly in the theory of
nearness spaces (see for example H. Herrlich (Topological structures,
Topological Structures 1. Math. Centre Tracts, 59–122, 1974) and G.
Preuss, (Theory of topological structures: An approach to categorical

topology (D. Reidel Pub. Co., 1987)). In this paper we consider the role
they play in nearness frames. Some of the results we establish here are
that, in a separated Boolean nearness frame, a near grill is contained in
a unique cluster, and that, in quotient-fine nearness frames with spatial
completion, near subsets are contained in near grills.
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1. Introduction

Grills were introduced in 1947 by G. Choquet [5] in connection with filters, where
it became apparent that they are duals of filters. In 1973, W.J. Thron [12] carried out
an extensive study of proximity structures with grills playing a central role. Some of
the preliminary results appearing there are that grills are unions of the ultrafilters they
contain, and that ultrafilters are grills. In the pointfree context, that grills are unions of
the prime filters they contain becomes immediate.

In [11], G. Preuss carries out a study of grill-determined prenearness spaces, i.e. those
prenearness spaces in which each near collection of subsets is contained in a near grill. In
this paper we show that, in quotient-fine nearness frames with spatial completion, near
subsets are contained in near grills.
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2. Preliminaries

Recall that a frame is a complete lattice L in which the infinite distributive law

a ∧
∨

S =
∨

{a ∧ x | x ∈ S}

holds for all a ∈ L and S ⊆ L. We denote the top element and the bottom element of L by
1 and 0 respectively. The morphisms between frames, known as frame homomorphisms,
are those which preserve finite meets, including the top element, and arbitrary joins,
including the bottom element. A homomorphism is called dense if the only element it
maps to the bottom element is the bottom element. Associated with a homomorphism
h : L → M is its right adjoint h∗ : M → L given by

h∗(a) =
∨

{x ∈ L | h(x) ≤ a}.

For a general theory of frames we refer the reader to [9]. The frame of open subsets of a
topological space X is denoted by OX.

An element a of L is rather below an element b, written a ≺ b, if there is an element
s such that a∧ s = 0 and s ∨ b = 1. L is then said to be regular if a =

∨
{x ∈ L | x ≺ a}

for each a ∈ L.

The pseudocomplement of an element a is the element a∗ =
∨
{x ∈ L | x∧a = 0}. We

say a is a regular element in a frame L if a∗∗ = a. A Boolean frame is one where each
element is regular.

A point of a frame L is an element p such that p 6= 1 and x ∧ y ≤ p implies x ≤ p or
y ≤ p. The points of any regular frame are precisely those elements which are maximal
below the top. A frame has enough points if every element is a meet of points above it.
Every compact regular frame has enough points. Frames that have enough points are
also said to be spatial.

By a filter of a frame L, we mean a proper upset of L which is closed under finite
meets. An ideal is defined dually. A filter is prime if it contains at least one element of
any two elements whose join it contains.

We say that A ⊆ L is a cover of a frame L if
∨

A = 1. The set of all covers of L is
denoted by CovL. For covers A and B of L, A is said to refine B, written A ≤ B, if
for every a ∈ A there exists b ∈ B such that a ≤ b. For any A ∈ CovL and x ∈ L, the
element Ax of L is defined by Ax =

∨
{a ∈ A | a ∧ x 6= 0}.

For any N ⊆ CovL, the relation �N (or simply �) on L is defined by

x� y if Cx ≤ y for some C ∈ N,

and N is said to be admissible if a =
∨
{x ∈ L | x � a} for each a ∈ L. A nearness

on L is an admissible filter N in (CovL,≤). A nearness frame is a pair (L,N) where
N is a nearness on L. A frame has a nearness if and only if it is regular. Therefore all
frames considered here are assumed to be regular. For general reference to the theory of
nearness frames see [1, 2] and [3].

One frequently abuses notation and simply refers to L as a nearness frame. In such
cases one writes NL for the nearness.

Given a nearness frame L, the covers in NL are called uniform covers of L. If L is a
nearness frame and C ∈ CovL, then Č is the cover defined by

Č = {x ∈ L | x� c for some c ∈ C}.

Let L and M be nearness frames. A homomorphism h : L → M between the respective
underlying frames is said to be:

(1) Uniform if h[C] ∈ NM for each C ∈ NL.
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(2) A surjection or quotient map if it is onto and NM = {h[C] | C ∈ NL}. In this
case we shall refer to the nearness frame M as a quotient of L.

(3) A strict surjection if it is a dense surjection and the uniform covers h∗[C], C ∈
NM , generate NL.

The category of nearness frames and uniform homomorphisms is denoted by NFrm.

A nearness frame L is said to be:

(1) Boolean if the underlying frame L is Boolean.
(2) Strong if for every uniform cover C, Č is also a uniform cover.
(3) Fine if NL = CovL.
(4) Quotient-fine if it is the quotient of a fine nearness frame.
(5) Complete if any strict surjection M → L is an isomorphism.

A completion of a nearness frame L is any strict surjection M → L with complete M .
Fine nearness frames are complete. Any nearness frame L has a completion γL : CL → L,
which is unique up to isomorphism.

In a nearness frame L, a near subset A ⊆ L has the property that every uniform cover
of L has an element which meets every element of A. It is shown in [6] that A is a near
subset of L if and only if the set of pseudocomplements A∗ = {a∗ | a ∈ A} is not a
uniform cover of L. We say that C ⊆ L is a cluster if it is a maximal near subset.

Given a nearness frame L, and A ⊆ L, write

secA = {x ∈ L | x ∧ a 6= 0, ∀ a ∈ A \ {0}}.

Then A is said to be semi-Cauchy if secA is a near subset of L.

A nearness frame L is said to be separated if whenever a subset A ⊆ L is both near
and semi-Cauchy, then the set {s ∈ L | A ∪ {s} is near} is near. Strong nearness frames
are separated, as shown in [6].

A grill G ⊆ L is an upset such that 0 6∈ G and if a∨b ∈ G, then a ∈ G or b ∈ G. Thus,
a grill is a complement of an ideal, and a prime filter is a grill. Further, grills are known
to be dual to filters, and it is shown in [8] that if G is a uniform grill, then secG ⊆ G.

3. Grills, clusters, and near subsets

In our discussion we take special interest in establishing the interconnections between
the notions grill, cluster and near subset in the context of nearness frames.

In the theory of nearness spaces, uniformly continuous maps can be characterized
by near subsets namely: a function f : X −→ Y between nearness spaces is uniformly
continuous iff for every near subcollection A ⊆ PX, the collection {f [A] | A ∈ A} is near
in Y . We begin by showing that the property of being a near subset characterizes uniform
frame homomorphisms only in certain instances as specified by the following result.

3.1. Proposition. If M is a strong nearness frame, L an arbitrary nearness frame, and

h : M −→ L a dense onto frame homomorphism, then h is uniform iff h∗ preserves near

subsets.

Proof. Suppose the hypothesis holds, with h being a uniform frame homomorphism. Let
A be a near subset of L. We show that h∗[A] is a near subset of M . If C ∈ NM , then
h[C] ∈ NL. So there exists c ∈ C such that h(c) ∧ a 6= 0 for each a ∈ A, since A is near.
This implies c ∧ h∗(a) 6= 0 since h is onto. [To see this, suppose c ∧ h∗(a) = 0. Then
0 = h(c ∧ h∗(a)) = h(c) ∧ hh∗(a) = h(c) ∧ a, giving a contradiction]. Therefore h∗[A] is
near.
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Conversely, suppose h∗ preserves near subsets. We show that h is uniform. Let
C ∈ NM , and suppose on the contrary h[C] 6∈ NL. Since M is strong, we have that

Č = {x ∈ M | ∃c ∈ C, x� c} ∈ NM.

Now for any x ∈ Č, x∗∗ ≤ c for some c ∈ C (since x � c). Thus, in line with our
supposition, h[Č∗∗] 6∈ NL. Since h is dense onto, h[Č∗∗] = h[Č∗]∗ 6∈ NL and hence h[Č∗]
is near. So, by the hypothesis h∗h[Č

∗] is near.

Since Č ∈ NM , we can find x ∈ Č which meets with every element of h∗h[Č
∗]. But

h∗(h(x)
∗) is an element of h∗h[Č

∗] and

h(x ∧ h∗(h(x)
∗)) = h(x ∧ h∗h(x

∗)) = h(x) ∧ h(x∗) = 0,

which implies x ∧ h∗(h(x)
∗) = 0 by denseness. So we have a contradiction. Hence the

desired result holds. �

3.2. Proposition. Every cluster is a grill.

Proof. Let L be a nearness frame and C ⊆ L a cluster. Now, since C is near, we have
0 6∈ C. Suppose a ∈ C or b ∈ C. Then C ∪ {a ∨ b} is near, and consequently a ∨ b ∈ C,
since C is a maximal near subset.

On the other hand, suppose a ∨ b ∈ C with a 6∈ C and b 6∈ C. Then since C is a
cluster, C ∪{a} and C ∪{b} are not near and so both D = C∗ ∪{a∗} and E = C∗ ∪{b∗}
are uniform covers of L. But D ∧ E ≤ C∗ ∪ {a∗ ∧ b∗) since a∗ ∧ b∗ = (a ∨ b)∗ ∈ C∗.
So C∗ ∈ NL, implying that C is not near. This is a contradiction. Hence the result
holds. �

The following characterization of grills is immediate, when one invokes the dual version
of Stone’s Separation Lemma [7, Theorem 15].

3.3. Lemma. A nonempty subset G of a frame L is a grill if and only if it is the union

of the prime filters it contains. �

3.4. Proposition. In any nearness frame L, every near subset is contained in a grill.

Proof. Let A be a near subset of L and C a uniform cover of L. Choose c ∈ C such that
c ∧ a 6= 0 for all a ∈ A. This implies a 6≤ c∗ for each a ∈ A. [Note that if a ≤ c∗, then
c∧a ≤ c∧ c∗ = 0, so that c∧a = 0 which gives a contradiction]. So we have A ⊆ L\ ↓c∗.
Now ↓c∗ is an ideal, so that its complement L\ ↓c∗ is a grill. �

Our next result identifies separated nearness frames among the arbitrary ones.

3.5. Proposition. If L is a nearness frame in which every near subset is contained in

a unique cluster, then L is separated.

Proof. Given the hypothesis, let A ⊆ L be near and semi-Cauchy, and let C be the
unique cluster with A ⊆ C. Put S = {s ∈ L | A ∪ {s} is near}. For each s ∈ S, let Cs

be the unique cluster such that A ∪ {s} ⊆ Cs. Then A ⊆ Cs for each s ∈ S. So S ⊆ C.
Since C is near, we have that S is near, and therefore L is separated. �

3.6. Remark. We note that if L is a nearness frame, A ⊆ L is near and

C = {c ∈ L | A ∪ {c} is near}

is near, then C is the unique cluster containing A. To see this let B ⊇ A be near. Then
for each b ∈ B, we have A ∪ {b} ⊆ B and so A ∪ {b} is near. In that case b ∈ C, so that
B ⊆ C.

3.7. Proposition. If L is a Boolean separated nearness frame, then every near grill in

L is contained in a unique cluster.
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Proof. Let G ⊆ L be a near grill. We first show that G is semi-Cauchy, and then use the
above remark to draw our conclusion. So we begin by showing that secG is near.

Suppose on the contrary that secG is not near. Then the set {a∗ | a ∈ secG} ∈ NL,
and so there exists b ∈ secG such that b∗ ∧ x 6= 0 for each x ∈ G, since G is near. But
for each x ∈ G, we have x = (x ∧ b) ∨ (x ∧ b∗), since L is Boolean. Since G is a grill, we
should have x∧ b ∈ G or x∧ b∗ ∈ G. But we cannot have x∧ b ∈ G since b∗ ∧ (x∧ b) = 0.
So x ∧ b∗ ∈ G; which contradicts the fact that b ∈ secG, as b ∧ (x ∧ b∗) = 0. Therefore
secG is near, so that G is semi-Cauchy.

Since L is separated, the set C = {c ∈ L | G∪{c} is near} is near. So, by Remark 3.6,
C is the unique cluster containing G. �

Our next result shows that clusters are preserved by dense surjections. We shall need
the following result appearing in [6].

3.8. Lemma. A surjection h : M → L is dense iff for every near subset A of M , h[A]
is a near subset of L. �

3.9. Proposition. Let h : M −→ L be a dense surjection. If C ⊆ M is a cluster, then

h[C] is a cluster in L.

Proof. Suppose C ⊆ M is a cluster. Since C is near, we have, by Lemma 3.8, that h[C]
is near. Now suppose h[C] ⊆ D for some D ⊆ L which is near. We show that D ⊆ h[C],
which will show that h[C] is a maximal near subset. Let d ∈ D, and choose b ∈ M such
that h(b) = d. Let A ∈ NM . Then h[A] ∈ NL. Since D is near, there exists a ∈ A such
that h(a)∧x 6= 0 for each x ∈ D. In particular, 0 6= h(a)∧h(b) = h(a∧ b), which implies
a ∧ b 6= 0.

Consider any element c ∈ C. Since h[C] ⊆ D, h(a)∧h(c) 6= 0, which implies a∧c 6= 0.
Thus, a meets every element of C ∪{b}, which implies that C ∪{b} is near, and therefore
b ∈ C as C is a maximal near subset. Thus, d = h(b) ∈ h[C]. Hence h[C] = D, as
required. �

If denseness is dropped in the above proposition, then h[C] can fail to be a cluster
mainly because h[C] need not be near when C is near, as shown by the following example.

3.10. Example. Let 4 = {0, a, a∗, 1} be the Boolean algebra of four elements and 2 the
two-element chain. Regard these frames as fine nearness frames. Let h : 4 −→ 2 be the
frame homomorphism given by

0 7→ 0, a 7→ 0, a∗ 7→ 1, 1 7→ 1.

Then h is a nondense surjection. The set C = {a, 1} is a cluster in 4 for which h[C] is
not near, and therefore not a cluster.

In regular nearness spaces there is a characterization of the subtopological ones that
says a nearness space is subtopological if and only if every near collection of subsets is
contained in a near grill (see [4] for definitions and the cited result). A close scrutiny
of the validating arguments suggests that what makes the characterization valid is that,
talking frame-theoretically, the frame P(X) of subsets of X is Boolean, and furthermore
the near collections are allowed to contain any type of subset and not just the open ones.

We shall show shortly that if a nearness frame is quotient-fine and its completion
has enough points, then every near subset is contained in a near grill. A remark is in
order here. If the completion of a nearness frame (or a quotient-fine nearness frame for
that matter) has enough points, it does not follow that the nearness frame has enough
points. For instance let L be a Boolean frame with no atoms. Then L has no points.
Consider the Stone-Čech compactification σ : βL → L of L, and endow L with the
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nearness σ[Cov(βL)]. Then L is a quotient-fine nearness frame and its completion has
enough points.

3.11. Proposition. Let L be a quotient-fine nearness frame with a spatial completion.

Then any near subset of L is contained in a near grill.

Proof. Let h : M → L be a completion of L, so that NL = h[CovM ]. Let A ⊆ L be
near. We show that

∨
{h∗(a

∗) | a ∈ A} 6= 1. If not, then h∗[A
∗] ∈ CovM , and hence

hh∗[A
∗] is a uniform cover of L, that is, A∗ is a uniform cover of L, contradicting the

lemma. Since M has enough points, by hypothesis, there is a point p ∈ M such that
∨

{h∗(a
∗) | a ∈ A} ≤ p.

Now define a subset G of L by

G = {x ∈ L | h∗(x
∗) ≤ p}.

Then, clearly, A ⊆ G. We show that G is near. If not, then there is a cover U of M such
that h[U ] = G∗. But this implies U ≤ h∗[G

∗], and hence

1 =
∨

U ≤
∨

{h∗(x
∗) | x ∈ G} ≤ p,

which is false. Next, we show that G is a grill. Since h∗(0
∗) = h∗(1) = 1, 0 /∈ G. Also,

since a ≥ b ∈ G implies h∗(a
∗) ≤ h∗(b

∗) ≤ p, G is an upset. Now suppose u ∨ v ∈ G.
Then

h∗(u
∗) ∧ h∗(v

∗) = h∗(u
∗ ∧ v∗) = h∗((u ∨ v)∗) ≤ p,

which implies h∗(u
∗) ≤ p or h∗(v

∗) ≤ p since p is a point. Thus u ∈ G or v ∈ G.
Therefore G is a near grill containing A. �

Denote by FCov(L) the set of all covers of L which have finite subcovers. Then
FCov(L) is a nearness on L. A nearness frame L is said to be finitely fine if NL =
FCov(L). It is shown in [1] that:

For any finitely fine Boolean nearness frame L, the map JL → L from

its ideal lattice by taking joins is a completion.

In view of the last proposition, we have:

3.12. Corollary. Any near subset of a finitely fine Boolean nearness frame is contained

in a maximal near grill.

Proof. Let L be a Boolean finitely fine nearness frame. Then, being compact, the com-
pletion of L is fine; and so L is a quotient-fine nearness frame with a spatial completion.
Thus, by the proposition, every near subset is contained in a near grill. So it remains
to show maximality. For definiteness, denote the map JL → L by h. Also, let A, p and
G be as in the preceding proof. We must show maximality of G. So, let H be a near
grill with G ⊆ H , and let a ∈ H . Suppose, by way of contradiction, that a /∈ G. Then
h∗(a

∗) � p. Since h is dense,

h∗(a
∗) ∧ h∗(a

∗∗) = h∗(0) = 0 ≤ p,

and so h∗(a
∗∗) ≤ p as p is a point. This implies a∗ ∈ G ⊆ H , so that both a and a∗

are in H . But now {a, a∗} is a uniform cover each of whose members misses at least one
member of H ; contradicting the fact that H is near. �
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