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Abstract

We aim at establishing two identities contiguous to Kummer’s trans-
formation:

(1− z)−a
2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;

(

z

1− z

)2
]

= 2F1

[

a, b ;

2b ;
2z

]

by using two different methods. They are further applied to prove two
summation formulas for the series 3F2(1), closely related to the classical
Watson’s theorem due to Lavoie.

Keywords: Gamma function, Hypergeometric function, Generalized hypergeometric
function, Kampé de Fériet function, Kummer’s second theorem, Dixon and Whipple’s
summation theorems.
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1. Introduction and preliminaries

The generalized hypergeometric series pFq is defined by (see [13, p. 73]):

(1.1)
pFq

[

α1, . . . , αp ;

β1, . . . , βq ;
z

]

=
∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq ; z),
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where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [16, p. 2 and p. 6]):

(1.2)

(λ)n : =

{

1 (n = 0)

λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 )

and Z
−

0 denotes the set of nonpositive integers, C the set of complex numbers, and Γ(λ)
is the familiar Gamma function. Here p and q are positive integers or zero (interpreting
an empty product as 1), and we assume (for simplicity) that the variable z, the numera-
tor parameters α1, . . . , αp, and the denominator parameters β1, . . . , βq take on complex
values, provided that no zeros appear in the denominator of (1.1), that is, that

(1.3) (βj ∈ C \ Z−

0 ; j = 1, . . . , q).

It is noted in passing that the Gamma function Γ and its related constant, asymptotic
formulas, and inequalities have been investigated by many authors, for example, see [2, 3].

It should also be remarked here that whenever the hypergeometric function 2F1 and
the generalized hypergeometric functions pFq are expressed in terms of the Gamma func-
tion, the results are usually important, in particular, from the application point of view.
Therefore, the well known summation theorems such as those of Gauss, Gauss’s second,
Bailey and Kummer for the series 2F1 and Watson, Dixon and Whipple for the series 3F2

and their extensions and generalizations (see [8, 9, 10, 11, 12]) play an important role in
the theory of generalized hypergeometric series. For applications of the above-mentioned
classical summation theorems, we refer to [1, 5, 6, 11, 12, 13, 14].

Moreover, it is well known that, if the product of two hypergeometric series can be
expressed as a hypergeometric series with argument x, the coefficient of xn in the product
must be expressible in terms of Gamma functions. Here, we mention some of the above
summation theorems and their special cases so that the paper may be self-contained.

Gauss’s summation theorem (see [13, p. 49])

(1.4) 2F1

[

a, b ;

c ;
1

]

=
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
(ℜ(c− a− b) > 0);

Special cases (see [13, p. 49])

(1.5) 2F1

[

− 1
2
n, − 1

2
n+ 1

2
;

b+ 1
2
;
1

]

=
2n (b)n
(2b)n

=
(

1 +
n

2b

) 2n (b)n
(2b+ 1)n

and

(1.6) 2F1

[

− 1
2
n+ 1

2
, − 1

2
n+ 1 ;

b+ 3
2
;
1

]

=

(

1 +
1

2b

)

2n (b)n
(2b+ 1)n

;

Watson’s theorem (see [16, p. 251])

(1.7)

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c ;

1

]

(ℜ(2c− a− b) > −1)

=
Γ
(

1
2

)

Γ
(

c+ 1
2

)

Γ
(

1
2
+ 1

2
a+ 1

2
b
)

Γ
(

1
2
− 1

2
a− 1

2
b+ c

)

Γ
(

1
2
+ 1

2
a
)

Γ
(

1
2
+ 1

2
b
)

Γ
(

1
2
− 1

2
a+ c

)

Γ
(

1
2
− 1

2
b+ c

) ;
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Contiguous Watson’s theorem (see [8])

(1.8)

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c+ 1 ;

1

]

(ℜ(2c− a− b) > −3)

=
2a+b−2 Γ

(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

c+ 1
2

)

Γ
(

c− 1
2
a− 1

2
b+ 1

2

)

Γ
(

1
2

)

Γ (a) Γ (b)

·

{

Γ
(

1
2
a
)

Γ
(

1
2
b
)

Γ
(

c− 1
2
a+ 1

2

)

Γ
(

c− 1
2
b+ 1

2

) −
Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

)

Γ
(

c− 1
2
a+ 1

)

Γ
(

c− 1
2
b+ 1

)

}

and

(1.9)

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c− 1 ;

1

]

(ℜ(2c− a− b) > 1)

=
2a+b−2 Γ

(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

c− 1
2

)

Γ
(

c− 1
2
a− 1

2
b− 1

2

)

Γ
(

1
2

)

Γ (a) Γ (b)

·

{

Γ
(

1
2
a
)

Γ
(

1
2
b
)

Γ
(

c− 1
2
a− 1

2

)

Γ
(

c− 1
2
b− 1

2

) +
Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

)

Γ
(

c− 1
2
a
)

Γ
(

c− 1
2
b
)

}

.

From the theory of differential equations, Kummer obtained the following interesting and
useful quadratic transformation (see [13, p. 65]):

(1.10) (1− z)−a
2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;

(

z

1− z

)2
]

= 2F1

[

a, b ;

2b ;
2z

]

,

valid when 2b ∈ C \ Z
−

0 , |z| <
1
2
, and

∣

∣

∣

z
1−z

∣

∣

∣
< 1. As shown in Rainville [13, p. 65],

the result (1.10) can be derived, without recourse to the differential equation, by mainly
using Gauss’s summation theorem (1.4). In (1.10), if we take z = x

1+x
, we have the

following form

(1.11) (1 + x)a 2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;
x2

]

= 2F1

[

a, b ;

2b ;

2x

1 + x

]

,

which can be rewritten in the form

(1.12) (1 + x)−a
2F1

[

a, b ;

2b ;

2x

1 + x

]

= 2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;
x2

]

.

It is also interesting to note that in (1.12) if we replace x by x
a
and let a → ∞, we get

Kummer’s second theorem (see [13, p. 126])

(1.13) e−x
1F1

[

b ;

2b ;
2x

]

= 0F1

[

− ;

b+ 1
2
;

x2

4

]

.

The objective of this paper is to establish two formulas contiguous to Kummer’s quadratic
transformation (1.10) by using two different methods. They are further applied to prove
two summation formulas for the series 3F2(1), closely related to the classical Watson
theorem derived earlier by Lavoie [7], who used a different elementary method. In order
to establish our formulas we also need the following results.

Integral representation for 2F1 (see [13, p. 47])

(1.14) 2F1

[

a, b ;

c ;
z

]

=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1 (1− zt)−a dt

(ℜ(c) > ℜ(b) > 0, |z| < 1) .
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Integral formula

(1.15) B(ρ, σ) 3F2

[

α, β, ρ ;

γ, σ + ρ ;
z

]

=

∫ 1

0

tρ−1 (1− t)σ−1
2F1(α, β ; γ ; tz) dt

(

ℜ(ρ) > 0, ℜ(σ) > 0, | arg(1− z)| < π
)

,

which is a corrected version of the formula given in [4, p. 399, Entry (7)], and where
B(ρ, σ) is the Beta function (see [16, pp. 9–11]).

Quadratic transformation (see [13, p. 67])

(1.16) 2F1

[

2a, 2b ;

a+ b+ 1
2
;
z

]

= 2F1

[

a, b ;

a+ b+ 1
2
;
4z(1− z)

]

(

a+ b+
1

2
∈ C \ Z−

0 ; |z| < 1, |4z(1− z)| < 1

)

.

Definite integral

(1.17)

∫ 2a

0

f(x) dx =

{

2
∫ a

0
f(x) dx if f(2a− x) = f(x);

0 if f(2a− x) = −f(x).

Known result (see [16, p. 10, Eq. (64)])

(1.18)

∫ π

2

0

sinm θ cosn θ dθ =
Γ
(

m+1
2

)

Γ
(

n+1
2

)

2 Γ
(

m+n+2
2

)

(ℜ(m) > −1, ℜ(n) > −1).

(1.19)
1

2

[

(1 + x)−a + (1− x)−a
]

= 2F1

[

1
2
a, 1

2
a+ 1

2
;

1
2
;
x2

]

and

(1.20)
1

2

[

(1 + x)−a − (1− x)−a
]

= −ax 2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

3
2
;
x2

]

.

2. Main transformation formulas

The following two formulas closely related to Kummer’s transformation (1.10) will be
established.

2.1. Theorem. Each of the following transformation formulas hold true.

(2.1)

2F1

[

a, b ;

2b + 1 ;
2z

]

= (1− z)−a
2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;

(

z

1− z

)2
]

−
az

2b+ 1
(1− z)−(a+1)

2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

b+ 3
2
;

(

z

1− z

)2
]

(

2b+ 1 ∈ C \ Z−

0 , |z| <
1

2
,

∣

∣

∣

∣

z

1− z

∣

∣

∣

∣

< 1

)

and

(2.2)

2F1

[

a, b ;

2b − 1 ;
2z

]

= (1− z)−a
2F1

[

1
2
a, 1

2
a+ 1

2
;

b− 1
2
;

(

z

1− z

)2
]

+
az

2b− 1
(1− z)−(a+1)

2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

b+ 1
2
;

(

z

1− z

)2
]
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(

2b− 1 ∈ C \ Z−

0 , |z| <
1

2
,

∣

∣

∣

∣

z

1− z

∣

∣

∣

∣

< 1

)

.

Proof. We prove our main results in two ways.

Method 1. Starting with the integral representation (1.14) for 2F1 and replacing c by
2b+ 1 and z by 2z, we have

(2.3) 2F1

[

a, b ;

2b+ 1 ;
2z

]

=
1

B(b, b+ 1)

∫ 1

0

tb−1 (1− t)b (1− 2zt)−a dt.

In (2.3), if we put t = sin2 θ, after a little simplification, we obtain

(2.4)

2F1

[

a, b ;

2b + 1 ;
2z

]

=
(1− z)−a

B(b, b+ 1) 22b−1

∫ π

2

0

sin2b−1 2θ (1 + cos 2θ) (1 + ξ cos 2θ)−a dθ,

where, for simplicity, ξ = z/(1− z). Setting 2θ = φ, we get

(2.5)

2F1

[

a, b ;

2b + 1 ;
2z

]

=
(1− z)−a

B(b, b+ 1) 22b

∫ π

0

sin2b−1 φ (1 + cos φ) (1 + ξ cos φ)−a dφ.

In exactly the same manner, if we put t = cos2 θ, after a little simplification, we obtain

(2.6)

2F1

[

a, b ;

2b + 1 ;
2z

]

=
(1− z)−a

B(b, b+ 1) 22b

∫ π

0

sin2b−1 φ (1− cos φ) (1− ξ cos φ)−a dφ.

Adding (2.5) and (2.6), we have

(2.7)
2F1

[

a, b ;

2b + 1 ;
2z

]

=
(1− z)−a

B(b, b+ 1) 22b+1

·

∫ π

0

sin2b−1 φ
{

(1 + cosφ) (1 + ξ cos φ)−a + (1− cos φ) (1− ξ cosφ)−a
}

dφ.

Using (1.17), we get

(2.8) 2F1

[

a, b ;

2b+ 1 ;
2z

]

= I1 + I2,

where, for convenience,

I1 :=
(1− z)−a

B(b, b+ 1) 22b

∫ π

2

0

sin2b−1 φ
{

(1 + ξ cos φ)−a + (1− ξ cos φ)−a
}

dφ

and

I2 :=
(1− z)−a

B(b, b+ 1) 22b

∫ π

2

0

sin2b−1 φ cos φ
{

(1 + ξ cos φ)−a − (1− ξ cosφ)−a
}

dφ.

Now we will compute the integrals I1 and I2. Using (1.19), we find

(2.9) I1 =
(1− z)−a

B(b, b+ 1) 22b−1

∫ π

2

0

sin2b−1 φ 2F1

[

1
2
a, 1

2
a+ 1

2
;

1
2
;
ξ2 cos2 φ

]

dφ.
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Expressing 2F1 as a series, changing the order of integration and summation, which is
guaranteed due to the uniform convergence of the series involved in the process, then
after a little simplification, we have

(2.10) I1 =
(1− z)−a

B(b, b+ 1) 22b−1

∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n
(

1
2

)

n
n!

ξ2n
∫ π

2

0

sin2b−1 φ cos2n φdφ.

Using (1.18), after a little simplification, we get

(2.11)

I1 = (1− z)−a

∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n

n!
(

b+ 1
2

)

n

ξ2n

= (1− z)−a
2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;
ξ2
]

.

A similar argument will lead us to

(2.12) I2 = −
az

2b+ 1
(1− z)−a−1

2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

b+ 3
2
;
ξ2
]

.

Using (2.11) and (2.12) in (2.8), we arrive at the result (2.1). In exactly the same manner,
the result (2.2) can also be established. This completes the proof.

Method 2. Let us denote the right-hand side of (2.1) by S1 − S2, where S1 is the first
and S2 the second sum. Then we find

S1 =
∞
∑

k=0

(

1
2
a
)

k

(

1
2
a+ 1

2

)

k
(

b+ 1
2

)

k
k!

z2k (1− z)−(a+2k).

Using the binomial theorem

(1− z)−α =

∞
∑

n=0

(α)n zn

n!
(|z| < 1, α ∈ C),

we have

S1 =
∞
∑

k=0

∞
∑

n=0

(

1
2
a
)

k

(

1
2
a+ 1

2

)

k
(

b+ 1
2

)

k
k!

(a+ 2k)n
n!

zn+2k.

Using (a)2k = 22k
(

1
2
a
)

k

(

1
2
a+ 1

2

)

k
, we get

S1 =
∞
∑

k=0

∞
∑

n=0

(a)2k (a+ 2k)n zn+2k

22k
(

b+ 1
2

)

k
k!n!

.

Using (a)2k (a+ 2k)n = (a)n+2k, we obtain

S1 =
∞
∑

k=0

∞
∑

n=0

(a)n+2k z
n+2k

22k
(

b+ 1
2

)

k
k!n!

.

Applying a well-known formal manipulation of a double series (see [13, p. 57]):

∞
∑

n=0

∞
∑

k=0

A(k, n) =

∞
∑

n=0

[n
2
]

∑

k=0

A(k, n− 2k),

we have

S1 =
∞
∑

n=0

[n
2
]

∑

k=0

(a)n zn

22k
(

b+ 1
2

)

k
k! (n− 2k)!

.
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Using (n− 2k)! = n!/(−n)2k and (−n)2k = 22k (−n/2)k (−n/2 + 1/2)k, we find

S1 =

∞
∑

n=0

(a)n
n!

zn
[n
2
]

∑

k=0

(

−n
2

)

k

(

−n
2
+ 1

2

)

k
(

b+ 1
2

)

k
k!

=

∞
∑

n=0

(a)n
n!

zn 2F1

[

−n
2
, −n

2
+ 1

2
;

b+ 1
2
;
1

]

.

Using (1.5), we get

S1 =

∞
∑

n=0

(a)n
n!

2n (b)n zn

(2b + 1)n

(

1 +
n

2b

)

.

In a similar way, we obtain

S2 = −
∞
∑

n=0

(a)n
n!

2n (b)n zn

(2b+ 1)n

n

2b
.

Finally it is easy to see that

S1 − S2 =
∞
∑

n=0

(a)n
n!

2n (b)n
(2b+ 1)n

zn = 2F1

[

a, b ;

2b+ 1 ;
2z

]

,

which is equal to the left-hand side of (2.1). This completes the proof of (2.1). In
exactly the same manner, the identity (2.2) can also be established by the two methods
enumerated above. �

If we replace z by x/(1 + x) in (2.1) and (2.2), we get the following alternative and
slightly modified forms.

2.2. Corollary. Each of the following formulas hold true.

(2.13)

(1 + x)−a
2F1

[

a, b ;

2b+ 1 ;

2x

1 + x

]

= 2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;
x2

]

−
ax

2b+ 1
2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

b+ 3
2
;
x2

]

(

2b+ 1 ∈ C \ Z−

0 ,

∣

∣

∣

∣

x

1 + x

∣

∣

∣

∣

<
1

2
, |x| < 1

)

,

and

(2.14)

(1 + x)−a
2F1

[

a, b ;

2b− 1 ;

2x

1 + x

]

= 2F1

[

1
2
a, 1

2
a+ 1

2
;

b− 1
2
;
x2

]

+
ax

2b− 1
2F1

[

1
2
a+ 1

2
, 1

2
a+ 1

b+ 1
2

; x2

]

(

2b− 1 ∈ C \ Z−

0 ,

∣

∣

∣

∣

x

1 + x

∣

∣

∣

∣

<
1

2
, |x| < 1

)

. �

Further, in (2.13) and (2.14), if we replace x by x
a
and let a → ∞, we get the following

identities.

2.3. Corollary. Each of the following formulas hold true.

(2.15) e−x
1F1

[

b ;

2b+ 1 ;
2x

]

= 0F1

[

− ;

b+ 1
2
;

x2

4

]

−
x

2b + 1
0F1

[

− ;

b+ 3
2
;

x2

4

]

and

(2.16) e−x
1F1

[

b ;

2b− 1 ;
2x

]

= 0F1

[

− ;

b− 1
2
;

x2

4

]

+
x

2b − 1
0F1

[

− ;

b+ 1
2
;

x2

4

]

. �
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2.4. Remark. Results (2.15) and (2.16) were proved in [15] by a different method. They
are also recorded in [5].

3. An application

Here, as an application of our main results (2.1) and (2.2), we will give an alternate
proof of the contiguous Watson’s formulas (1.8) and (1.9). For this, in (1.15), if we set
α = a, β = b, ρ = c, σ = d− c, and γ = 2b+ 1, we have

(3.1) B(c, d− c) 3F2

[

a, b, c ;

d, 2b+ 1 ;
z

]

=

∫ 1

0

tc−1 (1− t)d−c−1
2F1(a, b ; 2b + 1 ; z t) dt

(

ℜ(d) > ℜ(c) > 0, | arg(1− z)| < π
)

.

Applying the result (2.1) in the integrand 2F1, we obtain

(3.2) B(c, d− c) 3F2

[

a, b, c ;

d, 2b+ 1 ;
z

]

= F1 − F2,

where, for convenience,

F1 :=

∫ 1

0

tc−1 (1− t)d−c−1

(

1−
1

2
zt

)

−a

2F1

[

1
2
a, 1

2
a+ 1

2
;

b+ 1
2
;

(

zt

2− zt

)2
]

dt

and

F2 :=
az

2(2b+ 1)

∫ 1

0

tc (1− t)d−c−1

(

1−
1

2
zt

)

−a−1

· 2F1

[

1
2
a+ 1

2
, 1

2
a+ 1 ;

b+ 3
2
;

(

zt

2− zt

)2
]

dt.

In order to evaluate F1, we express 2F1 in the integrand as a series and change the
order of integration and summation (guaranteed as discussed before). Then, after a little
simplification, we get

F1 =

∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n

n!
(

b+ 1
2

)

n

(z

2

)2n
∫ 1

0

tc+2n−1 (1−t)d−c−1

(

1−
1

2
zt

)

−a−2n

dt.

Comparing the integral with (1.14), and after a little simplification, we have

(3.3) F1 = B(c, d− c)
∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n
(c)2n

n!
(

b+ 1
2

)

n
(d)2n

(z

2

)2n

2F1

[

a+ 2n, c+ 2n ;

d+ 2n ;

1

2
z

]

.

Similarly as in obtaining (3.3), we find

(3.4)

F2 =−
a

2b+ 1
B(c, d− c)

∞
∑

n=0

(

1
2
a+ 1

2

)

n

(

1
2
a+ 1

)

n
(c)2n+1

n!
(

b+ 3
2

)

n
(d)2n+1

(z

2

)2n+1

· 2F1

[

a+ 2n+ 1, c+ 2n+ 1 ;

d+ 2n+ 1 ;

1

2
z

]

.
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Now, setting (3.3) and (3.4) into (3.2), interchanging b and c, and taking d = 1
2
(a+b+1),

we get

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c+ 1 ;

z

]

=
∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n
(b)2n

n!
(

c+ 1
2

)

n

(

1
2
a+ 1

2
b+ 1

2

)

2n

(z

2

)2n

2F1

[

a+ 2n, b+ 2n ;

1
2
a+ 1

2
b+ 1

2
+ 2n ;

1

2
z

]

−
a

2c+ 1

∞
∑

n=0

(

1
2
a+ 1

2

)

n

(

1
2
a+ 1

)

n
(b)2n+1

n!
(

c+ 3
2

)

n

(

1
2
a+ 1

2
b+ 1

2

)

2n+1

(z

2

)2n+1

· 2F1

[

a+ 2n+ 1, b+ 2n+ 1 ;

1
2
a+ 1

2
b+ 3

2
+ 2n ;

1

2
z

]

.

Now if we use the identity (1.16), we have

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c+ 1 ;

z

]

=

∞
∑

n=0

(

1
2
a
)

n

(

1
2
a+ 1

2

)

n
(b)2n

n!
(

c+ 1
2

)

n

(

1
2
a+ 1

2
b+ 1

2

)

2n

(z

2

)2n

· 2F1

[

1
2
a+ n, 1

2
b+ n ;

1
2
a+ 1

2
b+ 1

2
+ 2n ;

2z
(

1−
z

2

)

]

−
a

2c+ 1

∞
∑

n=0

(

1
2
a+ 1

2

)

n

(

1
2
a+ 1

)

n
(b)2n+1

n!
(

c+ 3
2

)

n

(

1
2
a+ 1

2
b+ 1

2

)

2n+1

(z

2

)2n+1

· 2F1

[

1
2
a+ 1

2
+ n, 1

2
b+ 1

2
+ n ;

1
2
a+ 1

2
b+ 3

2
+ 2n ;

2z
(

1−
z

2

)

]

.

Finally setting z = 1, evaluating the two 2F1 ’s appearing on the right-hand side by using
Gauss’s theorem (1.4), and after a little simplification, we find

3F2

[

a, b, c ;

1
2
(a+ b+ 1), 2c+ 1 ;

1

]

=
Γ
(

1
2

)

Γ
(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

) 2F1

[

1
2
a, 1

2
b ;

c+ 1
2
;
1

]

−
2

2c+ 1

Γ
(

1
2

)

Γ
(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

1
2
a
)

Γ
(

1
2
b
) 2F1

[

1
2
a+ 1

2
, 1

2
b+ 1

2
;

c+ 3
2
;
1

]

.

Applying again Gauss’s theorem (1.4) to the two 2F1 series, and after a little simplifica-
tion, we get (1.8). In exactly the same manner, the result (1.9) can also be established.

3.1. Remark. The formulas (1.8) and (1.9) were proved by Lavoie [7] who used con-
tiguous function relations in a very elementary way.
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