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Abstract

In this paper, two-component systems (parallel and series) with
stochastically dependent components are considered. The aim is to
investigate an ordering relation according to their hazard rates among
the lifetime of the system with dependent and independent compo-
nents, and the lifetime of the component. In addition, monotonicity of
the hazard rate of two-component system for a bivaritate exponential
family of distributions is examined. Moreover, some general properties
of the hazard rates of the systems for the Clayton’s Distribution Family
are given.
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1. Introduction

Consider a system consisting of several components. Suppose there is a system whose
components are working under the same environment, or subjected to the same set of
stresses and sharing the load. Generally, the lifetimes of the components are dependent.
For example, consider a squad with two dealers in a sales department. If the success
of the team depends on the marked sales for both dealers then the success of one may
encourage the success of the other. Therefore, the amount of the individual sales of
each dealer will be affected by the other. For a multicomponent system, it is desired to
discuss the monotonicity of the hazard rates of such systems at least in two-component
systems. That is, we are going to investigate whether the system lifetime behaves like
its components or not when the component lifetimes have an increasing (or decreasing)
hazard rate.
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Furthermore, we are going to discuss possible ordering relations among the lifetimes.
That is, the system lifetime will be compared with both component lifetimes and the life-
time of the system with independent components according to the hazard rate ordering.
A transformation is defined from the survival function of the component lifetime to the
survival function of the system lifetime. In order to make an ordering for the lifetimes,
this transformation is a useful tool for some bivariate families. Since the exponential
distribution is widely used in reliability, we only focus on the exponential families of
distributions, such as Clayton’s Bivariate Distribution, Cowan’s Bivariate Exponential
Distribution, Gumbel’s Bivariate Exponential Distribution, Gumbel’s Type III Exponen-
tial Distribution and the FGM distribution. We are going to first introduce some general
properties for Clayton’s Family, then conditions for the hazard rate ordering will be given
for these families with exponential marginals. The lifetimes of the series system have a
bathtub shape property for the FGM family with exponential marginals (Gupta et al.
[1]). Here, a generalization of the properties of the hazard rates of the system lifetime
for a special case of the FGM family is considered. In contrast to the earlier works, we
observe that the hazard rate of the lifetime of the series system is increasing for α = −1.

A brief summary of the relevant literature is given below:

Navarro and Shaked [10] studied the monotonicity of the hazard rate of the order
statistics. Navarro et al. [7] studied the basic properties for bivariate systems with de-
pendent exchangeable components when the failure of the other components is known.
Navarro et al. [8] obtained the basic reliability properties for k-out-of-n systems (order
statistics) and, in particular, for the series and the parallel systems when the components
are exchangeable and have Gumbel’s Exponential for the joint distribution. Navarro and
Lai [6] studied how the dependency effects the performance of the system. They also ex-
tend some comparison results in the case of independent components to the case of two
dependent components with the help of diversity properties of the exponential parame-
ters of the two components. Navarro et al. [9] examined the basic reliability properties
of the systems with two exchangeable Pareto components. Navarro and Spizzichino [12]
obtained some results for a stochastic comparison of the coherent systems with indepen-
dent or dependent component lifetimes based on the copula representation. Navarro et
al. [5] obtained general properties of the hazard rate of mixtures of systems. Zhang
[14] investigated hazard rate ordering properties of the conditional lives of the coher-
ent system with dependent exchangeable component lifetimes. Navarro and Shaked [11]
studied the monotonicity of the hazard rate of the order statistics having the joint log-
concave reliability function. Zhao and Balakrishnan [15] have some results for the hazard
rate ordering of the series and the parallel systems with independent and heterogenous
exponential components based on majorization of the exponential parameters of the com-
ponents. Joo and Mi [2] have studied the hazard rate properties for the parallel systems
with two dependent components with exponential marginals.

In this study, we obtain results analogous to those of Navarro and Shaked [10] by
defining a convex transformation. In this connection, two definitions for the hazard rate
and the hazard rate ordering, respectively, are given below. For the comparisons of the
lifetimes, we introduce two useful lemmas which are stated below.

2. Motivations

2.1. Definition. Let T be the lifetime of a component, and S(t) the survival function
of the component. If the probability density function of T , f(t) exists, then the hazard

rate h(t) of a component is f(t)
S(t)

(Lai and Xie, [4, p. 9–11]).
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2.2. Definition. Let X and Y be two random variables with absolutely continuous
distribution functions and hazard rate functions hX(t) and hY (t), respectively, such that
hX(t) ≥ hY (t), for all t ≥ 0. Then X is said to be smaller than Y with respect to the
hazard rate ordering (denoted as X ≤hr Y ) (Shaked and Shanthikumar, [13, p. 12]).

Throughout the paper, the lifetimes of parallel (series) systems will be denoted by T2:2

(T1:2) for systems whose components are stochastically dependent on each other. On he
other hand, T 0

2:2 (T 0
1:2) will denote the lifetimes of parallel (series) systems with inde-

pendent components. Also, T is the component lifetime. Accordingly, S2:2(t) (S1:2(t)),
S0
2:2(t) (S0

1:2(t)) and S(t) denote survival functions for the system and component life-
times, respectively.

Now, assume that the lifetimes of the components are continuous random variables
and identically distributed. Then a transformation can be defined as follows:

ψ2:2(1:2)(u) = S2:2(1:2)S
−1(u) : [0, 1] → [0, 1] .

Here, we are going to obtain equivalent conditions for the hazard rate ordering (Shaked
and Shanthikumar, [13, Chapter I; p. 13, 28]). Some of the properties of the transforma-
tion are given below.

P1) ψ1:2(u) and ψ2:2(u) are both increasing in u with ψ1:2(0) = ψ2:2(0) = 0 and
ψ1:2(1) = ψ2:2(1) = 1.

P2) ψ0
1:2(u) = S0

1:2S
−1(u) = u2 and ψ0

2:2(u) = S0
2:2S

−1(u) = 1− (1− u)2.
P3) ψ2:2(u) = 2u− ψ1:2(u).
P4) ψ1:2(u) lies on the downside of the diagonal line and ψ2:2(u) lies on the upper

side of the diagonal line.
P5) ψ0

1:2(u) is convex and hence ψ0
2:2(u) is a concave function.

2.3. Lemma. Consider a two-component system (parallel or series) whose component
lifetimes are stochastically dependent and identically distributed. If ψ1:2(u) is convex,
then T1:2 ≤hr T and T ≤hr T2:2.

Proof. The first statement is obvious from (1.C.3), (1.B.6) and Theorem 1.C.1 (Shaked
and Shanthikumar, [13]). The second follows from (P3). By assuming exchangeability
of the component lifetimes, the result can also be obtained from (2.2) in Navarro and
Shaked [10]. �

This ordering seems to be a reasonable because we know that the lifetime of a series
system can not be longer than its components. However this is not always the case. One
can see a counter example (Example 2.2) in Navarro and Shaked [10].

Navarro and Lai [6], Joo and Mi [2] give some conditions for the hazard rate ordering
of the systems with two dependent exponential components under the effect of the de-
pendency of the component lifetimes by assuming dispersivity and majorization on the
exponential parameters.

2.4. Lemma. If
ψ2:2(1:2)(u)

ψ0
2:2(1:2)

(u)
↑ u, then T2:2(1:2) ≤hr T 0

2:2(1:2).

Proof. Clear from (1.B.2) and (1.B.6) in (Shaked and Shanthikumar, [13]). �

Now, we are going to investigate the hazard rate ordering, “≤hr” between the lifetimes
when the joint distribution of the component lifetimes belongs to some family of bivariate
exponential distributions.
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3. Hazard rate ordering for dependent series (parallel) systems

3.1. Clayton’s Bivariate Distribution. The joint survival function of the component
lifetimes (T1, T2) is given by

P (T1 > t, T2 > t) =
[

S1(t)
−θ + S2(t)

−θ − 1
]

−1
θ

θ > 0,

(Kotz et al, [3, p. 414]). As we noted earlier, if the components have the same marginals,
then the survival function of the series system can be written as

S1:2(t) = P (T1 > t, T2 > t) =
[

2S(t)−θ − 1
]

−1
θ

.

Therefore, the transformation defined on the survival function can be written as

ψ1:2(u) = u
[

2− u
θ
]− 1

θ

.

The first derivative of ψ1:2(u) is

(1)
dψ1:2(u)

du
=

2

(2− uθ)
1
θ
+1
,

which is a nondecreasing function of u. Therefore ψ1:2(u) is a convex function on (0, 1).
Hence, the ordering follows from an application of Lemma 2.3

(2) T1:2 ≤hr T ≤hr T2:2.

In order to make a similar comparison between T 0
1:2 and T1:2, we will have to check the

monotonicity property of the ratio ψ1:2(u)

ψ0
1:2(u)

= 1

u(2−uθ)
1
θ

. This ratio can also be written

as 1
[

1−(1−uθ)2
] 1
θ

which is a nondecreasing function. According to Lemma 2.4, we have

T 0
1:2 ≤hr T1:2. These two orderings will imply

(3) T
0
1:2 ≤hr T1:2 ≤hr T ≤hr T2:2.

Now, it remains to check the place of T 0
2:2 in (3). According to the properties (P2) and

(P5), since the function ψ0
2:2(u) = 2u− u2 is concave, we can conclude T ≤hr T 0

2:2 from
Lemma 2.3. According to Lemma 2.4, we need to check the monotonicity property of

the ratio ψ2:2(u)

ψ0
2:2(u)

. A slightly modified version of this ratio is as follows

(4)
ψ2:2(u)

ψ0
2:2(u)

=
2−

[

2− uθ
]

−1
θ

(2− u)
.

The sign of the first derivative will determine whether the ratio is increasing or decreasing.

The first derivative of ψ2:2(u)

ψ0
2:2(u)

is obtained as

(5)
d

du









(

2−
[

2− uθ
]

−1
θ

)

(2− u)









=

2

[

1−
[

2− uθ
]

−1
θ

−1 (
uθ−1 + 1− uθ

)

]

(2− u)2
.

Consider the numerator in (5). Since
[

2− uθ
]

−1
θ

−1 ≤ 1 for all u ∈ [0, 1], and uθ−1 + 1−
uθ ≤ 2− uθ for θ ≥ 1, then

1−
[

2− u
θ
]

−1
θ

−1 (

u
θ−1 + 1− u

θ
)

≥ 1−
[

2− u
θ
]

−1
θ ≥ 0.

Therefore, ψ2:2(u)

ψ0
2:2(u)

is nondecreasing for θ ≥ 1. By using Lemma 2.4, we have

(6) T2:2 ≤hr T 0
2:2.
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The combination of (6) and (3) implies that the following ordering holds for the Clayton
Distribution Family for any marginal with θ ≥ 1,

T ≤hr T2:2 ≤hr T 0
2:2.

3.2. Cowan’s Bivariate Exponentials. The joint distribution function of the com-
ponent lifetimes T1 and T2, distributed as Cowan’s Bivariate Exponential, is given by

P (T1 ≤ t1, T2 ≤ t2) = 1− e
−t1 − e

−t2 + e

{

−1
2

(

t1+t2+
√
t21+t

2
2−2t1t2 cosα

)}

,

with t1, t2 > 0 and 0 ≤ α ≤ π (Kotz et al. [3, p. 385]). The survival function of the series
system whose component lifetimes have an exponential distribution with λ = 1 can be
given by

S1:2(t) = e

{

−1
2

(

2t+
√

2t2−2t2 cosα
)}

= e
−t

(

1+
√

2
2

√
1−cosα

)

= e
−tcα ,

where cα =
(

1 +
√

2
2

√
1− cosα

)

. Then the hazard rate of the series system can be

written as

h1:2(t) = cα.

It is clear that the lifetime of a series system has the Constant Hazard Rate (CHR)
property. On the other hand, since h(t) = 1 and h0

1:2(t) = 2, and 1 ≤ cα ≤ 2, we can
write

T
0
1:2 ≤hr T1:2 ≤hr T.

Up to this point, we have considered systems serially connected to each other, and have
obtained an ordering according to their hazard rates. Now, we will consider systems
connected to each other in parallel. The survival function of the lifetime of a parallel
system is given by

S2:2(t) = 2e−t − e
−tcα ,

and the corresponding transformation ψ2:2(u) is as follows

ψ2:2(u) = 2u− u
cα .

As can be easily seen, since cα > 1, ψ2:2(u) is concave, which implies

(7) T ≤hr T2:2.

In order to decide the place of T 0
2:2, we consider the ratio ψ2:2(u)

ψ0
2:2(u)

. We have to investigate

three different cases according to cα.

(i) If c0 = 1, then ψ2:2(u)

ψ0
2:2(u)

= 1
2−u is a nondecreasing function of u and therefore, T2:2 ≤hr

T 0
2:2.

(ii) If cπ = 2, then the component lifetimes are independent, which is a trivial case.

(iii) If 1 < cα < 2, then

ψ2:2(u)

ψ0
2:2(u)

=
2u− ucα

2u− u2
with

ψ2:2(0)

ψ0
2:2(0)

= 1 and
ψ2:2(1)

ψ0
2:2(1)

= 1

imply that this ratio cannot be monotonic from the Rolle’s Theorem. Thus, T2:2 and T 0
2:2

cannot be compared in the sense of hazard rate ordering. Conversely, since T ≤hr T 0
2:2

then from (7) and (i) we have

T ≤hr T2:2 ≤hr T 0
2:2 for cα = 1.
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3.3. Gumbel’s Bivariate Exponentials. The joint distribution function of the com-
ponent lifetimes T1 and T2, distributed as Gumbel’s Bivariate Exponential, is given by

P (T1 ≤ t1, T2 ≤ t2) = 1− e
−t1 − e

−t2 + e
−(t1+t2+θt1t2),

0 ≤ θ ≤ 1 (Kotz et al, [3, p.350]). Here, the lifetimes of the components have an
exponential distribution with λ = 1. Then the survival function of the series system
S1:2(t) and its hazard rate can be written as

S1:2(t) = e
−(2t+θt2)

, h1:2(t) = 2 (1 + θt) ,

respectively. Since h1:2(t) ≥ h0
1:2(t) = 2 and h0

1:2(t) ≥ h(t) = 1, we have

T1:2 ≤hr T 0
1:2 ≤hr T.

A similar result for the generalized Gumbel’s Exponential distribution can be found in
Navarro et al. [8] (see Proposition 19.5.1 (3)). In Proposition 19.5.1 (3), if we take b = 0,
the same ordering we found above is valid.

According to the property (P3), the survival function of the parallel system is S2:2(t) =

2e−t − e−(2t+θt2), then the hazard rate of the system will be

h2:2(t) = 1− (1 + 2θt)e−(t+θt
2)

2− e−(t+θt
2)

.

Since h2:2(t) ≤ h(t), then T ≤hr T2:2. The same problem arises as in the Clayton
Family when trying to arrange the lifetimes T 0

2:2 and T2:2. To overcome this problem,
the following ratio is reconsidered,

(8)
S2:2(t)

S0
2:2(t)

=
2− e−(t+θt

2)

2− e−t
.

The problem is cleared up by checking the sign of the first derivative of (8). The numer-
ator of the first derivative of (8) can be arranged as

(9) ϕθ(t) = (1 + 2θt) e−(t+θt
2) (2− e

−t)− e
−t

(

2− e
−(t+θt2)

)

.

Note that
(

2− e−t
)

≤ 2 − e−(t+θt
2) for all t > 0 and θ ∈ [0, 1]. Conversely, if

(1 + 2θt) e−θt
2

≤ 1, then ϕθ(t) is negative. Accordingly, from the first four terms of

Maclaurin’s series expansion of eθt
2

, we have eθt
2

≥ 1 + θt2. On the other hand, for

t ≥ 2, we also have 1 + θt2 ≥ 1 + 2θt. Hence, the inequality (1 + 2θt) ≤ eθt
2

is valid
for t ≥ 2. Since ϕθ(t) ≤ 0, the ratio in (8) is decreasing. According to Definition 2.2,
T2:2 and T 0

2:2 cannot be compared for all t. That is, we can only talk about orderings
amongst T , T2:2 and T 0

2:2 as T ≤hr T2:2 and T ≤hr T 0
2:2.

3.4. Gumbel’s Bivariate Exponentials: Model III. Consider the joint distribution
of the lifetimes of the components T1 and T2 for m ≥ 1 (Kotz et al. [3, p. 355]) given by

P (T1 ≤ t1, T2 ≤ t2) = 1− e
−t1 − e

−t2 + e

{

−(tm1 +tm2 )
1
m

}

.

Since the lifetimes of the components are distributed exponentially with λ = 1, the

survival function of the series system is defined as S1:2(t) = e−2
1
m t, and h1:2(t) = 2

1
m

is obtained. It can be easily seen that h1:2(t) ≥ h(t) = 1 and this yields T1:2 ≤hr T .
Since h0

1:2(t) = 2, then the inequality h0
1:2(t) ≥ h1:2(t) is obviously valid, and hence

T 0
1:2 ≤hr T1:2 holds. Therefore, the ordering

T
0
1:2 ≤hr T1:2 ≤hr T
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is valid. From the joint distribution, the survival function of the parallel system is given

as S2:2(t) = 2e−t− e−ct, where c = 2
1
m . Therefore, the transformation ψ2:2(u) = 2u−uc

can be defined. Since c > 1, then ψ2:2(u) is concave. From Lemma 2.3, there exists
a relation between T and T2:2, namely T ≤hr T2:2. Next, in order to compare T2:2

and T 0
2:2, consider the ratio ψ2:2(u)

ψ0
2:2(u)

= 2−uc−1

2−u . This ratio has the same end points, i.e.

ψ2:2(0)

ψ0
2:2(0)

= ψ2:2(1)

ψ0
2:2(1)

= 1, which implies that the ratio is not monotonic. Therefore, the

lifetimes T 0
2:2 and T2:2 cannot be compared in the sense of the hazard rate ordering.

3.5. Farlie Gumbel Morgenstern Bivariate Distribution. The FGM distribution
function of the component lifetimes T1 and T2 for which their marginals are identically
distributed as an exponential with mean 1

λ
is given below:

P (T1 ≤ t1, T2 ≤ t2) = (1− e
−λt1)(1− e

−λt2)
[

1 + α(e−λ(t1+t2))
]

,

α ∈ [−1, 1] (Lai and Xie, [4]). Consider a series system having the survival function
S1:2(t), where

S1:2(t) = e
−2λt

[

1 + α(1− e
−λt)2

]

.

Based on this survival function the transformation ψ1:2(u) is defined as

ψ1:2(u) = u
2 [1 + α(1− u)2

]

.

In order to check the convexity of ψ1:2(u), we look at whether the second derivative is
positive or not. The second derivative of ψ1:2(u) is obtained as

(10)

d2ψ1:2(u)

du2
= 2 + 2α− 12αu + 12αu2

= 12α

(

1

2
− u

)2

+ 2− α.

For α ≥ 0, it can be seen from (10) that d2ψ1:2(u)

du2 is positive. If α < 0, then

12α

(

1

2
− u

)2

+ 2− α ≥ 2 (1 + α) ≥ 0

can be written because
(

1
2
− u

)2 ≤ 1
4
. Therefore the function ψ1:2(u) is convex for

α ∈ [−1, 1]. According to Lemma 2.3, using the convexity of ψ1:2(u), we can write

T1:2 ≤hr T.

Now, we are going to investigate ordering relations of T 0
1:2 with T1:2 and T . Since

ψ0
1:2(u) = u2 is convex, it is obvious from (P5) and Lemma 2.3 that T 0

1:2 ≤hr T . In
order to compare T 0

1:2 with T1:2, we consider the ratio

ψ1:2(u)

ψ0
1:2(u)

=
[

1 + α (1− u)2
]

.

This ratio is an increasing function of u when α < 0, and a decreasing function for α > 0.
Therefore, we have to consider two different cases, namely

(11)
T1:2 ≤hr T 0

1:2 ≤hr T for α < 0

T
0
1:2 ≤hr T1:2 ≤hr T for α > 0.

Consider a parallel system with survival function

S2:2(t) = 2e−λt − e
−2λt

[

1 + α
(

1− e
−λt

)2
]

,
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and corresponding transformation

ψ2:2(u) = 2u− u
2
[

1 + α(1− u)2
]

= 2u− ψ1:2(u).

Since the transformation ψ1:2(u) is convex, then ψ2:2(u) is concave, which implies from
Lemma 2.3 that

T ≤hr T2:2

is valid for α ∈ [−1, 1]. According to (P5), T 0
2:2 is placed on the right hand side of T . But

we still have to compare T2:2 and T 0
2:2. In order to compare these lifetimes, we consider

the ratio as

ψ2:2(u)

ψ0
2:2(u)

= 1− α
u (1− u)2

2− u
.

Here, it can easily be seen that ψ2:2(0)

ψ0
2:2(0)

= 1 and ψ2:2(1)

ψ0
2:2(1)

= 1. Therefore, T2:2 and T 0
2:2

cannot be compared, as in the Gumbel III model.

4. Monotonicity of a system with dependent components

From now on, for the families under discussion, we are going to look at whether the
hazard rate of the system will behave like its components or not.

4.1. Clayton’s Bivariate Distribution. Here a general characterization will be given
for this family. Afterwards, we are going to consider systems with exponentially dis-
tributed component lifetimes. The hazard rate function of the series system h1:2(t) can
be rewritten as

h1:2(t) = h(t)

[

2

2− S(t)θ

]

.

Since the ratio in brackets, i.e. 2
2−S(t)θ

, is a decreasing function of t, h1:2(t) is also decreas-

ing by assuming that the hazard rate of the component h(t) is decreasing. Therefore, the
lifetime of the series system has the DHR property when the component lifetimes have
the DHR property. If the lifetimes of the components have an exponential distribution
with parameter λ then h(t) = λ but the system lifetime still has the DHR property as
in the general case. For parallel systems, the hazard rate function of the parallel system
can be written as

(12) h2:2(t) = h(t)



1−
Sθ(t)

2−Sθ(t)

2 [2− Sθ(t)]
1
θ − 1





after some rearrangement. The term Sθ(t)

2−Sθ(t)
in the numerator decreases with t. Since

2 − Sθ(t) ≥ 1 is valid, then 2
[

2− Sθ(t)
]

1
θ − 1 is a positive and increasing function

of t. Therefore the ratio
S
θ(t)

2−Sθ(t)

2[2−Sθ(t)]
1
θ −1

decreases with t. In conclusion, while h(t) is

nondecreasing, h2:2(t) is increasing. Now, we can say that if the components are IHR,
then the parallel system also preserves the IHR property. As a result, according to (12),
we can also say that if the lifetimes of the components have exponential distribution with
parameter λ, then the parallel system has the IHR property.
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4.2. Cowan’s Bivariate Exponentials. For the series system, we know that h1:2(t) =
cα and monotonicity is preserved in the sense of CHR. Now, consider a parallel system
with the hazard rate function, after some rearrangement, in the form

h2:2(t) = cα − 2 (cα − 1)

2− e−t(cα−1)
.

Since cα − 1 > 0, then 2 − e−t(cα−1) is nondecreasing in t, and therefore h2:2(t) is
nondecreasing in t. In this case, the lifetimes of the components have the CHR property
but the system has IHR property. For the case cα = 1, the hazard rate function h2:2(t)
is constant and therefore the monotonicity is preserved towards the CHR.

4.3. Gumbel’s Bivariate Exponentials. For the series system, since h1:2(t) =
2 (1 + θt) the system has the IHR property, which implies that the monotonicity of the
hazard rate cannot hold. Now, let us examine this for the parallel system: The hazard
function can be written using Aθ(t) = t+ θt2 as

h2:2(t) = 1− A′
θ(t)e

−Aθ(t)

2− e−Aθ(t)
.

Now, we are going to look at the first derivative of h2:2(t) to investigate whether it
decreases or not. The first derivative of h2:2(t) is given by

dh2:2(t)

dt
=

2e−Aθ(t)

(2− e−Aθ(t))
2

[

θe
−Aθ(t) − 2θ + A

′
θ(t)

2
]

.

Since e−Aθ(t) ≥ 1− Aθ(t), then

θe
−Aθ(t) − 2θ + A

′
θ(t)

2 ≥ −θAθ(t) + A
′
θ(t)

2 − θ

is valid. The right hand side of this inequality is equivalent to a quadratic form in t

which is given by

(13) 3θ2t2 + 3θt+ 1− θ.

The roots of this quadratic form are

t1 =
−1
2

+ 1
6

√
12θ − 3

θ
, t2 =

−1
2

− 1
6

√
12θ − 3

θ
.

For θ < 1
4
, both t1 and t2 are not real and therefore 3θ2t2 + 3θt + 1 − θ ≥ 1

4
− θ > 0.

For θ ≥ 1
4
, we have t2 ≤ 0 and since

√
12θ − 3 ≤ 3, t1 is negative. Thus the quadratic

form in (13) has no positive root. The quadratic form is both convex and nondecreasing.
Moreover its value is 1− θ at the point 0. Therefore, the quadratic form in (13) cannot

be negative for t ≥ 0. Thus, dh2:2(t)
dt

≥ 0 for θ ∈ [0, 1]. Thence h2:2(t) is nondecreasing in
t. Namely, system has the IHR property. A similar result has been obtained in Navarro
et al. [8, Proposition 19.5.1 (4)].

4.4. Gumbel’s Bivariate Exponentials: Model III. For the series system we found

that h1:2(t) = 2
1
m and therefore the system preserves monotonicity itself as CHR. For

the parallel system, consider the hazard rate function as

h2:2(t) = 1− (c− 1)e−(c−1)t

2− e−(c−1)t
.

It is obvious that (c− 1)e−(c−1)t and 2 − e−(c−1)t are both positive and (c− 1)e−(c−1)t

is decreasing, while 2− e−(c−1)t is increasing. Therefore the ratio is nonincreasing. As a
result, h2:2(t) is nondecreasing and hence the system has the IHR property.
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4.5. Farlie Gumbel Morgenstern Bivariate Distribution. Here we are first going
to investigate a special case of the lifetimes of the series system. A general result for the
series system has been investigated by Gupta et al. [1]. They showed that the shape of
the hazard function of the system is like a bathtub. However, we find that the shape of
the hazard function does not seem to be a bathtub for α = −1. In order to check the
monotonicity property of the series system, we write the hazard function as

(14) h1:2(t) = 2λe−λt
[

1

e−λt
− α

(

1− e−λt
)

1 + α (1− e−λt)2

]

.

The first derivative of h1:2(t) may be helpful in deciding the monotonicity of h1:2(t) and
is given by

(15) h
′
1:2(t) =

α2λ2e−λt
[

α
(

1− e−λt
)2

+ 2
(

1− e−λt
)

− 1
]

[

1 + α (1− e−λt)2
]2 .

The first derivative is positive for α = −1 because

h
′
1:2(t)

∣

∣

α=−1
=

2λ2e−λt

[2− e−λt]2
≥ 0.

Therefore, h1:2(t) is increasing in t. In other words, the lifetime of the series system has
the IHR property for α = −1. The same result has been obtained by Joo and Mi [2,
Theorem 3.3].

In order to investigate the monotonicity of the hazard function for the parallel system,
we look at the sign of the first derivative of h2:2(t), which is given by

h
′
2:2(t) =

2λ2e−λt

(−2 + e−λt + αe−λt − 2αe−2λt + αe−3λt)2

×
[

1 + α+ 2αe−λt
(

5e−λt − e
−2λt − 4

)

+ α
2
e
−2λt

(

1− 2e−λt + e
−2λt

)]

.

Let u = e−λt and

(16)
m(u) = 1 + α− 2αu

(

u
2 − 5u+ 4

)

+ α
2
u
2 (1− 2u+ u

2)

= 1 + α [1 + u (1− u) (2u+ αu (1− u)− 8)] .

It is obvious that 2u + αu (1− u) − 8 ≥ −8 for α > 0, and −8u (1− u) ≥ −2. Both
inequalities imply thatm(u) ≥ 1−α. That is, m(u) cannot be negative for 0 < α ≤ 1 and
thus h2:2(t) is nondecreasing. On the other hand, if α ≤ 0, then 2u+αu (1− u)−8 ≤ −6.
Moreover 1− 6u (1− u) ≤ 1, so these two inequalities together imply that m(u) ≥ 1+α.
That is, m(u) cannot be negative for −1 ≤ α ≤ 0 and thus h2:2(t) is nondecreasing.
These two results imply that the lifetime of the parallel system has the IHR property for
α ∈ [−1, 1]. Joo and Mi [2] obtained the same results in a different way (see Theorem 3.5).

5. Conclusion

In this paper, an ordering of the lifetime of a system (series or parallel) has been
observed according to their hazard rates. The results are summarized in Table 1 below.
This table includes the possible orderings.
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Table 1. Ordering Relation of the Lifetimes

Clayton’s Bivariate Distribution (CBD)

θ > 0 θ > 1

T 0
1:2 ≤hr T1:2 ≤hr T ≤hr T2:2 T2:2 ≤hr T 0

2:2

Cowan’s Bivariate Exponentials (CWBED)

1 ≤ cα ≤ 2 cα > 1 cα = 1

T 0
1:2 ≤hr T1:2 ≤hr T T ≤hr T2:2 T2:2 ≤hr T 0

2:2

Gumbel’s Bivariate Exponentials (GBED)

θ ∈ [0, 1]

T1:2 ≤hr T 0
1:2 ≤hr T ≤hr T2:2

Gumbel’s Bivariate Exponentials III (GBED III)

m ≥ 1

T1:2 ≤hr T 0
1:2 ≤hr T ≤hr T2:2

Farlie Gumbel Morgenstern Bivariate Distribution (FGMED)

α < 0 α > 0 α ∈ [−1, 1]

T1:2 ≤hr T 0
1:2 ≤hr T T 0

1:2 ≤hr T1:2 ≤hr T T ≤hr T2:2

The monotonicity properties of the hazard functions of the lifetimes are given in Table 2.

Table 2. Monotonicity Properties of the Systems

Component Series System Parallel System

CBD DHR DHR* - - -

IHR - - - IHR*

CBED CHR - - - IHR

CWBED CHR CHR* IHR

GBED CHR IHR IHR

GBED III CHR CHR* IHR

FGMED CHR IHR (α = −1) IHR

Here, CBED denotes Clayton’s Bivariate Exponential Distribution and the other abbre-
viations are as in Table 1. (*) indicates which systems preserve the monotonicity.
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