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Abstract

In this work, we introduce a family of distance functions and show
that the group of isometries of the plane associated with the induced
metrics is the semi-direct product of the Dihedral group D2n and the
translation group T (2).
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1. Introduction

Isometries can be viewed as the transformations preserving normed vector spaces.
Characterizing the isometries will enable our understanding of the geometry of the space,
which is useful in the study of approximation problems, optimization problems, etc. Thus
this study also stimulates interactions among different areas: group theory, numerical
range, error analysis, [1,2,3,4,8,9,13].

We recall that the symmetry group of a regular 2n-gon is called the dihedral group
and denoted by D2n. It has 4n elements, namely 2n rotations and 2n reflections.

The group of isometries of the Euclidean plane with the usual metric is the semi-
direct product of the symmetry group of the unit circle, O(2), and the translation group
consisting of all translations of the plane, T (2) [5,6,14]. The groups of isometries of
the Taxicab and CC-planes, including the symmetry group of the square and a regular
octagon, were given in [10] and [7], respectively.

Here, we introduce a family of distances, dπn, that includes the Taxicab, Chinese-
Checker and Isotaxi distances, [7,8,11], as special cases and then show that the group of
isometries of the plane with the dπn-metric is the semi-direct product of D2n and T (2).
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2. dπn-distances

Now, we define a family of distances dπn in the analytic plane R2 and show that every
dπn-distance gives a metric for every n > 2, n ∈ Z. Here,the Chinese Checkers distance,
Taxicab distance and iso-taxi distance are contained as special cases.

2.1. Definition. Let A = (x1, y1) and B = (x2, y2) be any two points in R
2, a family of

distances dπn is defined by
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From now on, the plane with the distance dπn will be denoted by R
2
πn.

2.2. Proposition. Every distance dπn determines a metric.

Proof. It will be sufficient to prove that ‖ · ‖
πn

defined by
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where u = (x, y), is a norm in R
2, since then dπn(A,B) = ‖u− v‖

πn
, where u =

−→
OA and

v =
−−→
OB (O is the origin), is a metric. Also, if the vector u lies in the sector determined

by vk and vk+1, ‖u‖πn
can be defined by
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It is obvious that ‖ · ‖
πn

satisfies

i) ‖u‖
πn

> 0, with the equality iff u = 0, and

ii) ‖αu‖
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= |α| ‖u‖
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(α ∈ R).

Thus, we will verify the triangle inequality
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for the vectors u and v.

This can easily be obtained from the equivalence of the convexities of the closed unit
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and the norm function on R
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The unit circle is the set of vectors x in R
2 satisfying

uk · x = 1,

which is a regular 2n-gon with vertex vectors vk = (cos(k − 1)π
n
, sin(k − 1)π

n
), k ∈

{1, 2, . . . , 2n}.
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If the vector v lies in the sector determined by vk and vk+1, then ‖v‖
πn

= uk · v.
Equivalently, if v = tkvk+tk+1vk+1, where tk and tk+1are nonnegative, ‖v‖πn

= tk+tk+1.
The vectors inside the unit ball have norm smaller than 1 and the vectors outside the
unit circle have norm greater than 1. For u and v on the unit circle and for 0 6 t 6 1,
the convexity of the unit ball shows that tu+ (1 − t)v is inside or on the unit circle, so

‖tu+ (1− t)v‖
πn

6 1. For a, b > 0, set t =
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to obtain the triangle inequality
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So, the triangle inequality is satisfied since au and bv are arbitrary (nonzero) vectors. �

If u and v lie in the same sector, then ‖u+ v‖
πn

= ‖u‖
πn

+ ‖v‖
πn

.

According to the definition of the dπn-distance function, the shortest path between
the points A and B is the union of line segments with the same slopes as vk and vk+1,
k ∈ {1, 2, . . . , 2n}, when the vector AB is in the sector obtained by extending the vectors
vk and vk+1.

If the slope of the segment AB is equal to the slope of vk, k ∈ {1, 2, 3, . . . , 2n}, then
the dπn-distance is equal to the Euclidean distance between A and B.

3. Inequalities among the dπn-distances

The following lemma gives a functional relation between dπn-distance and dE-distance
(Euclidean distance).

3.1. Lemma. Let l be the line through the points A = (x1, y1) and B = (x2, y2) in

the analytical plane, and let dE denote the Euclidean metric. If l has slope m, then
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Proof. If l is parallel to the vk vectors, then dπn(A,B) = dE(A,B) and ρ(m) = 1. So
dπn(A,B) = ρ(m)dE(A,B). If l is not parallel to the x-axis or the y-axis, then x1 6= x2

and y1 6= y2, m = (y1 − y2)/(x1 − x2), where m is the slope of l, and
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and consequently the given equality is valid. If m → ∞, then
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The above proposition says that the dπn-distance along any line is some positive
constant multiple of the Euclidean distance along the same line. More precisely, the
following inequality for this metric family is valid:

dT (A,B) > dI(A,B) > dC(A,B) > dπ5(A,B) > · · · > dπn(A,B) > dE(A,B),

n > 6, n ∈ Z, for every pair of points A and B in R
2. Notice that dπ2, dπ3 and dπ4

coincide with the Taxicab dT , Isotaxi dI and Chinese-Checkers dC distance, respectively.
That is, dπn(A,B) approaches to dE(A,B) as n gets greater.

Now, one can immediately obtain the following:

3.2. Corollary. If A,B,X are any three collinear points in R
2, then

dE(X,A) = dE(X,B) iff dπn(X,A) = dπn(X,B). �

3.3. Corollary. If A, B and X are any three distinct collinear points in the real plane

then

dπn(X,A)/dπn(X,B) = dE(X,A)/dE(X,B). �

That is, the ratios of the Euclidean and dπn-distances along a line are the same.

Notice that, the latter corollary gives us the validity of the Theorems of Menelaus and

Ceva in R
2
πn.

In the remaining part of this work, we will study the isometries of R2
πn, and determine

its group of isometries.

4. Isometries of the plane R
2
πn

An isometry of a plane is defined to be a transformation which preserves the distances
in the plane. Therefore, an isometry of R2

πn is an isometry of the real plane with respect
to the dπn metric. Note that T is an isometry for ‖ · ‖

πn
if and only if T transforms the

unit ball to the unit ball [12].

4.1. Proposition. Every Euclidean translation is an isometry of R2
πn.

Proof. Let Ta : R2
πn → R

2
πn be the translation Ta(u) = a+ u in the real plane R

2, where
a is a translation vector and u is any vector in R

2
πn. For any vectors u and v in R

2
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have
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That is, every translation Ta is an isometry of R2
πn. �

R
2
πn plane geometry is the study of Euclidean points, lines and angles in R

2
πn. The

following proposition determines the reflections which preserves distance in R
2
πn.

4.2. Proposition. The set of reflections preserving the dπn-distance is
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Proof. It is sufficient to study the reflections of R2 preserving the regular 2n-gon, since
every isometric reflection of R2

πn preserves the unit ball of R2
πn. So, we must show that the

set, Sπn preserves the dπn-distances. Let the vector v =
−→
OA be in the sector obtained by

extending the vectors vi and vi+1 in the plane R2
πn. Then v = tivi+ ti+1vi+1, ti, ti+1 > 0

and dπn (O,A) = ‖v‖
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= ti + ti+1. If we calculate f(v), we obtain
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We see that f(v) is in the sector obtained by extending vk−i+2 and vk−i+1. Now,
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= ti + ti+1.

This result completes the proof �

For the rotations, we claim that there are only 2n rotations that preserve dπn-distances
in R

2
πn.

4.3. Proposition. The set of isometric rotations in R
2
πn is

Rθ =

{

rθ | rθ is a rotation about the origin and θ =
kπ

n
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}

.

Proof. It is enough to study the rotations preserving the regular 2n−gon, since every
isometric rotation of R2

πn must preserve the unit ball of R2
πn. Therefore we will show

that the set of rotations, Rθ , preserving the regular 2n-gon, preserves dπn-distances.

When the vector v =
−→
OA is in the sector obtained by extending the vectors vi and vi+1

in the plane R
2
πn, we know that v = tivi + ti+1vi+1, ti, ti+1 > 0 and
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If we calculate rθ(v), we obtain
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Thus, rθ(v) is in the sector obtained by extending vk+i−1 and vk−i. Then,

dπn (rθ(O), rθ(A)) = dπn (O, rθ(v))

= ‖rθ(v)‖πn
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= ti(uk+i−1 · vk+i−1) + ti+1(vk+i−1 · vk+i)

= ti + ti+1

This result completes the proof �
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From Propositions 4.2 and 4.3, one obtains the orthogonal group, consisting of 2n
reflections and 2n rotations:

Oπn(2) = Rθ ∪ Sπn,

which gives us Dihedral group D2n, that is, the Euclidean symmetry group of the regular
2n-gon. Now, let us show that all isometries of R2

πn are in T (2) · Oπn(2).

4.4. Definition. Let A = (a1, a2), B = (b1, b2) be two points in R
2
πn. The minimum

distance set of A, B is defined by

{X | dπn(A,X) + dπn(B,X) = dπn(A,B)} ,

and denoted by
3

AB.

Let mAB denote the slope of the line through the points A and B. If the slope of

AB is the same as the slope of vk, k ∈ {1, 2, . . . , 2n}, the set
3

AB is the line segment

joining A and B, that is,
3

AB = AB. We say that
3

AB is the standard parallelogram with

diagonal AB. If the vector AB is in the sector joining vk and vk+1,
3

AB is the standard
parallelogram with long diagonal AB, and its sides are parallel to vk and vk+1.

4.5. Proposition. Let φ : R2
πn → R

2
πn be an isometry and

3

AB the standard parallelo-

gram. Then

φ(
3

AB) =
3

φ(A)φ(B).

Proof. Let Y ∈ φ(
3

AB) . Then,

Y ∈ φ(
3

AB) ⇐⇒ ∃X ∈
3

AB such that Y = φ(X)

⇐⇒ dπn(A,X) + dπn(X,B) = dπn(A,B)

⇐⇒ dπn(φ(A), φ(X)) + dπn(φ(X), φ(B)) = dπn(φ(A), φ(B))

⇐⇒ Y = φ(X) ∈
3

φ(A)φ(B) �

4.6. Corollary. Let φ : R2
πn → R

2
πn be an isometry and

3

AB the standard parallelogram.

Then φ maps vertices to vertices and preserves the lengths of the sides of
3

AB. �

4.7. Proposition. Let φ : R2
πn → R

2
πn be an isometry such that φ(O) = O. Then φ ∈ Rθ

or φ ∈ Sπn.

Proof. Let A1 = (1, 0), A2 = (cos π

n
, sin π

n
), D = (1 + cos π

n
, sin π

n
), and consider the

standard parallelogram
3

OD. It is clear that φ(A1) ∈ AiAi+1. Since φ is an isometry
by Corollary 4.6, φ(A1) and φ(A2) must be the vertices of the standard parallelogram

3

Oφ(D). Therefore, if φ(A1) ∈ AkAk+1, then φ(A1) = Ak or φ(A1) = Ak+1. Similarly,
φ(A2) = Ak or φ(A2) = Ak+1.

When φ(A1) = Ak and φ(A2) = Ak+1, φ is an rotation with angle θ = (k−1)π
n

,
k ∈ {1, 2, . . . , 2n}. In case φ(A1) = Ak+1 and φ(A2) = Ak, φ is an reflection according
to y = mx, with the angle of slope (k − 1)π/2n, k ∈ {1, 2, . . . , 2n} , k ∈ Z.

Consequently, φ ∈ Rθ or φ ∈ Sπn �

4.8. Theorem. Let f : R2
πn → R

2
πn be an isometry. Then there exists a unique Ta ∈ T (2)

and φ ∈ Oπn(2) such that f = Ta ◦ φ.
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Proof. Let f(O) = A where A = (a1, a2). Define φ = T
−a ◦ f . We know that φ is an

isometry and φ(O) = O. Thus, φ ∈ Oπn(2) and f = Ta ◦φ by Proposition 4.7. The proof
of uniqueness is trivial �
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