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Abstract

In this work, it is shown that under certain conditions, the values of
some generalized lacunary power series with algebraic coefficients from
a certain algebraic number field K of degree m for Liouville number
arguments belong to either the algebraic number field K or

⋃m

i=1 Ui in
Mahler’s classification of the complex numbers.
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1. Introduction

A power series F (z) =
∑∞

h=0 chz
h (ch ∈ C, h = 0, 1, 2, . . .) with a positive radius of

convergence, satisfying the following conditions










ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch 6= 0, h = rn (n = 1, 2, 3, . . .),

ch 6= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}
∞
n=0 and {rn}

∞
n=1 are two infinite sequences of non-negative rational integers

with

0 = s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ . . . , lim
n→∞

sn
rn

= ∞,

is called a generalized lacunary power series.
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First, Mahler [9], in 1965, investigated a class of generalized lacunary power series with
rational integral coefficients and gave a necessary and sufficient condition that these series
take transcendental values for non-zero algebraic number arguments. Later, Braune [1],
in 1977, obtained further results for some generalized lacunary power series with algebraic
coefficients.

Zeren [15], in 1988, considered certain generalized lacunary power series with algebraic
coefficients from a certain algebraic number field and showed that under some conditions
these series take values belonging to the subclass Ut in Mahler’s classification of complex
numbers, where t denotes a natural number (recall that natural number means positive
rational integer) dependent on the given series and the argument, for non-zero algebraic
number arguments.

In the present work, we show that the generalized lacunary power series with alge-
braic coefficients treated by Zeren [15], under certain conditions, take values belonging
to either a certain algebraic number field or

⋃m

i=1 Ui in Mahler’s classification of the
complex numbers, where m denotes the degree of the algebraic number field to which the
coefficients of the given series belong, for some Liouville number arguments.

In [4] we considered some non-generalized lacunary power series with algebraic co-
efficients from a certain algebraic number field K of degree m, and showed that under
certain conditions these series take values belonging to either the algebraic number field
K or

⋃m

i=1 Ui in Mahler’s classification of the complex numbers for some Liouville num-
ber arguments. Hence, Theorem 3.1 can be regarded as an extension of [4] to generalized
lacunary power series.

2. Background

Mahler [8], in 1932, divided the complex numbers into four classes and called numbers
in these classes A-numbers, S-numbers, T -numbers, and U -numbers as follows.

We shall be concerned with polynomials P (z) = anz
n + · · ·+ a0 with rational integral

coefficients. The height H(P ) of P is defined by H(P ) = max (|an|, . . . , |a0|), and we
shall denote the degree of P by deg(P ).

Given a complex number ξ and natural numbers n and H , Mahler [8] puts

wn(H, ξ) = min
deg(P )≤n
H(P )≤H
P (ξ) 6=0

|P (ξ)|.

The polynomial P (z) ≡ 1 is one of the polynomials which lie in the minimum, and so we
have 0 < wn(H, ξ) ≤ 1. wn(H, ξ) is a non-increasing function of both n and H . Next,
Mahler [8] puts

wn(ξ) = lim sup
H→∞

− logwn(H, ξ)

logH
and w(ξ) = lim sup

n→∞

wn(ξ)

n
.

wn(ξ) is a non-decreasing function of n. Furthermore, the inequalities 0 ≤ wn(ξ) ≤ ∞
and 0 ≤ w(ξ) ≤ ∞ hold. If wn(ξ) = ∞ for some integer n, let µ(ξ) be the smallest of such
integers. In this case, we have wn(ξ) < ∞ for n < µ(ξ) and wn(ξ) = ∞ for n ≥ µ(ξ). If
wn(ξ) < ∞ for every n, put µ(ξ) = ∞. So µ(ξ) and w(ξ) are uniquely determined and are
never finite simultaneously, for the finiteness of µ(ξ) implies that there is an n < ∞ such
that wn(ξ) = ∞, whence w(ξ) = ∞. Therefore there are the following four possibilities
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for ξ, and ξ is called

An A-number if w(ξ) = 0, µ(ξ) = ∞,

An S-number if 0 < w(ξ) < ∞, µ(ξ) = ∞,

A T -number if w(ξ) = ∞, µ(ξ) = ∞,

A U -number if w(ξ) = ∞, µ(ξ) < ∞.

Every complex number ξ is of precisely one of these four types. The A-numbers are
precisely the algebraic numbers (see Schneider [11, pp. 68-69]). So the transcendental
numbers are distributed into the three disjoint classes S, T, U . Let ξ be a U -number such
that µ(ξ) = m, and let Um denote the set of all such numbers, i.e. Um = {ξ ∈ U : µ(ξ) =
m}. Obviously, the set Um (m = 1, 2, 3, . . .) is a subclass of U , and U is the union of all
the disjoint sets Um. LeVeque [6] showed that Um is not empty for any m ≥ 1.

Koksma [5], in 1939, set up another classification of the complex numbers. He divided
the complex numbers into four classes A∗, S∗, T ∗, U∗, as follows.

Suppose that α is an algebraic number and P (z) is the minimal defining polynomial
of α such that its coefficients are rational integers, relatively prime, and its highest
coefficient is positive. Then the height H(α) of α is defined by H(α) = H(P ), and the
degree deg(α) of α is defined as the degree of P .

Given a complex number ξ and natural numbers n and H , Koksma [5] puts

w∗
n(H, ξ) = min

α is algebraic
deg(α)≤n
H(α)≤H

α6=ξ

|ξ − α|,

w∗
n(ξ) = lim sup

H→∞

− log(Hw∗
n(H, ξ))

logH
, and w∗(ξ) = lim sup

n→∞

w∗
n(ξ)

n
.

w∗
n(H, ξ) is a non-increasing function of both n and H , and so w∗

n(ξ) is a non-decreasing
function of n. The functions w∗

n(ξ) and w∗(ξ) satisfy the respective inequalities 0 ≤
w∗

n(ξ) ≤ ∞ and 0 ≤ w∗(ξ) ≤ ∞. If w∗
n(ξ) = ∞ for some integer n, let µ∗(ξ) be the

smallest of such integers. In this case, we have w∗
n(ξ) < ∞ for n < µ∗(ξ) and w∗

n(ξ) = ∞
for n ≥ µ∗(ξ). If w∗

n(ξ) < ∞ for every n, put µ∗(ξ) = ∞. So µ∗(ξ) and w∗(ξ) are uniquely
determined and are never finite simultaneously. Therefore there are the following four
possibilities for ξ. Then, ξ is called

An A∗-number if w∗(ξ) = 0, µ∗(ξ) = ∞,

An S∗-number if 0 < w∗(ξ) < ∞, µ∗(ξ) = ∞,

A T ∗-number if w∗(ξ) = ∞, µ∗(ξ) = ∞,

A U∗-number if w∗(ξ) = ∞, µ∗(ξ) < ∞.

Every complex number ξ is of precisely one of these four types. Hence, the complex
numbers are distributed into the four disjoint classes A∗, S∗, T ∗, U∗. Let ξ be a U∗-
number such that µ∗(ξ) = m, and let U∗

m denote the set of all such numbers, i.e. U∗
m =

{ξ ∈ U∗ : µ∗(ξ) = m}. Obviously, the set U∗
m (m = 1, 2, 3, . . .) is a subclass of U∗, and

U∗ is the union of all the disjoint sets U∗
m.

Koksma’s classification of the complex numbers is equivalent to Mahler’s, i.e. A∗-,
S∗-, T ∗-, U∗-numbers are the same as A-, S-, T -, U -numbers, respectively. Moreover,
Um = U∗

m (m = 1, 2, 3, . . .) holds (see Schneider [11] and Wirsing [12]).
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A real number ξ is called a Liouville number if to each natural number n there exists
a rational number pn/qn (pn, qn ∈ Z) such that the inequalities

qn > 1, 0 <

∣

∣

∣

∣

ξ −
pn
qn

∣

∣

∣

∣

<
1

qnn

hold. We deduce from the definition that a Liouville number is an irrational number. The
set of Liouville numbers is identical with the subclass U1 in Mahler’s classification (for
more information about Liouville numbers see Perron [10, pp. 178-190] and Schneider
[11, Kapitel I]).

We need the following lemma in order to prove the main result of this paper.

2.1. Lemma. (İçen [3]) Let α1, . . . , αk (k ≥ 1) be algebraic numbers which belong to
an algebraic number field K of degree m, and let F (y, x1, . . . , xk) be a polynomial with
rational integral coefficients and with degree at least 1 in y. If η is any algebraic number
such that F (η, α1, . . . , αk) = 0, then

deg(η) ≤ dm

and

H(η) ≤ 32dm+(l1+···+lk)mHmH(α1)
l1m · · ·H(αk)

lkm,

where H is the height of the polynomial F , d is the degree of F in y, and li (i = 1, . . . , k)
is the degree of F in xi (i = 1, . . . , k).

3. The main result

3.1. Theorem. Let K = Q(θ) be an algebraic number field of degree m, and let

F (z) =
∞
∑

h=0

chz
h (ch ∈ K, h = 0, 1, 2, . . .)

be a power series which satisfies the following conditions:

(3.1)











ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch 6= 0, h = rn (n = 1, 2, 3, . . .),

ch 6= 0, h = sn (n = 0, 1, 2, . . .),

.

where {sn}
∞
n=0 and {rn}

∞
n=1 are two infinite sequences of non-negative rational integers

with

0 = s0 < r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ · · · ,(3.2)

lim
n→∞

sn
rn

= ∞.(3.3)

Suppose that the radius of convergence R of the series
∑∞

h=0 |ch| z
h † is positive (R may

be finite or infinite), and

(3.4) lim sup
h→∞

logAh

h
< ∞ (Ah = [a0, a1, . . . , ah], h = 1, 2, 3, . . .) , ‡

where ah (h = 0, 1, 2, . . .) is a suitable natural number such that ahch (h = 0, 1, 2, . . .) is
an algebraic integer. Moreover, let ξ be a Liouville number such that for n = 1, 2, 3, . . .,

†|ch| denotes the maximum of the absolute values of the conjugates of the algebraic number
ch over Q

‡[a0, a1, . . . , ah] denotes the least common multiple of the rational integers a0, a1, . . . , ah.
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there are rational integers pn, qn with qn > 1 and real numbers ωn = sn
rn log qn

with

limn→∞ ωn = ∞ satisfying the following inequality

(3.5)

∣

∣

∣

∣

ξ −
pn
qn

∣

∣

∣

∣

≤
1

qrnωn
n

,

and let

(3.6) |ξ| < R.

Then either F (ξ) is an algebraic number in K, or F (ξ) ∈
⋃m

i=1 Ui.

Proof. By (3.1), the series F (z) can be written, for the complex numbers z at which F (z)
converges, as

(3.7) F (z) =

∞
∑

h=0

chz
h =

∞
∑

k=0

Pk(z),

where Pk(z) =
∑rk+1

h=sk
chz

h (k = 0, 1, 2, . . .).

We shall prove the theorem in four steps.

1) The radius of convergence of the series F (z) =
∑∞

h=0 chz
h is ≥ R. For since |ch| ≤

|ch| (h = 0, 1, 2, . . .), F (z) converges for all the complex numbers z for which the series
∑∞

h=0 |ch| z
h converges. Then F (z) converges for z = ξ.

2) We shall consider the polynomials

(3.8) Fn(z) =

n−1
∑

k=0

Pk(z) (n = 1, 2, 3, . . .).

Define the algebraic numbers

(3.9) ηn = Fn

(

pn
qn

)

=

rn
∑

h=s0

ch

(

pn
qn

)h

∈ K (n = 1, 2, 3, . . .).

Since ηn ∈ K (n = 1, 2, 3, . . .), deg(ηn) ≤ m (n = 1, 2, 3, . . .). By multiplying both sides
of the equality

ηn =

rn
∑

h=s0

ch

(

pn
qn

)h

(n = 1, 2, 3, . . .)

by Arn , we obtain

(3.10) Arnηn −

rn
∑

h=s0

Arnch

(

pn
qn

)h

= 0.

Arnch (h = s0, s0 + 1, . . . , rn) is an algebraic integer in the algebraic number field K =
Q(θ). Moreover, we can assume that the algebraic number θ ∈ K given in the hypothesis
of the theorem is an algebraic integer and shall do so. Then we have

(3.11) Arnch =
ξ
(h)
0

D
+

ξ
(h)
1

D
θ + · · ·+

ξ
(h)
m−1

D
θm−1 (h = s0, s0 + 1, . . . , rn) ,

where ξ
(h)
0 , ξ

(h)
1 , . . . , ξ

(h)
m−1, and D =

∣

∣∆2(1, θ, . . . , θm−1)
∣

∣ > 0 are rational integers. Here,

∆ = ∆(1, θ, . . . , θm−1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

θ{1} θ{2} . . . θ{m}

...
...

...
...

(θm−1){1} (θm−1){2} . . . (θm−1){m}

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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and (θi){1}, . . . , (θi){m} (i = 1, 2, . . . ,m − 1) denote the field conjugates of θi (i =
1, 2, . . . ,m − 1) for K = Q(θ). Obviously ∆, and so D depend only on θ and the
conjugates of θ. From (3.10) and (3.11) we obtain,

(3.12) DArnηn −

rn
∑

h=s0

m−1
∑

µ=0

ξ(h)µ θµ
(

pn
qn

)h

= 0.

By multiplying both sides of (3.12) by qrnn , we obtain

(3.13) qrnn DArnηn −

rn
∑

h=s0

m−1
∑

µ=0

ξ(h)µ qrn−h
n phnθ

µ = 0.

Then we have

(3.14) L(ηn, θ) = 0,

where

(3.15) L(y, x) = qrnn DArny −

rn
∑

h=s0

m−1
∑

µ=0

ξ(h)µ qrn−h
n phnx

µ

is a polynomial in y, x with rational integral coefficients. Since qrnn DArn 6= 0, the poly-
nomial L(y, x) is of degree 1 in y. The degree of L(y, x) in x is ≤ m − 1. Denote the
height of the polynomial L(y, x) by H . Then, by Lemma 2.1, we obtain

(3.16) H(ηn) ≤ 32m+(m−1)mHmH(θ)(m−1)m = 3m(m+1)HmH(θ)(m−1)m.

Now let us determine an upper bound for the height H of the polynomial L(y, x). Since
ξ is a Liouville number, we can assume that pn 6= 0 (n = 1, 2, 3, . . .), and shall do so.
Hence |pn| ≥ 1, for pn is a non-zero rational integer. Also we have qn > 1 (n = 1, 2, 3, . . .)
by the hypothesis of the theorem. Thus it follows from (3.15) that

(3.17)

H = max
h=s0,...,rn
µ=0,...,m−1

(

qrnn DArn , |ξ
(h)
µ |qrn−h

n |phn|
)

≤ qrnn |pn|
rn max

h=s0,...,rn
µ=0,...,m−1

(

DArn , |ξ
(h)
µ |

)

.

Now we shall determine an upper bound for |ξ
(h)
µ | (µ = 0, 1, . . . , m − 1; h = s0, s0 +

1, . . . , rn). Put

(3.18) δ = DArnch.

Note that δ is an algebraic integer in K, since Arnch is an algebraic integer in K and D
is a natural number. By (3.11) and (3.18), we have

(3.19) δ = ξ
(h)
0 + ξ

(h)
1 θ + · · ·+ ξ

(h)
m−1θ

m−1 (h = s0, s0 + 1, . . . , rn) .

By using the field conjugates of θ for K in (3.19), we obtain the system of linear equations

(3.20)























δ{1} = ξ
(h)
0 + ξ

(h)
1 θ{1} + · · ·+ ξ

(h)
m−1(θ

m−1){1}

δ{2} = ξ
(h)
0 + ξ

(h)
1 θ{2} + · · ·+ ξ

(h)
m−1(θ

m−1){2}

...

δ{m} = ξ
(h)
0 + ξ

(h)
1 θ{m} + · · ·+ ξ

(h)
m−1(θ

m−1){m}

in the unknowns ξ
(h)
0 , ξ

(h)
1 , . . . , ξ

(h)
m−1. The coefficient matrix of (3.20) is different from

zero, since ∆2(1, θ, . . . , θm−1) 6= 0. Thus, the system of linear equations (3.20) has a
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unique solution which is

(3.21) ξ(h)µ =

m
∑

j=1

∆µj

∆
δ{j} (µ = 0, 1, . . . ,m− 1),

where ∆µj (µ = 0, 1, . . . , m − 1; j = 1, 2, . . . ,m) are complex constants which depend
only on θ and the conjugates of θ, are independent of δ, n, and h. It follows from (3.21)
that

(3.22) |ξ(h)µ | ≤
m
∑

j=1

|∆µj |

|∆|
|δ{j}| ≤

m
∑

j=1

|∆µj |

|∆|
|δ| ≤ |δ|

m−1
∑

µ=0

m
∑

j=1

|∆µj |

|∆|
.

However, since, by (3.18), δ = DArnch, we have

(3.23) |δ| ≤ DArn |ch|.

By (3.22) and (3.23),

(3.24)
|ξ(h)µ | ≤ DArn |ch|

m−1
∑

µ=0

m
∑

j=1

|∆µj |

|∆|

= C(K)Arn |ch| (µ = 0, 1, . . . ,m− 1; h = s0, . . . , rn),

where C(K) = D
∑m−1

µ=0

∑m

j=1

|∆µj |

|∆|
is a positive real number which depends only on θ

and the conjugates of θ, is independent of n, h, and µ. From (3.17) and (3.24) follows

(3.25)

H ≤ qrnn |pn|
rn max

h=s0,...,rn

(

DArn , C(K)Arn |ch|
)

≤ qrnn |pn|
rnC(K)Arn max

h=s0,...,rn
(1, |ch|) ,

where C(K) = max
(

D,C(K)
)

≥ 1 is a real constant which depends only on θ and the
conjugates of θ.

Let us choose a real number ρ satisfying the inequality

(3.26) 0 < |ξ| < ρ < R.
(

If R = ∞, then ρ is chosen as ρ > |ξ|
)

. By (3.26), the series
∑∞

h=0 |ch| ρ
h is convergent.

Thus, limh→∞ |ch| ρ
h = 0, so the sequence

{

|ch| ρ
h
}∞

h=0
is bounded, and therefore there

is a real number M > 0 such that

(3.27) |ch| ≤
M

ρh
(h = 0, 1, 2, . . .).

Then

(3.28)

max
h=s0,...,rn

(1, |ch|) ≤ max
h=s0,...,rn

(

1,
M

ρh

)

≤ max
h=s0,...,rn

(

M1,
M1

ρh

)

= M1

(

max

(

1,
1

ρ

))rn

,

where M1 = max (1,M) ≥ 1.

Since lim suph→∞
logAh

h
< ∞ by (3.4), the sequence

{

logAh

h

}∞

h=1
is bounded above.

So there exists a real number σ > 0 such that

(3.29)
logAh

h
≤ σ (h = 1, 2, 3, . . .).

From (3.29), we obtain

(3.30) Arn ≤ eσrn (n = 1, 2, 3, . . .).
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By (3.16), (3.25), (3.28), and (3.30), we have

(3.31) H(ηn) ≤ ernm
0 qrnm

n |pn|
rnm (n = 1, 2, 3, . . .),

where e0 = 3m+1C(K)eσM1 max
(

1, 1
ρ

)

H(θ)m−1 > 1 is a real constant independent of

n, rn, ηn, and qn. On the other hand, since ξ is a Liouville number, we can assume that
limn→∞ qn = ∞, and shall do so. So e0 ≤ qn for sufficiently large n. Hence, by (3.31),

(3.32) H(ηn) ≤ q2rnm
n |pn|

rnm

for sufficiently large n. It follows from (3.5) that

(3.33)

∣

∣

∣

∣

pn
qn

∣

∣

∣

∣

< |ξ|+ 1,

and so

(3.34) |pn| < qn (|ξ|+ 1) .

From (3.32), (3.34), and the fact that |ξ|+ 1 ≤ qn for sufficiently large n, we obtain

(3.35) H(ηn) ≤ qe1rnn

for sufficiently large n, where e1 = 4m > 0.

3) We have

(3.36) |F (ξ)− ηn| ≤ |F (ξ)− Fn(ξ)|+ |Fn(ξ)− ηn| (n = 1, 2, 3, . . .).

Now we shall determine an upper bound for |F (ξ) − Fn(ξ)| and |Fn(ξ) − ηn|. By (3.8),
(3.26), and (3.27), we have

|F (ξ)− Fn(ξ)| ≤
∞
∑

h=sn

|ch| |ξ|
h

≤
∞
∑

h=sn

M

ρh
|ξ|h = M

(

|ξ|

ρ

)sn
(

1 +
|ξ|

ρ
+

(

|ξ|

ρ

)2

+ · · ·

)

,

thus,

(3.37) |F (ξ)− Fn(ξ)| ≤
e2
esn3

(n = 1, 2, 3, . . .),

where e2 = M

1−
|ξ|
ρ

> 0 and e3 = ρ

|ξ|
> 1 are real constants independent of n, rn, sn, ηn,

and qn. By (3.27),

(3.38) |ch| ≤
M

ρh
≤ MBh ≤ M1B

h (h = 0, 1, 2, . . .),

where B = max
(

1, 1
ρ

)

≥ 1, M1 = max (1,M) ≥ 1. From (3.5), (3.8), (3.9), (3.33),

(3.38), and the fact that |ξ| < |ξ|+ 1, it follows

(3.39)

|Fn(ξ)− ηn| ≤

rn
∑

h=s0

|ch|

∣

∣

∣

∣

ξ −
pn
qn

∣

∣

∣

∣

(

|ξ|h−1 + |ξ|h−2

∣

∣

∣

∣

pn
qn

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

pn
qn

∣

∣

∣

∣

h−1
)

≤

rn
∑

h=s0

Mrn
1 Brn 1

qrnωn
n

rn (|ξ|+ 1)rn

≤
1

qrnωn
n

(rn + 1)2 Mrn
1 Brn (|ξ|+ 1)rn .
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Since limn→∞ rn = ∞, it follows limn→∞
rn

√

(rn + 1)2 = 1, and so there is a real number

e4 > 1 such that

(3.40) (rn + 1)2 ≤ ern4

for sufficiently large n. By (3.39) and (3.40), we have for sufficiently large n

(3.41) |Fn(ξ)− ηn| ≤
ern5

qrnωn
n

,

where e5 = e4M1B (|ξ|+ 1) > 1. From (3.41) and the fact e5 ≤ qn for sufficiently large
n, we obtain

(3.42) |Fn(ξ)− ηn| ≤
1

q
rn(ωn−1)
n

for sufficiently large n. Let λ be a real number such that 0 < λ < min (1, log e3). Then
the inequalities

(3.43)
e2
esn3

≤
1

q
rn(ωn−1)λ
n

and

(3.44)
1

q
rn(ωn−1)
n

≤
1

q
rn(ωn−1)λ
n

hold for sufficiently large n. It follows from (3.36), (3.37), (3.42), (3.43), and (3.44) that

(3.45) |F (ξ)− ηn| ≤
2

q
rn(ωn−1)λ
n

≤
1

q
rn(ωn−2)λ
n

for sufficiently large n. We deduce from (3.45) that limn→∞ |F (ξ) − ηn| = 0, and so
limn→∞ ηn = F (ξ). We obtain from (3.35) and (3.45) that

(3.46) |F (ξ)− ηn| ≤
1

H(ηn)γn
( lim
n→∞

γn = ∞)

for sufficiently large n, where γn = (ωn−2)λ
e1

(n = 1, 2, 3, . . .).

4) There exist the following two cases for the sequence {|F (ξ)− ηn|}:

a) |F (ξ)− ηn| = 0 from some n onward:

In this case, ηn = F (ξ) from some n onward, that is, {ηn} is a constant sequence.
Since ηn ∈ K (n = 1, 2, 3, . . .), in case a) it is obtained that F (ξ) is an algebraic number
in K.

b) |F (ξ)− ηn| 6= 0 for infinitely many n:

In this case, the sequence {ηn} has an infinite number of different terms. For otherwise
{ηn} would have a finite number of different terms, and so the sequence {|F (ξ) − ηn|}
would have a finite number of different terms. Since |F (ξ)−ηn| 6= 0 for an infinite number
of n, there is a non-zero term in the sequence {|F (ξ) − ηn|}. Then {|F (ξ)− ηn|} would
have only a finite number of different terms which are not zero. Hence, let us denote
the different and non-zero terms in the sequence {|F (ξ) − ηn|} by u1, u2, . . . , ut (t ≥ 1).
Put c = min(u1, u2, . . . , ut). Note that c is a positive real number, since all the ui (i =
1, 2, . . . , t) are positive real numbers. Thus, for any natural number n

(3.47) either |F (ξ)− ηn| = 0 or |F (ξ)− ηn| ≥ c.

Since limn→∞ |F (ξ)− ηn| = 0, there exists a natural number n0 such that

(3.48) |F (ξ)− ηn| < c
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for n ≥ n0. However, since |F (ξ) − ηn| 6= 0 for an infinite number of n, there exists a
natural number n > n0 for which |F (ξ) − ηn| 6= 0. By (3.47), we have |F (ξ) − ηn| ≥ c
which contradicts (3.48). Therefore {ηn} must have an infinite number of different terms.

The sequence {H(ηn)} of natural numbers, formed by the heights of the algebraic
numbers ηn, is not bounded. For otherwise there would be a real number M2 > 0 such
that H(ηn) ≤ M2 for n = 1, 2, 3, . . .. Then since also deg(ηn) ≤ m (n = 1, 2, 3, . . .),
the sequence {ηn} would have a finite number of different terms, contrary to the fact
that {ηn} has an infinite number of different terms. Thus lim supn→∞ H(ηn) = ∞, for
{H(ηn)} is not bounded above. Since lim supn→∞ H(ηn) = ∞, the sequence {H(ηn)} of
natural numbers has a subsequence

{

H(ηnj )
}∞

j=1
such that

(3.49) 1 < H(ηn1) < H(ηn2) < H(ηn3) < . . . , lim
j→∞

H(ηnj ) = ∞.

By (3.49), the terms of the sequence {ηnj }
∞
j=1 are all different, i.e. if i 6= j, then ηni 6= ηnj .

So the sequence {ηnj }
∞
j=1 may have at most one term equal to F (ξ). If there is a term

equal to F (ξ) among the terms ηnj (j = 1, 2, 3, . . .), i.e. if there exists a natural number
j0 for which ηnj0

= F (ξ), then we throw away the first j0 terms ηn1 , ηn2 , . . . , ηnj0
and

renumber the terms of the sequence
{

ηnj

}

(j0 + 1 → 1, j0 + 2 → 2, . . .), and so all the

terms of the sequence
{

ηnj

}

are now different from F (ξ). To summarize, the sequence
{ηn}

∞
n=1 has a subsequence {ηnj }

∞
j=1 for which the following properties hold:

i) ηnj 6= F (ξ) (j = 1, 2, 3, . . .),
ii) 1 < H(ηn1) < H(ηn2) < H(ηn3) < . . . , limj→∞ H(ηnj ) = ∞,
iii) deg(ηnj ) ≤ m (j = 1, 2, 3, . . .), for ηnj ∈ K (j = 1, 2, 3, . . .).

From (3.46) and i), we obtain for sufficiently large j that

(3.50) 0 < |F (ξ)− ηnj | ≤
1

H(ηnj )
γnj

( lim
j→∞

γnj = ∞).

Put Hj = H(ηnj ) > 1 (j = 1, 2, 3, . . .). By ii), {Hj}
∞
j=1 is a strictly increasing subse-

quence of natural numbers. By i), iii), and (3.50), we have for sufficiently large j

w∗
m (Hj , F (ξ)) = min

α is algebraic
deg(α)≤m
H(α)≤Hj

α6=F (ξ)

|F (ξ)− α| ≤ |F (ξ)− ηnj | ≤
1

H(ηnj )
γnj

=
1

H
γnj

j

,

and so it follows that 0 < w∗
m (Hj , F (ξ)) ≤ 1

H
γnj
j

for sufficiently large j. Consequently,

log 1

Hjw
∗
m(Hj,F (ξ))

logHj
≥ γnj − 1 for sufficiently large j. Since limj→∞ γnj = ∞, we obtain

lim
j→∞

log 1

Hjw
∗
m(Hj ,F (ξ))

logHj

= ∞.

Hence w∗
m (F (ξ)) = ∞. This implies that F (ξ) ∈ U∗ and µ∗ (F (ξ)) ≤ m, in other words,

F (ξ) ∈
⋃m

i=1 U
∗
i . Since U∗

i = Ui for i = 1, 2, . . ., this implies that in case b) we have
F (ξ) ∈

⋃m

i=1 Ui. This completes our proof. �

If we take m = 1 in Theorem ??, we obtain the following corollary.

3.2. Corollary. Let F (z) =
∑∞

h=0 chz
h
(

ch ∈ Q; ch = bh
ah

, bh ∈ Z, ah ∈ N;

h = 0, 1, 2, . . .
)

be a power series which satisfies the following conditions:










ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch 6= 0, h = rn (n = 1, 2, 3, . . .),

ch 6= 0, h = sn (n = 0, 1, 2, . . .),
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where {sn}
∞
n=0 and {rn}

∞
n=1 are two infinite sequences of non-negative rational integers

with

0 = s0 < r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ · · · and lim
n→∞

sn
rn

= ∞.

Suppose that the radius of convergence R of the series F (z) is positive (R may be finite
or infinite), and

lim sup
h→∞

logAh

h
< ∞ (Ah = [a0, a1, . . . , ah], h = 1, 2, 3, . . .) .

Moreover, let ξ be a Liouville number such that for n = 1, 2, 3, . . ., there are rational in-
tegers pn, qn with qn > 1 and real numbers ωn = sn

rn log qn
with limn→∞ ωn = ∞ satisfying

the following inequality
∣

∣

∣

∣

ξ −
pn
qn

∣

∣

∣

∣

≤
1

qrnωn
n

,

and let |ξ| < R. Then F (ξ) is either a rational number or a Liouville number.

3.3. Note. Theorem ?? and Corollary 3.2 also hold true for real numbers ωn = sn
rn log qn

with lim supn→∞ ωn = ∞.
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